cimb-logo

Journal Browser

Journal Browser

Natural Product in Skin Inflammation and Barrier Function Damage

A special issue of Current Issues in Molecular Biology (ISSN 1467-3045). This special issue belongs to the section "Molecular Medicine".

Deadline for manuscript submissions: 31 August 2024 | Viewed by 1271

Special Issue Editor


E-Mail Website1 Website2
Guest Editor
Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan
Interests: photoaging; melanogenesis; phytochemistry; phototoxicity; dermatology; skin disorders
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Skin inflammation is a sign of an immune response in the body, induced by multiple factors including allergies, infections and autoimmune diseases. The skin barrier can be repaired using ingredients such as lipids, fatty acids, and natural products and their active components. Plants have an abundance of active components and various phytochemicals with multiple benefits, including antioxidant properties, antiaging and protection of the skin from environmental damage.

The focus of this Special Issue is the improvement of skin-related problems through the application of natural products or their active components, including skin problems and related diseases caused by inflammation, aging, pigmentation, regulation of sebum and intracellular lipids, etc. In addition, regulation and mechanisms of the skin barrier function and the role of skin barrier function in skin problems will be discussed.

Prof. Dr. Hsiu-Mei Chiang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Current Issues in Molecular Biology is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • skin inflammation
  • barrier function damage
  • natural compounds
  • antioxidant properties
  • antiaging

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 5266 KiB  
Article
Anti-Melanogenic and Anti-Inflammatory Effects of 2′-Hydroxy-4′,6′-dimethoxychalcone in B16F10 and RAW264.7 Cells
by Sungmin Bae, Jung-No Lee and Chang-Gu Hyun
Curr. Issues Mol. Biol. 2024, 46(6), 6018-6040; https://doi.org/10.3390/cimb46060359 (registering DOI) - 14 Jun 2024
Viewed by 128
Abstract
Chalcone is a type of flavonoid compound that is widely biosynthesized in plants. Studies have shown that consuming flavonoids from fruits and vegetables or applying individual ingredients reduces the risk of skin disease. However, the effects of chalcone on melanogenesis and inflammation have [...] Read more.
Chalcone is a type of flavonoid compound that is widely biosynthesized in plants. Studies have shown that consuming flavonoids from fruits and vegetables or applying individual ingredients reduces the risk of skin disease. However, the effects of chalcone on melanogenesis and inflammation have not been fully investigated. The aim of this study was to evaluate the anti-melanogenic and anti-inflammatory effects of 2′-hydroxy-3,4′-dimethoxychalcone (3,4′-DMC), 2′-hydroxy-4,4′-dimethoxychalcone (4,4′-DMC), 2′-hydroxy-3′,4′-dimethoxychalcone (3′,4′-DMC), and 2′-hydroxy-4′,6′-dimethoxychalcone (4′,6′-DMC). Among the derivatives of 2′-hydroxy-4′-methoxychalcone, 4′,6′-DMC demonstrated the most potent melanogenesis-inhibitory and anti-inflammatory effects. As evidenced by various biological assays, 4′,6′-DMC showed no cytotoxicity and notably decreased the expression of tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 enzymes. Furthermore, it reduced cellular melanin content and intracellular tyrosinase activity in B16F10 melanoma cells by downregulating microphthalmia-associated transcription factor (MITF), cAMP-dependent protein kinase (PKA), cAMP response element-binding protein (CREB), p38, c-Jun N-terminal kinase (JNK), β-catenin, glycogen synthase kinase-3β (GSK3β), and protein kinase B (AKT) proteins, while upregulating extracellular signal-regulated kinase (ERK) and p-β-catenin. Additionally, treatment with 4′,6′-DMC significantly mitigated the lipopolysaccharide (LPS)-induced expression of NO, PGE2, inflammatory cytokines, COX-2, and iNOS proteins. Overall, 4′,6′-DMC treatment notably alleviated LPS-induced damage by reducing nuclear factor kappa B (NF-κB), p38, JNK protein levels, and NF-kB/p65 nuclear translocation. Finally, the topical applicability of 4′,6′-DMC was evaluated in a preliminary human skin irritation test and no adverse effects were found. These findings suggest that 4′,6′-DMC may offer new possibilities for use as functional ingredients in cosmeceuticals and ointments. Full article
(This article belongs to the Special Issue Natural Product in Skin Inflammation and Barrier Function Damage)
Show Figures

Figure 1

14 pages, 4637 KiB  
Article
Kahweol Inhibits Pro-Inflammatory Cytokines and Chemokines in Tumor Necrosis Factor-α/Interferon-γ-Stimulated Human Keratinocyte HaCaT Cells
by Ye Jin Kwon, Hyun Hee Kwon, Jaechan Leem and Yoon Young Jang
Curr. Issues Mol. Biol. 2024, 46(4), 3470-3483; https://doi.org/10.3390/cimb46040218 - 18 Apr 2024
Viewed by 897
Abstract
Atopic dermatitis (AD), marked by intense itching and eczema-like lesions, is a globally increasing chronic skin inflammation. Kahweol, a diterpene that naturally occurs in coffee beans, boasts anti-inflammatory, antioxidative, and anti-cancer properties. This research explores the anti-inflammatory action of kahweol on HaCaT human [...] Read more.
Atopic dermatitis (AD), marked by intense itching and eczema-like lesions, is a globally increasing chronic skin inflammation. Kahweol, a diterpene that naturally occurs in coffee beans, boasts anti-inflammatory, antioxidative, and anti-cancer properties. This research explores the anti-inflammatory action of kahweol on HaCaT human keratinocytes stimulated by tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), focusing on key signal transduction pathways. Our results demonstrate that kahweol markedly reduces the production of IL-1β, IL-6, C-X-C motif chemokine ligand 8, and macrophage-derived chemokine in TNF-α/IFN-γ-activated HaCaT cells. Furthermore, it curtails the phosphorylation of key proteins in the mitogen-activated protein kinase (MAPK) pathways, including c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38. Additionally, kahweol impedes the phosphorylation and nuclear translocation of the NF-κB p65 subunit and constrains its DNA-binding capability. It also hampers the phosphorylation, nuclear translocation, and DNA-binding activities of signal transducer and activator of transcription 1 (STAT1) and STAT3. Collectively, these findings suggest that kahweol hinders the generation of cytokines and chemokines in inflamed keratinocytes by inhibiting the MAPK, NF-κB, and STAT cascades. These insights position kahweol as a promising agent for dermatological interventions, especially in managing inflammatory skin conditions such as AD. Full article
(This article belongs to the Special Issue Natural Product in Skin Inflammation and Barrier Function Damage)
Show Figures

Figure 1

Back to TopTop