- Article
A Software-Implemented Wind Turbine Emulator Using a Robust Sensorless Soft-VSI Induction Motor Drive with STA-Based Flux Observation and MRAS Speed Estimation
- Mouna Zerzeri,
- Intissar Moussa and
- Adel Khedher
In response to the need for cost-effective and resilient drivetrain architectures in renewable energy emulation platforms, this paper proposes a wind turbine emulator (WTE) designed to enhance the operational efficiency of variable-speed wind turbines (WTs) connected to electric generators in power grid applications. The proposed emulator relies on a robust sensorless vector-controlled induction motor (IM) drive fed by a reduced-switch soft–voltage source inverter (Soft-VSI) topology. The proposed control chain combines a second-order super-twisting sliding-mode flux observer, based on stator measurements, with a modified MRAS speed estimator whose Popov hyperstability offers explicit PI tuning and ensures stable sensorless speed convergence. The complete WTE design, from the aerodynamic model to the Soft-VSI induction motor drive, is implemented and evaluated in MATLAB/Simulink environment. A Mexican hat wind speed profile is used to excite the emulator and assess its dynamic behavior under diverse transient conditions. The simulation results demonstrate fast convergence of the estimated flux and speed, stable closed-loop operation when using the estimated speed, and strong robustness against no-loaded and loaded operations and rotor-resistance variations. Moreover, a comparative analysis between the proposed control scheme and a conventional first-order sliding-mode flux observer is carried out to highlight the enhanced flux and speed estimation accuracy, reduced chattering, and improved dynamic robustness of the WTE. The proposed framework provides a flexible tool to support the energy transition through the development of advanced wind energy system control strategies.
11 February 2026







