Feature Papers in Compounds (2024)

A special issue of Compounds (ISSN 2673-6918).

Deadline for manuscript submissions: 31 December 2024 | Viewed by 1816

Special Issue Editor


E-Mail Website1 Website2
Guest Editor
Department of Physical Chemistry, Faculty of Science, University of Vigo, Ourense, Spain
Interests: physical organic and physical inorganic chemistry; reactivity mechanisms in homogeneous and microheterogeneous media; stability of self-assembly aggregates, and supramolecular chemistry
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As the Editor-in-Chief of Compounds, I am delighted to announce this new Special Issue on “Feature Papers in Compounds (2024)”. Compounds is an international, open access, peer-reviewed journal on compounds research.

This Special Issue will comprise high-quality papers selected by Editorial Board Members and will showcase the research of authors invited by the Editorial Office and the Editor-in-Chief. Both original research articles and comprehensive review papers are welcome. The papers in this Special Issue will be published via our open access platform after a thorough peer review, a process which will benefit both our authors and readers.

You are welcome to send short proposals for feature paper submissions to the Editorial Office ([email protected]) before submission.

We look forward to receiving your excellent work.

Prof. Dr. Juan C. Mejuto
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Compounds is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • organic/inorganic compounds
  • inorganic chemistry/organic chemistry
  • coordination chemistry
  • organometallic chemistry
  • solid-state chemistry
  • materials
  • catalysis
  • simulation and modeling

Related Special Issue

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 2016 KiB  
Article
New Data on the Reactions of Zirconium and Hafnium Tetrachlorides with Aliphatic Acids
by Victor D. Makhaev, Larisa A. Petrova, Gennadii V. Shilov and Sergey M. Aldoshin
Compounds 2024, 4(2), 338-350; https://doi.org/10.3390/compounds4020018 - 8 May 2024
Viewed by 567
Abstract
The reaction of ZrCl4 or HfCl4 with excess 2-methylpropanoic acid when boiling under reflux has been studied. The formation of polynuclear Zr and Hf complexes of the composition M2O(i-C3H7CO2)6 during [...] Read more.
The reaction of ZrCl4 or HfCl4 with excess 2-methylpropanoic acid when boiling under reflux has been studied. The formation of polynuclear Zr and Hf complexes of the composition M2O(i-C3H7CO2)6 during prolonged reflux of the reaction mixtures was found. The complexes are very sensitive to hydrolysis, forming hexanuclear [M6(O)4(OH)4(i-C3H7CO2)12]. The reactions have a general character for aliphatic acids and can be used as an alternative to the known methods for the synthesis of polynuclear carboxylate clusters of Group 4 metals. The crystal and molecular structures of previously undescribed {[Hf63-O)43-OH)4(i-C3H7CO2)12(H2O)]·3i-C3H7COOH} have been determined. The molecular structure is a completely asymmetric hexanuclear cluster containing six Hf(IV) atoms united by a 4:4 μ3-O/OH system of bridges, and stabilized by twelve 2-methylpropanoate ligands, eight of which are bidentate bridging, three are chelating, and one is monodentate. The crystal structure of the complex includes three independent solvating 2-methylpropanoic acid molecules. The obtained IR spectroscopy data make it possible to determine the type of complexes in the reaction mixture. The results of the study may be useful for improving the catalytic systems for ethylene oligomerization. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2024))
Show Figures

Graphical abstract

13 pages, 3449 KiB  
Article
(1E)-1,2-Diaryldiazene Derivatives Containing a Donor–π-Acceptor-Type Tolane Skeleton as Smectic Liquid–Crystalline Dyes
by Shigeyuki Yamada, Keigo Yoshida, Yuto Eguchi, Mitsuo Hara, Motohiro Yasui and Tsutomu Konno
Compounds 2024, 4(2), 288-300; https://doi.org/10.3390/compounds4020015 - 17 Apr 2024
Viewed by 582
Abstract
Considerable attention has been paid to (1E)-1,2-diaryldiazenes (azo dyes) possessing liquid–crystalline (LC) and optical properties because they can switch color through thermal phase transitions and photoisomerizations. Although multifunctional molecules with both LC and fluorescent properties based on a donor–π-acceptor (D-π-A)-type tolane [...] Read more.
Considerable attention has been paid to (1E)-1,2-diaryldiazenes (azo dyes) possessing liquid–crystalline (LC) and optical properties because they can switch color through thermal phase transitions and photoisomerizations. Although multifunctional molecules with both LC and fluorescent properties based on a donor–π-acceptor (D-π-A)-type tolane skeleton have been developed, functional molecules possessing LC and dye properties have not yet been developed. Therefore, this study proposes to develop LC dyes consisting of (1E)-1,2-diaryldiazenes with a D–π-A-type tolane skeleton as the aryl moiety. The (1E)-1,2-diaryldiazene derivatives exhibited a smectic phase, regardless of the flexible-chain structure, whereas the melting temperature was significantly increased by introducing fluoroalkyl moieties into the flexible chain. Evaluation of the optical properties revealed that compounds with decyloxy chains exhibited an orange color, whereas compounds with semifluoroalkoxy chains absorbed at a slightly blue-shifted wavelength, which resulted in a pale orange color. The thermal phase transition caused a slight color change accompanied by a change in the absorption properties, photoisomerization-induced shrinkage, and partial disappearance of the LC domain. These results indicate that (1E)-1,2-diaryldiazenes with a D–π-A-type tolane skeleton can function as thermo- or photoresponsive dyes and are applicable to smart windows and in photolithography. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2024))
Show Figures

Graphical abstract

Review

Jump to: Research

25 pages, 9591 KiB  
Review
Anti-Inflammatory and Antithrombotic Potential of Metal-Based Complexes and Porphyrins
by Alexandros Tsoupras, Sofia Pafli, Charilaos Stylianoudakis, Kalliopi Ladomenou, Constantinos A. Demopoulos and Athanassios Philippopoulos
Compounds 2024, 4(2), 376-400; https://doi.org/10.3390/compounds4020023 - 10 Jun 2024
Viewed by 248
Abstract
Inflammation and thrombosis are implicated in several chronic disorders. Recent studies have outlined the way in which several compounds can offer protection against inflammation. Within this comprehensive review the so-far reported anti-inflammatory health-promoting effects of several metal-based complexes, both in vitro and in [...] Read more.
Inflammation and thrombosis are implicated in several chronic disorders. Recent studies have outlined the way in which several compounds can offer protection against inflammation. Within this comprehensive review the so-far reported anti-inflammatory health-promoting effects of several metal-based complexes, both in vitro and in vivo, are thoroughly presented. These metal-based compounds usually interfere with various biochemical processes associated with the inflammatory response and thrombus formation and become capable of inhibiting these biochemical pathways with proposed health benefits. Emphasis is given to the multifaceted actions of metal-based complexes that have exhibited potent anti-inflammatory and antithrombotic activities against the inflammatory mediator, platelet-activating factor (PAF), and its thrombo-inflammatory signaling, as well as on their anti-platelet and antitumor health promoting properties. Furthermore, the enhancement of the anti-inflammatory potency of well-established bioactive compounds by their incorporation as ligands in several metal-based complexes is discussed. Metal-based complexes bearing natural anti-inflammatory bioactives are also outlined. Characteristic examples of both free and metal-based porphyrins are explored. These compounds are recognized to have anti-inflammatory and antithrombotic assets, in addition to other pleiotropic advantages including antibacterial or anticancer actions. Additionally, applications of metal complexes in various models of inflammatory and thrombotic complications are demonstrated. The combined results of this study show that further research is required towards the preparation of several metal-based complexes with improved pharmacological profiles. Finally, restrictions on the application of these metal-based compounds are also covered, along with their prospects for the future and the need for additional study in order to improve their efficacy and safety. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2024))
Show Figures

Figure 1

Back to TopTop