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Abstract: In recent years, scholars have called for an increase in the usage of green features in
the built environment to address climate change issues. Governments across the developed world
are implementing legislation to support this increased uptake. However, little is known about
how the inclusion of green features influences the rental value of residential properties located
in developing countries. Data on 389 residential properties were extracted and collected from a
webpage. Text mining and machine learning models were used to evaluate the impact of green
features on the rental value of residential properties. The results indicated that floor area, number
of bathrooms, and availability of furniture are the top three attributes affecting the rental value of
residential properties. The random forest model generated better predictions when compared with
other modelling techniques. It was also observed that green features are not the most common words
mentioned in rental adverts for residential properties. The results suggest that green features add
limited value to residential properties in South Africa. This finding suggests that there is a need for
stakeholders to create and implement policies targeted at incentivising the inclusion of green features
in existing and new residential properties in South Africa.

Keywords: classification model; data mining; green features; logistic regression; real estate; text mining

1. Introduction

The construction industry assembles the constructed spaces required for productive
activities within an economy. Several years of research have shown that investments
in infrastructure stimulate economic growth [1]. The products of the construction sector
include buildings, highways, power plants and ports, among others. Despite its importance,
activities in the construction sector generate about 40% of global greenhouse gas (GHG)
emissions [2,3]. Also, greenhouse gases (such as carbon dioxide) and other air pollutants
(such as PM10), which are generated during the construction process, have adverse effects
on human health and the environment. For instance, exposure to air pollutants has been
linked to an increased risk of respiratory illness [4]. To address these problems, there have
been calls for the adoption of sustainable practices in the construction sector.

The number of studies focused on identifying sustainable construction practices has
been increasing. Research shows that the use of precast concrete components [5], a reduction
in cement required for concrete through material replacement [6], the use of phase-change
materials [7], and the inclusion of green areas into new developments [8] can reduce the
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volume of GHGs attributed to construction works. Also, governments across the globe
are implementing policies to encourage the use of green technologies. For instance, the
government of Hong Kong and South Korea grants gross floor area concessions for property
developments that incorporate green features [9]. The adoption of sustainable practices
is beneficial to society and the environment. For instance, it would reduce emissions
and improve air quality. Thus, there is a need to encourage stakeholders to embed green
features in residential developments.

Researchers have reported that these green features are beneficial to the environment
and occupants of buildings. For instance, gardens have been linked to improved food
security, quality of life, productivity of people, and preservation of biodiversity within
urban spaces [10–12]. Also, the use of technologies such as solar panels reduces the
energy required by the occupants of properties [13]. In recent years, researchers have
shown increased interest in examining the effect of green features on the value of real
estate properties [14,15]. Voicu and Been [14] evaluated the effect of communal gardens
on the value of real estate properties located in New York City. Several models have
been developed for the prediction of the value of residential properties in developing
countries [16,17]. However, the impact of embedding green features on the rental value of
residential properties in developing countries remains unclear.

To address this gap in knowledge, data mining techniques were used to explore data
and develop a predictive model for rental values of residential properties located in Cape
Town, South Africa. The objectives of the study are (i) to examine the impact of green
features on the rental value of residential properties and (ii) to assess the efficacy of using
machine learning models for the prediction of rental values of residential properties. The
data contribute to the existing knowledge in several ways. First, they provide insights into
the effect of green features on the rental value of properties. Second, this study shows the
efficacy of using machine learning models for the prediction of the rental value of properties.
Third, the outcome of this study provides information to stakeholders for the development
of strategies to encourage the inclusion of green features in residential properties. Finally,
this study shows that the content of advertisements can be used to predict the value of real
estate properties.

2. Materials and Methods

There is a large volume of research focused on modelling and predicting the value
of residential properties. Existing research shows that structural features of real estate
properties, the location of a building, and neighbourhood factors [18] are antecedents
of the value of residential properties. The remainder of this section is structured into
three subsections. The first section provides insights into the determinants of the value
of residential properties. The second section highlights the effect of green features on the
value of residential properties. The final section is a concise summary of methods used in
previous research in predicting the value of residential properties.

2.1. Determinants of the Value of Residential Properties

Property values, the preferences of potential buyers, and investment decisions are
determined by several factors. Over the years, research has shown that property values can
be estimated as a function of these inherent determinants (features) that maximise utility
for buyers and investors [19]. These attributes can be broadly grouped into structural, loca-
tional, and neighbourhood factors [18,20,21]. Based on evidence gleaned from the literature,
it is evident that several factors (determinants) influence the value of residential properties.

Research into the determinants of residential property values has a long history.
The determinants of the value of residential properties are summarised and presented
in Table 1. The number of servants’ quarters and number of bedrooms are the most
important features influencing the value of residential buildings in Lagos, Nigeria [16].
In contrast, gardens have the highest impact on the value of residential properties in
Hong Kong [22]. The variance in the Hong Kong and Nigerian studies could be linked to
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the differences in the property market characteristics, government policies, and attitudes of
local market participants.

Table 1. Summary of studies on residential property value determinants.

Category Determinant Source

Structural

Floor area [16,17,23–25]
Building age [16,24]
Number of bedrooms [16,17,23–25]
Number of bathrooms [17,22–25]
Swimming pool [16,22,24]
Garage [24,26]
Floor level [27]
Garden [22,28]
Balcony [29]
Green certification [15]
Lot size [24]
Fire place [24]
Air conditioning [24]

Locational

Proximity to shopping malls [25,30]
Parking space [16]
Proximity to workplace [31]
Distance to school [32]
Distance to city centre/place of interest [23,25,33]
Proximity to transport infrastructure (such as
train stations) [25,34]

Neighbourhood
Urban green spaces [20,25,35]
Security [25,36]
Pollution levels [25,37]

2.2. Impact of Green Features on Residential Property Values

Recently, more attention has focused on the effects of embedding green features on
the value of residential properties. In the context of property economics, these studies were
designed to provide empirical evidence to justify the inclusion of green features in the
design of buildings. As mentioned in the introduction section of this paper, the inclusion
of green features in buildings is beneficial to occupants and the environment. However,
evidence showing economic benefits is essential for encouraging the inclusion of green
features in residential buildings.

To date, several studies have investigated the effects of green features on the value of
residential properties. The findings reported in previous research have been contradictory.
Some studies have shown that urban green spaces (UGSs) have a positive effect on the
value of residential properties [20,38]. In contrast, other studies [39,40] indicated that green
features do not contribute to the value of residential properties. The variance in findings
reported in previous research could be attributed to the following reasons: (i) proximity, (ii)
characteristics of the neighbourhood, and (iii) preferences of tenants or investors in certain
property markets. For example, [38] revealed that property prices tend to decrease as the
distance to a UGS increases. Also, the socio-economic background of the local populace
influences the acceptance of green roof systems [41]. The presence of communal gardens
in poor neighbourhoods has been linked to crimes, anti-social behaviour, and offensive
motifs or wall murals [20,36]. Based on the foregoing, it is clear that the effect of green
features on the values of residential properties tends to vary based on the aforementioned
three reasons.

The current study builds on existing literature by developing a model for predicting
the rental value of residential properties. Also, the estimated model measures the effects
of embedding green features on the rental value of residential properties in South Africa.
To date, little is known about the economic value of embedding green features in residen-
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tial buildings in the context of developing countries. This study fills the gap in current
knowledge by providing insights into the impact of green features on the rental value of
residential properties. The next section provides a summary of the literature on methods
used for modelling and prediction of residential property values.

2.3. Methods Used for Predicting the Value of Residential Properties

Many methods have been used for modelling and prediction of the value of residential
properties. A seminal study in this area is the work of [42], which utilised linear regression
as a tool for modelling and prediction of the value of residential properties. The terms
“regression model” and “Hedonic Price Models” (HPMs) are used interchangeably in
the literature. Research has shown that the characteristics of data (such as non-linearity,
multicollinearity, and outliers, among others) tend to affect the performance of regression
models [43–45]. For example, [45] showed that neural network (NN) algorithms outperform
regression models when applied to the prediction of property values. The predictive
performance of the NN model indicates that the algorithm has the capability to capture
the non-linearity present in real-world data. Thus, there has been a shift towards the
use of non-linear models, such as data mining techniques, for the prediction of the value
of properties.

The advancement in the field of computer science has led to the emergence of several
data mining techniques. These new methods tend to address the limitations associated
with the use of older techniques. For instance, local minima and overfitting are some of
the weaknesses associated with NN models [46]. Newer methods, such as support vector
machines, can overcome the limitations of the NN models. In recent years, newer methods
(such as support vector machine and XGBoost) have been developed. Also, these newer
methods generate better predictions when compared to older methods [47,48]. However,
studies focused on evaluating the efficacy of some of these new methods are limited.

Various data mining techniques have been used for property valuation. The techniques
found in the existing literature include support vector machine and decision tree, among
others [22,27]. Previously, some of these data mining techniques were referred to as “black
box” models, i.e., they provide no information on the effect of independent variables on
the value of residential properties. However, this limitation has been addressed with the
development of methods such as sensitivity analysis and variable importance [49]. Hence,
the current study seeks to use seven data mining techniques for modelling and predicting
the rental values of residential properties (see Section 3.4). The predictive performance of
these methods is compared.

3. Methods

A multiplicity of methods was used to model the relationship between the attributes
of a residential property and its value. Subsequently, the estimated model could be used for
the prediction of the value of residential properties. The methods used for modelling the
value of properties were discussed in the literature review section. The use of models offers
an effective way to explore the relationship between property attributes and their economic
value [50]. Two data mining techniques (text mining and logistic regression) were utilised
in the current study. The coefficient of logistic regression provided insight into the strength
of the relationship between the attributes of a residential property and its value.

Like previous research [16], the estimated model was validated by using it for out-
of-sample prediction, and the data were collected from reliable secondary sources. This
is a form of triangulation that improves the validity and credibility of the outcomes of
research [51]. The combination of the quantitative findings from the logistic regression
model and the qualitative findings from the text mining contribute to the rigour of the
current study. Figure 1 shows the research framework utilised in this study.
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Figure 1. Research framework.

3.1. Data Collection

The data used in this study were collected from Cape Town, South Africa. Cape Town
is one of the largest residential settlements in South Africa [52]. The city attracts many
tourists due to its shoreline and beaches [52]. The city’s seaport and a combination of
public and private organisations provide employment and business opportunities to its
residents [53]. Thus, the attraction of people to the city can be attributed to the opportunities
that it provides.

The data used for this research were collected from the Property24 webpage (https:
//www.property24.com/). Property24 is one of the largest online platforms for advertising
residential and commercial properties that are available for rent and sale. Each page
contains information about the features of each property and its rental value. This webpage
was adopted in similar previous studies on the value of real estate properties [17,54]. A
total of 389 adverts were retrieved and used for analysis in this study. Because location
has an impact on the value of residential properties, the data collected for this study were
limited to three areas (i.e., City Centre, Sea Point, and Green Point) in Cape Town. These
areas are within close proximity of Cape Town’s City Centre. Each advert contains two
types of information: numerical and text. The numerical data provide potential tenants
with information on the property features, such as number of bedrooms and number
of bathrooms, among others. The text data contain descriptive information about the
residential property. For instance, text data provide information on the availability of
furniture within the residential property.

The numerical and textual data for each residential property were collected. The
data contained information on 13 independent variables which included the number of
bedrooms, number of bathrooms, number of parking spaces, type of car parking facility
(covered, open or street), dining room, lounge, availability of swimming pool, floor area,
balcony, furniture (furnished or unfurnished), services (such as concierge), garden, and the
distance between each advertised property and the nearest police station. The dependent
variable was property rent. The numerical and textual data were analysed using several
data mining techniques.

The statistics that describe the data collected for each residential property are presented
in Table 2.

https://www.property24.com/
https://www.property24.com/
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Table 2. Descriptive statistics relating to the collected data.

Mean Standard Deviation Minimum Maximum

Independent Variables

Number of bedrooms 1.70 0.59 1 3
Number of bathrooms 1.43 0.51 0.5 3
Number of car park spaces 1.00 0.47 0 3
Number of dining rooms 0.37 0.49 0 2
Number of lounge/sitting rooms 0.85 0.55 0 3
Number of swimming pools 0.36 0.48 0 1
Floor area (m2) 83.91 58.50 22 808
Distance to police station (Km) 1.68 3.27 0 32

Parking type Covered (276), Open (57), Not available (56)
Balcony Yes (150) No (239)
Furnished Yes (214) No (175)
Services Yes (348) No (41)
Garden Yes (51) No (338)

Dependent variable
Property rent * A (166) B (223)

* This classification is based on income tax. See Section 3.2 and Table 3 for an explanation.

3.2. Data Processing

Textual and numerical data were collected from the webpage of “Property24”. The
text data were saved in txt files and numerical data were saved in .xls file format. In South
Africa, the rent paid by tenants to a property owner or investor is classed as personal
income [55]. The tax payable by the property owner is computed as a fraction of the annual
rental income paid by tenants. In this study, the annual rents of the residential properties
were computed by multiplying the monthly rental value by 12 months. Based on income
tax brackets for South Africa [55], the residential properties were classified into two groups
(A and B) using the annual rents payable by tenants to property owners (Table 3).

Table 3. Classification of rental price.

Personal Income Range Income Tax Rate Monthly Rental Price Classification

ZAR 0–ZAR 189,880 18% ZAR 1–ZAR 15,823 A
ZAR 189,881–ZAR 296,540 26% ZAR 15,824–ZAR 24,711 B

Note: ZAR = South African Rands (15 ZAR = 1 USD).

3.3. Text Mining

Due to advances in computing, the volume of unstructured (textual) data has increased
significantly. Traditionally, textual data are analysed using content analysis [56]. The growth
in the quantity of textual data makes it difficult to use conventional methods to analyse
these data. In recent years, text mining has emerged as an automated technique that can
be used for the analysis of text. Text mining offers a robust approach to uncovering the
underlying trends and patterns in text for making informed decisions. In previous studies,
text mining was used to identify the determinants of hotel customers’ satisfaction [57]
and the vulnerability of software components [58], among others. In the current study,
text mining was used to identify the features (determinants) of a residential property that
influence its rental value. More specifically, text mining was used to extract and identify
the determinants of the rental values of residential properties located in Cape Town.

A rising amount of research has shown that the content of an advert provides insight
into the needs of the consumers and the value of the advertised product. For exam-
ple, [59] found that the content of adverts influenced consumers’ food choices. The findings
presented in [60] indicate that the demand for a product is strongly influenced by the
advertising content. It can be inferred that the content of adverts placed for residential
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properties on the Property24 webpage is designed to provide information on attributes
that meet the needs of potential tenants. Thus, the application of text mining to adverts for
residential properties will provide insights into the factors influencing their values.

For the present study, a total of 389 adverts relating to residential property rental
were collected from the Property24.com webpage. The process of using text mining for
extracting relevant determinants of the rental value of residential properties is illustrated in
Figure 1. R programming was used to implement the text mining phase of this study [61].

3.4. Machine Learning

As stated previously, text mining was used for the analysis of the collected textual
data. In contrast, machine learning techniques were used for modelling numerical data. To
assess the efficacy of using these methods for modelling and forecasting the rental prices of
residential properties, seven techniques were applied in the current study. The techniques
applied are neural network (NN), K-nearest neighbour (k-NN), logistic regression, boosted
tree (XGBoost), random forest, and support vector machine. Additional details on the
machine learning algorithms applied in the current study can be found in [62]. The logistic
regression model was used as the benchmark for evaluating the predictive performance of
other machine learning techniques.

Machine learning techniques can be applied to two types of predictive tasks, i.e.,
classification and regression. The classification task refers to the prediction of class labels.
For example, [63] used machine learning models to predict the two classes, i.e., the chances
that a student will drop out or not. For regression tasks, machine learning models are used
for the prediction of numbers. Abidoye and Chan [45] used the neural network model for
the prediction of the sales price of residential properties. In the current study, machine
learning techniques were used for a classification task. The model predicted two class
labels, i.e., class “A” or “B” (see Table 2).

The process of developing machine learning models can be divided into four distinct
but interrelated phases. First, the independent variables to be included in the estimated
models were identified. The outcome of the initial review of the literature and text mining
provided justification for the variables used in model estimation. Second, the data used
for the development of the models were collected from the Property24 webpage. Data
relating to 389 residential properties were collected. Third, the machine learning models
were trained. For the training process, the data were divided into two groups, i.e., training
and test data sets.

The ratio of training data to test data used in previous research can be grouped into
three clusters, i.e., 90:10, 80:20, and 70:30 [64]. In the current study, the collected data were
randomly divided into two parts (70% training and 30% test data). To ensure that a robust
model was identified, the cross-validation technique was used during the model training
process. The test data set was used for model validation, i.e., to evaluate the ability of
the model to predict unseen data. Finally (i.e., in the fourth stage), the trained machine
learning models were used to predict the rental value of the residential properties in the
test data set. The machine learning models were implemented using the R programming
software [61] and the “tidymodels” package [65].

3.5. Methods for Evaluating Accuracy of Models

There are several metrics available for evaluating the predictive accuracy of classifi-
cation models. However, the suitability of a particular metric is largely dependent on the
circumstance of its application. Accuracy, sensitivity, specificity, recall, and precision are
some examples of metrics used for evaluating models [66,67]. In this study, the trained
models were evaluated using accuracy, F1 score, and Matthews Correlation Coefficient
(MCC). The formula used for computing these metrics can be found in these published
studies [67–69]. These metrics were adopted due to their usage in similar previous re-
search [68,70]. The values of accuracy and F1 score range between 0 and 1 (a value close
to 1 indicates that the model is generating reliable predictions). Also, the value of MCC
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ranges between +1 and −1 (+1 refers to a perfect match between predicted and actual data;
0 indicates that the model is no better than a random flip of a coin; −1 represents a model
in which there is no agreement between predicted and actual data).

4. Results

The results from the application of the two data mining techniques are presented in
the subsequent subsections.

4.1. Text Mining

The files containing the textual data relating to the adverts were imported into the
software. In the R programming environment, the text mining process was implemented.
Based on the analysis of text, the most frequent words and co-occurrence of words are
presented in the two subsequent sections (Figures 2 and 3).
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4.1.1. Word Frequency

Figure 2 shows the 20 most frequent words in rental adverts for residential properties.
Based on the data presented in Figure 2, it can be seen that “bathrooms” is the most frequent
word mentioned in the rental adverts for residential properties. As expected, the number of
bathrooms, number of bedrooms, parking, floor size, and furniture are the most mentioned
words in the adverts for residential properties. The most frequently mentioned words give
potential tenants insights into the size of spaces and the facilities available in the residential
properties. Surprisingly, it was observed that sustainable features were not among the
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most frequent words included in the rental adverts of residential properties, except for the
“garden”. This finding suggests that potential tenants are not willing to pay a premium for
green features incorporated into residential properties.

Real Estate 2024, 1, FOR PEER REVIEW 9 
 

 

 
Figure 3. Word co-occurrence analysis of adverts for residential properties. 

4.1.1. Word Frequency 
Figure 2 shows the 20 most frequent words in rental adverts for residential proper-

ties. Based on the data presented in Figure 2, it can be seen that “bathrooms” is the most 
frequent word mentioned in the rental adverts for residential properties. As expected, the 
number of bathrooms, number of bedrooms, parking, floor size, and furniture are the most 
mentioned words in the adverts for residential properties. The most frequently mentioned 
words give potential tenants insights into the size of spaces and the facilities available in 
the residential properties. Surprisingly, it was observed that sustainable features were not 
among the most frequent words included in the rental adverts of residential properties, 
except for the “garden”. This finding suggests that potential tenants are not willing to pay 
a premium for green features incorporated into residential properties. 

4.1.2. Word Co-Occurrence 
Co-occurrence analysis was applied to the rental adverts of residential properties. In 

this phase, the co-occurrence analysis was used to identify the words that are mentioned 
frequently in the rental adverts in the residential properties. The results of word co-occur-
rence analysis are presented in Figure 3. As shown in Figure 3, it can be seen that the 
words “bathrooms”, “bedrooms”, “parking”, and “floor-size” (floor area) were men-
tioned in all 389 rental adverts for residential properties. This finding suggests that “bath-
rooms”, “bedrooms”, “parking”, and “floor-size” (floor area) are the most important de-
terminants of the rental value of residential properties. In South Africa, inefficient public 
transport services have contributed to high levels of car ownership [71]. As expected, 
proximity to public transportation was rarely mentioned in the adverts for residential 
properties. 

4.2. Predictive Performance of Machine Learning Models 
To assess the efficacy of using machine learning models for the prediction of rental 

prices of residential properties, several models were trained, and the predictive perfor-
mance of the models was compared. As stated previously, the collected data were divided 
into two groups: training (272/389—70%) and test sets (117/389—30%). The variables used 

Figure 3. Word co-occurrence analysis of adverts for residential properties.

4.1.2. Word Co-Occurrence

Co-occurrence analysis was applied to the rental adverts of residential properties. In
this phase, the co-occurrence analysis was used to identify the words that are mentioned
frequently in the rental adverts in the residential properties. The results of word co-
occurrence analysis are presented in Figure 3. As shown in Figure 3, it can be seen that the
words “bathrooms”, “bedrooms”, “parking”, and “floor-size” (floor area) were mentioned
in all 389 rental adverts for residential properties. This finding suggests that “bathrooms”,
“bedrooms”, “parking”, and “floor-size” (floor area) are the most important determinants
of the rental value of residential properties. In South Africa, inefficient public transport
services have contributed to high levels of car ownership [71]. As expected, proximity to
public transportation was rarely mentioned in the adverts for residential properties.

4.2. Predictive Performance of Machine Learning Models

To assess the efficacy of using machine learning models for the prediction of rental
prices of residential properties, several models were trained, and the predictive performance
of the models was compared. As stated previously, the collected data were divided into
two groups: training (272/389—70%) and test sets (117/389—30%). The variables used to
train the models are presented in Table 2. Table 3 shows the classification of rental prices
that the models were trained to predict. The optimal parameters for the machine learning
models were identified using grid search and 10-fold cross-validation of the training data.
To prevent data leakage, only the training data were used for the process of training
the models.

The optimal parameters of the machine learning models are shown in Table 4. The
trained models were used to generate predictions of rental prices for the training data set.
Also, the predictive performance of the developed models is summarised and presented in
Table 4. For the in-sample evaluation of the trained models, two metrics (accuracy and F1
score) indicate that the neural network model generates a better forecast than other machine
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learning models. However, the value of the MCC correlation coefficient indicates that the
predictions from the support vector machine model are the most accurate, i.e., providing an
improved level of agreement between the predicted and actual rental value of residential
properties. This finding reiterates the importance of using multiple metrics to evaluate the
performance of prediction models as suggested in [69].

Table 4. Predictive performance of machine learning models on training set.

Modelling Technique Accuracy F1 Score MCC

Neural network 0.793 0.813 0.590
Support vector machine 0.779 0.909 0.779
Logistic regression 0.778 0.799 0.559
Random forest 0.770 0.796 0.557
XGBoost 0.769 0.794 0.546
K-nearest neighbour 0.767 0.779 0.541

The trained models were used to generate predictions for the test data set, i.e., the
model validation process. Model validation is used to evaluate the ability of a model to
predict previously unseen data. Using a similar approach, three metrics were used to
evaluate the difference between the predictions and the actual rental value of residential
properties in the test data set. Table 5 provides an overview of the error metrics emanating
from the model validation process. The values of accuracy, F1 score, and MCC for the
random forest model are closer to 1 when compared with those of the other model. This
finding shows that the random forest model generates reliable predictions of the rental
value of residential properties.

Table 5. Predictive performance of machine learning models on test set.

Modelling Technique Accuracy F1 score MCC

Random forest 0.829 0.848 0.653
Logistic regression 0.794 0.810 0.595
Neural network 0.777 0.806 0.546
Support vector machine 0.777 0.797 0.556
XGBoost 0.735 0.760 0.467
K-nearest neighbour 0.735 0.763 0.463

Traditionally, machine learning models are referred to as “blackbox” models because
the effect of the independent variables on the predicted variable is unknown. Sensitivity
analysis has been proposed as one of the methods that can be used to uncover the strength
of the relationship between variables incorporated into machine learning models [49]. Sen-
sitivity analysis quantifies the contribution of each independent variable to improvement
in the model’s ability to make reliable predictions of rental value. Due to the predictive
performance of the random forest model, sensitivity analysis was carried out on the model
(see Figure 4). It can be seen from Figure 4 that floor area, number of bathrooms, and
furniture are the best predictors of the rental value of residential properties. In contrast,
gardens, pools, and dining areas had the least impact on the ability of the model to predict
the rental value of residential properties.
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5. Discussion

Very little was found in the existing literature on the impact of green building features
on the rental values of residential properties. With respect to the gap in the current
knowledge, the current study shows that gardens had little effect on the model’s ability
to predict the rental value of residential properties when compared with the floor area.
Also, floor area, number of bathrooms, and availability of furniture were found to be
the attributes that had the largest impact on the rental value of residential properties.
Interestingly, the random forest model generates accurate predictions of the rental value
of residential properties when compared to the other machine learning models that were
developed in this study. Comparing the qualitative and quantitative data, it is evident
that the frequently mentioned words in adverts are good predictors of the rental value
of properties.

The results emanating from the current study are consistent with those reported in
previous studies [16,72,73]. Abidoye and Chan [16] showed that the number of rooms
in boys’ quarters, number of bedrooms, sea view, and number of bathrooms are good
predictors of the value of residential properties. Also, Nor et al. [72] found that size,
location, and security have significant impacts on the rental value of residential properties.
A study conducted in Germany showed that the age and size of a residential property have
significant impacts on its rental value [73]. These results are consistent with those reported
in Cespedes-Lopez’s study [74], which showed that green features (such as green rating)
do not influence the value of residential properties located in Alicante, Spain. Overall, the
findings provide further support for the hypothesis that the size of residential properties is
a good indicator of their value.

The findings reported here are contrary to previous studies, which have suggested that
green features have a significant impact on the rental value of residential properties. For
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instance, Choy et al. [28] showed that a positive relationship exists between the presence of
a garden and the value of residential properties. Davis et al. [75] showed that improving
the energy performance of a residential building results in an increase in its value. Gardens
were rarely mentioned in adverts when compared to other significant features, such as the
number of bedrooms. In addition, sustainable features, such as photovoltaic systems, are
not the most commonly mentioned words in the rental advert for residential properties.
The finding emanating from the current study suggests that green features have a limited
impact on the rental value of residential properties when compared to floor area.

The non-convergence of the findings could be due to the uniqueness of the property
market in various countries. For instance, Hong Kong has laws to encourage developers to
incorporate green features into new residential developments. However, such laws do not
exist in this study area. The low impact of green features suggests that there is little or no
incentive for home owners and property developers to incorporate them into existing and
new homes. One of the main issues that emerge from these findings is that there is a need
for the development and implementation of policies targeted at encouraging the inclusion
of sustainable features in residential properties.

6. Conclusions

An understanding of the effect of green features on the value of residential properties is
a topical issue within the built environment. This information would provide a justification
for the inclusion of green features in the designs of residential properties. This study has
identified that floor area has a great impact on the ability to predict the rental value of
residential properties. The impact of gardens on the rental value of residential properties is
limited. This study has also shown that the estimated random forest model is a good tool
for predicting the rental value of residential properties.

Based on the findings of this study, the following conclusions can be drawn: (i) there
is a need to incentivise the inclusion of green features in residential properties; (ii) machine
learning models are useful tools for the prediction of the value of residential properties;
and (iii) the content of advertisements gives insights into the features that influence the
value of a product. The predictive models reported here have extended our knowledge of
the impact of size and other features of a residential property on its rental value. Although
this study focuses on residential property valuation, the findings may be able to explain
the underlying reasons for the slow uptake of green technologies in developing countries.

Being limited to Cape Town, the developed model may not be applicable to the whole
of South Africa. The data used for the development of the models were secondary data (i.e.,
data published on the website). The authors did not check if there were differences between
the listed price and finally agreed price. Notwithstanding this limitation, the triangulation
of qualitative and quantitative data indicates that a robust approach was utilised in the
present study. Advancements in the field of data science have led to the emergence of new
methods. Further research should be undertaken in other cities in the developing world to
validate or disprove the findings of the current study. Unless governments incentivise the
inclusion of green features in residential properties in the developing world, sustainable
development will not be achieved.
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