Skip Content
You are currently on the new version of our website. Access the old version .

Gels

Gels is an international, peer-reviewed, open access journal on physical and chemical gels, published monthly online by MDPI.

Indexed in PubMed | Quartile Ranking JCR - Q1 (Polymer Science)

All Articles (4,399)

High-resolution biofabrication requires precise microscale deposition, yet drop-on-demand (DOD) inkjet bioprinting is constrained by a narrow printable viscosity window. Many biocompatible hydrogel precursors display high zero-shear viscosity and strong shear-thinning, so stable droplet ejection typically requires dilution or reformulation that can compromise the biochemical microenvironment. We present a transient shear-enabled jetting method that exploits intrinsic shear-thinning by using a high-frequency electromagnetic microvalve to deliver short, high-pressure pulses. The resulting localized shear dynamically lowers apparent viscosity in the nozzle region and promotes controlled nucleation, ligament formation, necking, and pinch-off. A coupled, rheology-informed modeling framework (axisymmetric transient CFD, valve dynamics, and electromagnetic FEM) links actuation parameters to droplet volume and stability and guides hardware optimization. Experiments with 2.5% (w/v) sodium alginate validate stable droplet generation and tunable droplet size via stroke length and driving conditions. These results define a practical process window for high-resolution droplet printing of high-viscosity shear-thinning hydrogel inks.

6 February 2026

Viscosity curve of sodium alginate at varying concentrations.

The growing need for ecologically sound and ethical protein sources has contributed to the development of meat analogs (MAs) and restructured meat products (RMPs). Next generation MA and RMP production requires sustainable structuring techniques to imitate the physical, chemical, and sensory characteristics of conventional meat. Innovative gelling techniques are essential for attaining optimal texture, chewiness, and structural firmness in MAs and RMPs. Food gels can modulate water and fat retention, as well as the physical and mechanical characteristics of MA and RMP. Different gelling systems such as hydrogels, emulsion gels, oleogels, and hybrid gels contribute to texture formation, water and fat retention, juiciness, and structural integrity, which are essential for mimicking conventional meat. The role of gels as key structuring elements is integrated with advanced processing technologies such as high-moisture extrusion and 3D printing. This review discusses how protein, polysaccharide, lipid, and hybrid gelling techniques facilitate the development of MAs and RMPs with enhanced texture, sensory quality, nutritional value, and sustainability. Advanced structuring techniques, such as high-moisture extrusion, shear cell processing, and 3D printing, are explained regarding their integration of tailored gels (hydrogels, emulsion gels, oleogels, and hybrid gels) to fabricate imitated meat structures. Moreover, this article investigates the sensory and nutritional ramifications of various gelling techniques, spanning their role in juiciness and flavor composition. This review emphasizes significant research deficiencies and suggests more extensive future studies to facilitate the further development of economically viable and sustainable MAs and RMPs.

5 February 2026

Types of gels and biomaterials used for developing gels for application in meat analogs and restructured meat products.

To address the limitations of conventional superabsorbent polymers in complex aqueous environments, a novel ternary composite gel (BT-SAP) based on xanthan gum, poly(acrylic acid-co-acrylamide), and bentonite was synthesized via a facile one-pot polymerization. Characterization confirmed the formation of a stable organic–inorganic hybrid three-dimensional network. The gel demonstrated outstanding comprehensive performance: a maximum water absorption capacity of 378.6 g/g; good adaptability to various pH levels, salt ions, and real water bodies; and rapid absorption kinetics and reusable potential over multiple cycles. Simultaneously, it exhibited a high adsorption capacity of 181.3 mg/g for methylene blue. The adsorption isotherm followed the Freundlich model, indicating adsorption on a heterogeneous surface. Kinetic studies revealed that the process was best described by the pseudo-second-order model, suggesting chemisorption as the rate-controlling step. XPS analysis further elucidated that the adsorption primarily occurred through the synergistic effect of electrostatic attraction from carboxyl groups and hydrogen bonding from amide/hydroxyl groups within the gel. This work provides a new strategy for developing smart materials integrating efficient water absorption and dye removal functionalities.

5 February 2026

(a) Preparation mechanism of BT-SAP, (b) FT-IR spectra, (c) XRD patterns of SAP and BT-SAP, (d) SEM images of BT-SAP [magnifications: 50×, 50×, 2000×, 50,000×], (e) nitrogen adsorption–desorption isotherm, and (f) pore width distribution of BT-SAP.

Nanostructured Hydrogels: A Method to Prevent Biofilms on Implantable Medical Devices

  • Hasani G. Jayasinghe,
  • Ujith S. K. Madduma-Bandarage and
  • Sundar V. Madihally

Microbial biofilms pose significant health risks by causing infections associated with prosthetic and indwelling medical devices. Factors such as the high tolerance levels of biofilm microorganisms to antibiotics and the inability of antimicrobial agents to penetrate the biofilm matrix render antibiotic-based treatment methods ineffective against biofilm-related infections. Surfaces patterned with nanoscale topographical features have shown promising results in controlling the attachment of microorganisms. Therefore, nanopatterning of surfaces provides an excellent alternative to the existing antibiotic-based therapies. There are many techniques, such as photolithography and soft lithography, for patterning polymer or metal surfaces. However, depending on the cost, toxicity, feature size, and material compatibility, these methods have limitations. Although hydrogels have garnered special interest as biomaterials due to their biocompatibility and resemblance to the natural biological environment, hydrogels with surface nanopatterns have not been widely investigated as anti-biofouling materials. The applicability of hydrogels in biomedical applications and the importance of inhibiting microbial biofilms underscore the need for further research into the manufacturing of nanoengineered hydrogels with diverse topographical features. In this review, we discuss how nanostructured hydrogels inhibit biofilm formation. Further, we discuss nanopatterning methods, their limitations, advantages, and disadvantages. This article also highlights the current state of research on nanostructured hydrogels and associated challenges.

5 February 2026

Stages in the formation of microbial biofilms on a surface.

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Oleogels, Bigels, and Emulgels
Reprint

Oleogels, Bigels, and Emulgels

Fabrication, Application and Research Trends
Editors: Cristina Ghinea, Ana Leahu
Current Directions and Prospects of Hydrogels for Biomedical Applications
Reprint

Current Directions and Prospects of Hydrogels for Biomedical Applications

Editors: Zhiyuan Jia, Holger Schönherr, Nowsheen Goonoo

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Gels - ISSN 2310-2861