- Article
Time-Dependent Network-Forming Dispersion Behavior of Barium Titanate Slurries and Their Impact on Green Sheet Properties
- Haejin Park,
- Seongho Lee and
- Junheon Lee
- + 5 authors
In the fabrication of ultrathin multilayer ceramic capacitors (MLCCs), the long-term stability of ceramic slurries is a critical yet often overlooked factor that can significantly influence coating uniformity, interfacial adhesion, and process reproducibility. Despite its industrial importance, the time-dependent evolution of slurry dispersion structures during storage and its direct impact on green sheet properties remain insufficiently understood. This study examined the time-dependent physicochemical evolution of barium titanate (BaTiO3)-based green sheet slurries, which behave as colloidal gel-like dispersion systems, and their influence on the structural, optical, and interfacial properties of the resulting sheets. Dynamic light scattering revealed progressive yet uniform particle aggregation, while viscosity measurements indicated a gradual ~10% decrease over 960 h, reflecting reduced dispersion stability and progressive weakening of the slurry gel network during extended storage. The slurry, consisting of BaTiO3 particles, polymeric binders, and plasticizers, forms a three-dimensional transient gel network, in which particle–particle and particle–binder interactions govern rheological behavior. The observed viscosity decrease and turbidity reduction indicate gel network relaxation and partial gel–sol–like transition behavior driven by aggregation. Cross-sectional scanning electron microscopy demonstrated that these changes produced a measurable reduction in final green sheet thickness, despite identical processing conditions. Furthermore, peel tests revealed that interfacial adhesion strength increased with storage time, attributable to localized solid enrichment within the slurry gel matrix and enhanced bonding at the release film interface. The reduced coating thickness also contributed to lower optical haze, reflecting a shortened light-transmission path. Collectively, these findings demonstrate that even moderate aggregation in a ceramic network-forming dispersion system substantially alters coating behavior, adhesion, and optical performance. The results underscore the importance of managing gel-network stability and rheology to ensure reliable green sheet fabrication and storage in MLCC manufacturing.
7 February 2026




