- Article
Unified Physical Modeling of Optical Synaptic Transistors Based on Trap and Ionic Dynamics in Polymer Dielectrics
- Jun Huang and
- Yuheng Wang
Optical synaptic transistors employing polymer dielectrics have emerged as promising building blocks for neuromorphic computing due to their low power consumption and rich photo-induced memory behaviors. While extensive experimental studies have demonstrated various synaptic functions, a unified physical understanding of the coupled charge trapping and ionic polarization processes governing device dynamics remains incomplete. In this work, we develop a unified physical model to investigate optical synaptic behaviors in polymer-based transistors with oxide interlayers. The model explicitly describes the time-dependent evolution of photo-induced charge trapping at the semiconductor–dielectric interface and ionic polarization within the polymer dielectric, which jointly modulate the effective threshold voltage of the transistor channel. Based on this framework, key synaptic functions including excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), and pulse-dependent potentiation are quantitatively reproduced. The model further reveals how dielectric structure and trapping strength govern the transition between short-term and long-term plasticity. This study provides a physically intuitive and experimentally relevant modeling framework for understanding optical synaptic transistors, offering guidance for the rational design and optimization of polymer-based neuromorphic devices. Although simplified, the proposed model captures the essential physics governing optical synaptic behaviors and provides a general framework applicable to a wide class of ion–electronic neuromorphic devices. Experimental measurements are used as physically motivated proxies to validate the multi-timescale structure of the model rather than direct numerical fitting.
3 February 2026





