- Article
Machine Learning-Based Automatic Control of Shield Tunneling Attitude in Karst Strata
- Liang Li,
- Changming Hu and
- Peng Zhang
- + 2 authors
Accurate prediction and optimized control of shield tunneling attitude are critical for ensuring tunneling quality and construction safety. In karst and other highly heterogeneous strata, complex geological conditions and construction parameters exhibit significant nonlinear coupling, greatly increasing the difficulty of attitude regulation. To address this challenge, this study proposes a machine learning-based approach for the automatic control of shield tunneling attitude. First, a Tree-structured Parzen Estimator-optimized Light Gradient Boosting Machine predictive model is employed to construct a nonlinear mapping model between construction parameters and shield tunneling attitude. Subsequently, the SHapley Additive exPlanations (SHAP) interpretability model is introduced to identify the core tunneling factors influencing attitude stability. On this basis, the developed predictive model is integrated into the multi-objective evolutionary algorithm based on decomposition (MOEA/D) framework as a fitness function to achieve multi-objective optimization of key construction parameters. Using field data from shield tunneling construction in the karst strata of Shenzhen Metro Line 16, the proposed model achieved prediction accuracies of R2 = 0.959 for pitch and R2 = 0.936 for roll, outperforming XGBoost, Random Forest, Long Short-Term Memory, and Transformer baselines. SHAP analysis identified the partitioned propulsion thrust, partitioned chamber pressure, cutterhead rotational speed, and advance rate as key parameters influencing attitude. Further, MOEA/D optimization generated a Pareto set of construction parameters, from which the optimal solution was selected using the ideal point method, resulting in reductions of 26.45% and 39.47% in pitch and roll deviations, respectively. These findings demonstrate the feasibility and effectiveness of the proposed method in achieving high-precision prediction and intelligent optimization control of shield tunneling attitude under complex geological conditions, providing a reliable technical pathway for metro and tunnel construction projects.
8 February 2026




![Kernel-smoothed tornado reports from the ESWD [13].](https://mdpi-res.com/cdn-cgi/image/w=281,h=192/https://mdpi-res.com/buildings/buildings-16-00697/article_deploy/html/images/buildings-16-00697-g001-550.jpg)



