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Abstract: Accuracy in property valuations is a fundamental element in the real estate market for
making informed decisions and developing effective investment strategies. The complex dynamics
of real estate markets, coupled with the high differentiation of properties, scarcity, and opaqueness
of real estate data, underscore the importance of adopting advanced approaches to obtain accu-
rate valuations, especially with small property samples. The objective of this study is to explore
the applicability of the Maximum Entropy Principle to real estate valuations with the support of
Lagrange multipliers, emphasizing how this methodology can significantly enhance valuation pre-
cision, particularly with a small real estate sample. The excellent results obtained suggest that the
Maximum Entropy Principle with Lagrange multipliers can be successfully employed for real estate
valuations. In the case study, the average prediction error for sales prices ranged from 5.12% to
6.91%, indicating a very high potential for its application in real estate valuations. Compared to other
established methodologies, the Maximum Entropy Principle with Lagrange multipliers aims to be a
valid alternative with superior advantages.

Keywords: real estate valuation; properties valuation methods; small real estate sample; entropy;
maximum entropy principle; Lagrange multipliers

1. Introduction

In real estate markets, accuracy in property valuations is a fundamental element for
making informed decisions and effective investment strategies. The complex dynamics
that characterize real estate markets, together with the high differentiation of properties,
make the adoption of advanced approaches crucial to obtaining accurate valuations [1,2].

However, this is countered by a frequent scarcity of real estate data and opaqueness of
related markets, problems that can be found in various territorial contexts. The causes of
these phenomena can be traced back to a series of factors, including resistance to change in
the real estate sector, the lack of standardization in registration practices, the absence of
regulatory requirements that mandate complete disclosure of information, the limitations
or incompleteness of information in public data, and the reticence of private individuals in
disclosing transaction prices. The relevance of the negative impacts of all these factors is
evident in the understanding of real estate markets, property valuations, and investment
decisions within the real estate sector due to information asymmetries [2].

In this framework, the Principle of Maximum Entropy emerges as a powerful tool,
offering a new paradigm to address the challenges of real estate valuations.

Entropy is a fundamental concept in information theory and is closely associated
with the idea of measuring uncertainty or randomness in a system [3]. The Maximum
Entropy Principle proposes to select the probability distribution that reflects the maximum
uncertainty, given a set of observed constraints. In other words, it involves choosing a
distribution that is as neutral as possible with respect to the known information. Applying
this principle to the field of real estate valuations entails balancing the complexity and
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variety of data, allowing statistical models to adapt naturally, guided by the maximum
possible entropy [4].

The Maximum Entropy approach moves away from assuming additional information
not supported by observed data, providing valuations that are, by definition, the result of
an inference process based on maximum uncertainty. In the real estate field, this approach
allows you to flexibly integrate different sources of information, reflecting a variety of
variables that can influence the value of a property.

When dealing with optimization problems with constraints, as in the case of the
general formulation of Maximum Entropy Principle, the Lagrange multipliers are often
used to incorporate these constraints into the objective function. The goal is to find the
maximum of objective function subject to the given constraints. Thus, the integration of the
Maximum Entropy Principle with Lagrange multipliers enables the handling of constraints
in probability appraisal. This approach allows us to find the probability distribution
that maximizes the entropy given the constrained knowledge of the system, ensuring
consistency with the available information [5,6].

From a logical point of view, the proposed methodological approach, not unlike other
procedures, leads to determining the market value or income of a property through a
comparison with prices of properties that have similar characteristics to the one being
estimated. A prerequisite is that the comparative real estate data occurred recently in
relation to the time of the valuation. While it is logical to assume that a greater number of
comparison data leads to a better estimate result, the conducted experimentation considers
a small sample of real estate sales sufficient for arriving at a reliable estimated value. Under
this last aspect, the approach effectively addresses the challenge posed by the scarcity of
data that characterizes real estate markets. The method in question estimates the value
of a property by comparing its characteristics with those of comparable properties, in
accordance with the “similia similibus aestimentur” criterion [7].

One of the operational limits currently associated with the use of the proposed in-
novative approach, based on Maximum Entropy Principle and Lagrange multipliers, is
the practical impossibility of obtaining the marginal prices of features that influence the
market price of an examined property, and due to this limit, it is not suitable for real estate
mass appraisal.

In conclusion, the objective of this study is to explore the applicability of the Maxi-
mum Entropy Principle to real estate valuations with the support of Lagrange multipliers,
emphasizing how this methodology can significantly enhance the precision of valuations.

The research starts with a literature review of the concept of entropy and existing
studies on its applications in the real estate field. Subsequently, a mathematical discussion
of the Principle of Maximum Entropy integrated with Lagrange multipliers is presented,
being a necessary and fundamental part of understanding the logic and functioning of
the novel proposed method. After a brief description of the study’s territorial context
and real estate sample, the new method is applied to forecast the market prices of a small
sample of real estate data (eight total observations, including the subject to be estimated).
Finally, some critical considerations and perspectives for further future developments in
the research are formulated.

2. Literature Review

The word “entropy” first appeared in 1864 in the context of a thermodynamics treatise
by Rudolf Clausius, where it represents a state function that quantifies the unavailability
of a system to produce work (in variational form, it is equal to the ratio between the
amount of heat absorbed or released reversibly and isothermally by the system at a certain
temperature considered). In accordance with its original definition, entropy, therefore,
indicates which processes can occur spontaneously: the evolution of a system always
proceeds in the direction of increasing entropy [8].
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In 1870, with the development of statistical mechanics, J.W. Gibbs gave a new meaning
to entropy, linked to the possible molecular arrangements of a system of particles. The
Gibbs entropy (S) is defined as [9]:

S = −kB ∑i pilnpi (1)

where kB is the Boltzmann constant and pi is the probability that the system is in the
i-th microstate. Maximizing the entropy function (S), the system reaches its equilibrium
state. Equation (1) can be regarded as the fundamental definition of entropy, as all other
expressions of S can be derived from (1) but not vice versa.

Subsequently, Boltzmann reworked Gibbs’s concept, defining entropy as the measure
of the number of possible microstates of a system, given its macroscopic thermodynamic
properties [10].

In 1948, Shannon introduced the concept of information entropy, demonstrating how
it was possible to quantify the information contained in a message emitted by a source.
He completely disregarded the semantic content of the term entropy, considering the
quantity of information solely in probabilistic terms. The information is quantified through
a function that measures the uncertainty of X, namely entropy, defined as [3]:

H
(

p1, p2, . . . , pp
)
= −K ∑p

i=1 pilogpi (2)

where K is a positive and arbitrary constant that depends on the logarithmic base, and (p1,
. . ., pp) are the probabilities of a set of possible events. In this case, entropy measures the
amount of uncertainty or information present in a random signal.

Starting in 1957, Jaynes dedicated himself to demonstrating the connection between
the physical concept of entropy and that of information theory, developing the Principle
of Maximum Entropy. Through this principle, Jaynes showed how it was possible to
determine probability distributions of a configuration from partial information. The basic
idea is to leverage the available information and impose that the sought distribution is
the one that maximizes Shannon’s entropy, as a measure of uncertainty and information
quantity [4].

Over time, the concept of entropy has been employed in applications across various
scientific domains [11], including econometrics [12,13], decision-making under uncer-
tainty [14,15], market behaviors [16], the performance of stakeholders connected to infor-
mational advantages [17,18], investments, asset and portfolio returns, financial time-series
forecasting, and valuation of manufacturing yields [19–21].

From these studies, it is inferred that the reduction of entropy can represent a concept
of fundamental importance in the economic domain. Indeed, low entropy can govern
economic values [22,23] or measure the scarcity and value of economic goods [24]. Similarly,
the economic value of a good, incorporating complex, indeterminate, and anthropic features,
derives from the law of entropy [25].

International studies specifically focused on the application of the concept of entropy
in the real estate field are very limited.

Brown [26] first investigated the effectiveness of entropy in explaining the inefficiency
of the real estate market, followed by Chen et al. [27].

The paper by Ge and Du (2007) investigates the main variables that influence resi-
dential property values in the Auckland property market (New Zealand) and ranks the
variables using the Entropy method [28].

Lam et al. proposed in 2008 a mathematical model for predicting housing prices
in Hong Kong based on the integration of entropy and artificial neural networks [29].
Subsequently, in 2009, the same authors implemented artificial neural networks with
support vector machines to enhance the accuracy of real estate assessments in Hong Kong
and mainland China. The identification of key real estate variables, which could influence
property prices, has been addressed through an entropy-based rating and weighting
method aimed at providing objective and reasonable weights [30].
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In 2009, Zhou et al. dealt with a complex problem of multi-objective decision making
in the real estate venture capital sector, where the weight was assigned based on base points
and maximum entropy [31].

Salois and Moss developed a dynamic information measure in 2011 to examine the
informational content of farmland values and farm income in explaining the distribution of
farmland values over time [32].

The primary goal of Gnat’s 2019 study was a proposal to modify the classical en-
tropy measure, enhancing its ability to accurately reflect the specificity of assessing the
homogeneity of valued areas in the context of property market analysis [33].

In 2020, Kostic and Jevremovic addressed the topic of property attractiveness, where
property image features are used to describe specific attributes and examine the influence
of visual factors on the price or duration of real estate listings. They considered a set
of techniques for extracting visual features for efficient numerical inclusion in modern
predictive algorithms, including Shannon’s entropy, center of gravity calculation, image
segmentation, and the use of Convolutional Neural Networks. They concluded that the
employed techniques can effectively describe visible features, thus introducing perceived
attractiveness as a quantitative measure in predictive modeling of housing [34].

The study by Basse et al. (2020) utilizes the concept of transfer entropy to examine
the relationship between the US National Association of Home Builders Index and the
S&P CoreLogic Case-Shiller 20-City Composite Home Price Index. The empirical evidence
suggests that the survey data can contribute to predicting US house prices [35].

The last work in chronological order is Özdilek’s addressing in 2023 the incorporation
of entropy measurements into real estate valuation, modifying and integrating triadic
estimates of price, cost, and income; his results have significantly improved the precision
of value measurement [11].

The above studies, where entropy is applied to various aspects or issues of the real
estate markets, all highlight a common theme: a significant improvement in the predictive
accuracy of the measured values.

3. Methodology

The proposed model is based on constrained optimization with Lagrange multipliers.
The problem involves maximizing an objective function, which is the opposite of the sum
of Shannon entropy weighted by real estate prices, subject to normalization constraints and
consistency moments.

The model design consists of the following phases:

1. market analysis for the identification of recent sales of similar properties;
2. verification of information, considering whether the observed prices adhere to the

definition of the market value estimation criterion, and whether the transactions
belong to the specific market segment to which the property being appraised belongs;

3. selection of elements of comparison (property features);
4. definition of the objective function based on Shannon’s Entropy, capable of incorpo-

rating the sum of products between the optimal weights of property features and the
corresponding prices from the estimated sample data;

5. setting variability and normalization constraints, as well as moments of consistency
for real estate variables;

6. definition of the Lagrangian function that includes the specified constraints, followed
by the redefinition of the objective function that returns the sum of the Lagrangians;

7. processing the solution and optimal value of the objective function, with the definition
of weights for each optimal solution.

The foundational core of the proposed methodology lies in integrating the Maxi-
mum Entropy Principle with Lagrange multipliers. This integration provides a powerful
approach to dealing complex optimization and inference problems, ensuring efficient
handling of constraints, and preserving information with the maximum uncertainty al-
lowed by the available data. In this way, the incorporation of additional information into
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the optimization problem is allowed, especially when dealing with complex problems
featuring multiple constraints or when seeking a probability distribution that adheres to
specific characteristics. To execute the model, access to a MATLAB environment or a similar
computational platform is required [36].

Let us see in formal terms what applying the Maximum Entropy Principle with
Lagrange multipliers involves [5,6,37].

Consider a system described by a set of state variables: {x1, x2, . . ., xN} ≡ x, where
each possible configuration has a certain probability of being observed. The probability
of a state, in this case, cannot be thought of in a frequentist sense but rather should be
understood as our knowledge of the system. Since one often deals with systems of very
high dimensionality, with N being very large, it is convenient to study the distribution of
suitable functions of the states.

Therefore, quantities related to the configuration are defined, f 1(x), f 2(x), . . ., fK(x),
which summarize some properties of a system, and whose average values ⟨fν(x)⟩exp can
be calculated. The distribution P(x) is then sought such that the average values of the
K considered functions, ⟨fν(x)⟩exp observed experimentally, coincide with their expected
values ⟨fν(x)⟩P with respect to the distribution.

The following expression for the entropy function is considered:

S[P] = −∑x P(x)lnP(x) (3)

and the constrained maximization problem is solved, where the constraints are given by
the partial information available, imposing:

⟨ fv(x)⟩exp = ⟨ fv(x)⟩P ≡ ∑x P(x) fv(x) (4)

with v = 0, . . ., K. Since the probability distribution must be normalized, the following
technique is used: we choose f 0(x) = 1 and impose that it is equal to the experimental value
1. To solve the problem, Lagrange multipliers are used, introducing the K parameters {λµ}
and the generalized entropy function:

S
[
P;

{
λµ

}]
= S[P]− ∑K

µ=0 λµ

[〈
fµ(x)

〉
P −

〈
fµ(x)

〉
exp

]
(5)

The optimization is then performed on S[P; {λµ}] with respect to the probability P(x)
and the parameters, imposing two conditions.

A first condition:

0 =
∂S

[
P;

{
λµ

}]
∂P(x)

=
∂S[P]
∂P(x)

− ∑K
µ=0 λµ

∂
〈

fµ(x)
〉

P
∂P(x)

= −lnP(x)− 1 − ∑K
µ=0 λµ fµ(x) (6)

from which we obtain:

Pme(x) =
1

Z(λv)
exp

[
−∑K

µ=1 λµ fµ(x)
]

(7)

with Zme({λν}) = Sx exp(−λ0 − 1). Normalizing with respect to λ0 is equivalent to normaliz-
ing the distribution, so it can be explicitly written as:

Zme
({

λµ

})
= ∑

x
exp

[
−∑K

µ=1 λµ fµ(x)
]

(8)

A second condition:

0 =
∂S

[
P;

{
λµ

}]{
∂λµ

} =
〈

fµ(x)
〉

P −
〈

fµ(x)
〉

exp (9)
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from this, it can be seen that maximizing the generalized entropy with respect to the
parameters {λν} is equivalent to imposing that the averages of the considered functions
measured experimentally coincide with the values predicted by the distribution. Writing
explicitly ⟨fµ(x)⟩P and substituting in it the expression of P(x) found in (7), we have:

〈
fµ(x)

〉
exp =

1
Z(λv)

∑
x

fµ(x)exp
[
−∑K

µ=1 λµ fµ(x)
]

(10)

Substituting the distribution Pme(x) into (5), we obtain the following expression for the
generalized entropy:

S
[
P;

{
λµ

}]
= lnZ({λv}) + ∑K

µ=0 λµ

〈
fµ(x)

〉
exp (11)

This last expression coincides with the logarithm of the probability that the model
generates the observed data, namely the logarithm of the likelihood.

The Maximum Entropy Principle is based on the concept of distributional divergence
of observed data and, therefore, does not guarantee the fulfillment of a result based on
minimum variance, a preferential requirement in cases where estimating the value for
predictive purposes is necessary. For this reason, Equation (3) may also be supplemented, as
needed, with an additional optimization constraint based on the measurement of standard
deviation or variance.

In practical terms, concerning the price variable in the context of real estate properties,
a higher standard deviation could indicate greater variability in property prices, with some
properties having significantly higher or lower prices than the average. On the other hand,
a lower standard deviation might suggest that property prices are more homogeneous
and closer to the mean. When using standard deviation as a constraint in an optimization
problem, it is possible to adjust this parameter to model the desired tolerance regarding
data variability. For instance, a constraint based on standard deviation could be employed
to impose limits on the variability of weights assigned to variables in the optimized model.
In analytical terms:

∑h
i=1 wi[Pricei − V∗]2 ≤ σ2 (12)

with i = 1, . . ., h, and where h represents the observed comparable properties, Pricei denotes
the sales price of the i-th property, wi corresponds to the optimal weights for each i-
th property, V* is the estimated value of the subject determined by the optimal set of
weights wi.

All this can be interpreted as an additional penalty to the model based on the deviation
of the price variable from its mean, fixing a desired value for a quantity associated with the
standard deviation of real estate prices.

4. Empirical Demonstration: Materials and Results
4.1. Context of the Dataset

Naples is an Italian city of approximately 910,000 inhabitants, the third largest in Italy
by population, capital of the Campania Region, the metropolitan city of the same name
and the center of one of the most populous and densely populated metropolitan areas in
Europe [38]. Considered one of the great Italian and global tourist destinations, Naples
is divided into 10 administrative municipalities of approximately one hundred thousand
inhabitants each [39].

The average prices of residential properties in the city of Naples, updated to November
2023, are equal to €/sqm 2802, recording an increase of 3.47% compared to November 2022
(€/sqm 2708). In the last 2 years, the average price within the city of Naples reached its
maximum in the month of October 2023, with a value of €2816 per square meter. The month
in which the lowest price was requested was January 2022: an average of €2682 per square
meter was requested for a property for sale [40]. The sample of comparables was drawn
from the “Centre” area, where, in November 2023, residential properties for sale recorded
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an average offer price of €2304 per square meter, with an increase of 7.61% compared to
November 2022 (€/sqm 2141) [40]. A general overview of the average real estate values for
the residential segment of Naples is shown in Figure 1.
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Figure 1. Average real estate values for the residential segment of Naples, with the “Centre” area
delimited by a blue line (source: www.immobiliare.it (accessed on 20 December 2023) [40]).

4.2. Data Specification

In accordance with phases 1 and 2 of the proposed model, the analysis of the reference
real estate market segment has led to the identification of only eight real estate data points
in the “Center” area of Naples. Specifically, the sample of real estate data consists of
eight properties located in multi-story condominiums and sold in 2023 (last six months).
These properties are situated in a homogeneous urban area in terms of qualification and
distribution of key services. Only nonhomogeneous real estate characteristics were detected
for each sampled unit and, in particular (see Tables 1 and 2):

• real estate sale price expressed in euro (PRICE);
• commercial area of housing unit expressed in square meters, i.e., the sum of the internal

area plus eventual other secondary areas virtualized through specific coefficients used
in the respective real estate market (SUR);

• number of floor levels of housing units (LEV);
• maintenance status (MAIN) expressed with a score scale: two if the housing unit is in

optimal condition, one if maintenance status is good, and zero otherwise (mediocre
status);

• number of rooms constituting the housing unit (ROOMS);
• number of bathrooms in the housing unit (BATH).

Other real estate characteristics, manifesting with the same modalities in all the sam-
pled units, were excluded from the dataset.

4.3. Results

Having defined the real estate sample, the methodology based on the Maximum
Entropy Principle integrated with Lagrange multipliers was applied, assuming that, al-
ternatively and individually, each comparable in the real estate sample constitutes the
subject for which the value is to be determined. This allowed for effective testing of the
methodology and avoiding the randomness of the result obtained on a single subject.

www.immobiliare.it
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Table 1. Real estate dataset.

Comparable ROOMS BATH SUR LEV MAIN PRICE

No. 1 4 1 130 3 2 490,000
No. 2 5 3 130 2 2 530,000
No. 3 5 2 125 1 1 595,000
No. 4 4 2 122 4 2 530,000
No. 5 5 1 150 2 1 560,000
No. 6 3 3 160 2 1 635,000
No. 7 4 2 110 3 1 530,000
No. 8 4 2 120 4 1 520,000

Table 2. Statistical description of real estate dataset.

Index ROOMS BATH SUR LEV MAIN PRICE

Mean 4.25 2.00 130.88 2.63 1.38 548,750.00
Std. Error 0.25 0.27 5.80 0.38 0.18 16,386.79
Median 4.00 2.00 127.50 2.50 1.00 530,000.00

Std. Deviation 0.71 0.76 16.40 1.06 0.52 46,348.83
Kurtosis −0.23 −0.70 0.14 −0.94 −2.24 0.52

Asimmetry −0.40 0.00 0.88 0.04 0.64 0.95
Minimum 3.00 1.00 110.00 1.00 1.00 490,000.00
Maximum 5.00 3.00 160.00 4.00 2.00 635,000.00
Confidence

Level (95.0%) 0.59 0.63 13.71 0.89 0.43 38,748.59

All the elaborations were performed using MATLAB software vers. 9.0.0 [36].
For each subject, the solution and optimal value of the objective function were then

processed, along with the definition of weights for each optimal solution. In general, to
obtain the predicted probabilities for a specific observation, you can use the optimal weights
obtained from the optimization process and then apply them to the prediction function. In
the case of interest, optimal weights for the variables ROOMS, BATH, SUR, LEV, and MAIN
were obtained during the optimization process (see Tables 3–10). In more operational
terms, this means that to obtain a specific appraisal for a subject, the initialization vector
of values needs to be adjusted to provide a starting point closer to the desired solution
for optimization. Alternatively, it is possible to add tighter constraints for the moments
of consistency, to require the system that the variables take on the desired values. Both
options should lead to similar results if configured correctly.

After estimating the market value for each individual subject in correspondence to the
optimal solution, the model was reapplied for each of them, considering the application
of an exogenous nonlinear limit (upper limit of the standard deviation for the PRICE
variable), in accordance with relation (12), significantly increasing the degree of estimation
complexity. A constraint so imposed could have relevant meaning, for example, when
there is nonsample information available, in terms of subjective upper or lower bounds on
the final value estimate. With this aim, the constraint can be incorporated into the model to
meet this requirement.

Table 11 presents the optimal solution of the objective function imposing a specific
upper limit on the standard deviation of the PRICE variable, set, for example, at €5000,
€10,000, and €20,000.
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Table 3. Solutions for comparable no. 1 (if considered as subject).

Comparable
Optimal Weights (wi) Optimal

Solution (Oi)
Comparable

Sale Price (Pi)

Contribution to the
Estimated

Value (Oi·Pi)ROOMS BATH SUR LEV MAIN

8 0.0067 0.0235 0.0000 0.0078 0.0229 0.0610 €520,000.00 €31,720.00
2 0.0235 0.0826 0.0000 0.0275 0.0806 0.2143 €530,000.00 €113,579.00
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 €595,000.00 €0.00
4 0.0078 0.0275 0.0000 0.0092 0.0269 0.0714 €530,000.00 €37,842.00
5 0.0229 0.0806 0.0000 0.0269 0.0787 0.2091 €560,000.00 €117,096.00
6 0.0151 0.0531 0.0000 0.0177 0.0518 0.1377 €635,000.00 €87,439.50
7 0.0336 0.1182 0.0000 0.0394 0.1153 0.3065 €530,000.00 €162,445.00

Estimated Value for Comparable no. 1 (Sum of contributions Oi·Pi) €550,121.50

Optimal Value of objective function −2.75 × 106

Table 4. Solutions for comparable no. 2 (if considered as subject).

Comparable
Optimal Weights (wi) Optimal

Solution (Oi)
Comparable

Sale Price (Pi)

Contribution to the
Estimated

Value (Oi·Pi)ROOMS BATH SUR LEV MAIN

1 0.0555 0.0737 0.0555 0.0171 0.0166 0.2184 €490,000.00 €107,016.00
8 0.0737 0.0978 0.0737 0.0227 0.0220 0.2898 €520,000.00 €150,696.00
3 0.0555 0.0737 0.0555 0.0171 0.0166 0.2184 €595,000.00 €129,948.00
4 0.0171 0.0227 0.0171 0.0053 0.0051 0.0673 €530,000.00 €35,669.00
5 0.0166 0.0220 0.0166 0.0051 0.0049 0.0652 €560,000.00 €36,512.00
6 0.0358 0.0475 0.0358 0.0110 0.0107 0.1408 €635,000.00 €89,408.00
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 €530,000.00 €0.00

Estimated Value for Comparable no. 2 (Sum of contributions Oi·Pi) €549,249.00

Optimal Value of objective function −2.75 × 106

Table 5. Solutions for comparable no. 3 (if considered as subject).

Comparable
Optimal Weights (wi) Optimal

Solution (Oi)
Comparable

Sale Price (Pi)

Contribution to the
Estimated

Value (Oi·Pi)ROOMS BATH SUR LEV MAIN

1 0.0716 0.0573 0.0823 0.0000 0.0268 0.2381 €490,000.00 €116,669.00
2 0.0573 0.0459 0.0659 0.0000 0.0215 0.1905 €530,000.00 €100,965.00
8 0.0823 0.0659 0.0946 0.0000 0.0308 0.2736 €520,000.00 €142,272.00
4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 €530,000.00 €0.00
5 0.0268 0.0215 0.0308 0.0000 0.0101 0.0892 €560,000.00 €49,952.00
6 0.0412 0.0329 0.0473 0.0000 0.0154 0.1368 €635,000.00 €86,868.00
7 0.0216 0.0173 0.0249 0.0000 0.0081 0.0719 €530,000.00 €38,107.00

Estimated Value for Comparable no. 3 (Sum of contributions Oi·Pi) €534,833.00

Optimal Value of objective function −2.67 × 106

In Tables 3–10, varying the sample estimate also changes the incidence of weights,
expressing a “ranking” of real estate characteristics for the respective sample estimate
considered each time. The sum of the products between the optimal feature weights and
the corresponding prices was also incorporated into the objective function. However, the
formulation of the objective function and constraints can be further customized to one’s
specific needs.

The main results obtained from Tables 3–11 are summarized in Table 12, where ob-
served real estate prices and corresponding values estimated by the model are reported,
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along with the percentage divergences between them. These divergences are categorized
into two clusters: the Maximum Entropy “basic” model and the “best fit” model.

Table 6. Solutions for comparable no. 4 (if considered as subject).

Comparable
Optimal Weights (wi) Optimal

Solution (Oi)
Comparable

Sale Price (Pi)
Contribution to the

Estimated Value (Oi·Pi)ROOMS BATH SUR LEV MAIN

1 0.0178 0.0349 0.0008 0.0000 0.0431 0.0966 €490,000.00 €47,334.00
2 0.0349 0.0684 0.0015 0.0000 0.0843 0.1891 €530,000.00 €100,223.00
3 0.0008 0.0015 0.0000 0.0000 0.0019 0.0042 €595,000.00 €2499.00
8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 €520,000.00 €0.00
5 0.0431 0.0843 0.0019 0.0000 0.1040 0.2332 €560,000.00 €130,592.00
6 0.0260 0.0509 0.0011 0.0000 0.0628 0.1408 €635,000.00 €89,408.00
7 0.0621 0.1215 0.0027 0.0000 0.1498 0.3361 €530,000.00 €178,133.00

Estimated Value for Comparable no. 4 (Sum of contributions Oi·Pi) €548,189.00

Optimal Value of objective function −2.74 × 106

Table 7. Solutions for comparable no. 5 (if considered as subject).

Comparable
Optimal Weights (wi) Optimal

Solution (Oi)
Comparable

Sale Price (Pi)

Contribution to the
Estimated

Value (Oi·Pi)ROOMS BATH SUR LEV MAIN

1 0.0654 0.0677 0.0188 0.0000 0.0586 0.2106 €490,000.00 €103,194.00
2 0.0677 0.0701 0.0195 0.0000 0.0607 0.2179 €530,000.00 €115,487.00
3 0.0188 0.0195 0.0054 0.0000 0.0168 0.0605 €595,000.00 €35,997.50
4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 €530,000.00 €0.00
8 0.0586 0.0607 0.0168 0.0000 0.0525 0.1887 €520,000.00 €98,124.00
6 0.0421 0.0436 0.0121 0.0000 0.0377 0.1355 €635,000.00 €86,042.50
7 0.0580 0.0600 0.0167 0.0000 0.0520 0.1867 €530,000.00 €98,951.00

Estimated Value for Comparable no. 5 (Sum of contributions Oi·Pi) €537,796.00

Optimal Value of objective function −2.69 × 106

Table 8. Solutions for comparable no. 6 (if considered as subject).

Comparable
Optimal Weights (wi) Optimal

Solution (Oi)
Comparable

Sale Price (Pi)

Contribution to the
Estimated

Value (Oi·Pi)ROOMS BATH SUR LEV MAIN

1 0.0099 0.0198 0.0045 0.0216 0.0270 0.0827 €490,000.00 €40,523.00
2 0.0198 0.0396 0.0090 0.0431 0.0539 0.1654 €530,000.00 €87,662.00
3 0.0045 0.0090 0.0020 0.0098 0.0123 0.0376 €595,000.00 €22,372.00
4 0.0216 0.0431 0.0098 0.0470 0.0588 0.1804 €530,000.00 €95,612.00
5 0.0270 0.0539 0.0123 0.0588 0.0736 0.2256 €560,000.00 €126,336.00
8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 €520,000.00 €0.00
7 0.0369 0.0737 0.0168 0.0804 0.1006 0.3083 €530,000.00 €163,399.00

Estimated Value for Comparable no. 6 (Sum of contributions Oi·Pi) €535,904.00

Optimal Value of objective function −2.68 × 106

In the “basic” model, the results pertain to the definition of the objective function
based on Shannon’s Entropy, as well as the Lagrangian function that includes constraints
related to variability, normalization, and coherence moments for real estate variables. In
the “best fit” column, improved results compared to the basic model are presented when
an additional constraint is incorporated, namely an upper limit on the standard deviation
concerning the “PRICE” variable.
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In the basic model, the absolute percentage error ranges from a minimum of 2.43%
to a maximum of 15.61%, with an average absolute error percentage of 6.91%. Regarding
the “best fit” solution, the absolute percentage error varies from a minimum of 2.43% to a
maximum of 12.27%, with an average absolute error percentage of 5.12%. In the latter case,
the results show significant improvements, especially in cases where errors were higher
in the basic model: for comparable three, the error changes from −10.11% to −8.64%. For
comparable five, the error changes from 3.43% to −2.05%, and for comparable six, the error
changes from −15.61% to −4.15%.

Table 9. Solutions for comparable no. 7 (if considered as subject).

Comparable
Optimal Weights (wi) Optimal

Solution (Oi)
Comparable

Sale Price (Pi)

Contribution to the
Estimated

Value (Oi·Pi)ROOMS BATH SUR LEV MAIN

1 0.0760 0.0714 0.0316 0.0000 0.0421 0.2211 €490,000.00 €108,339.00
2 0.0714 0.0670 0.0297 0.0000 0.0395 0.2075 €530,000.00 €109,975.00
3 0.0316 0.0297 0.0131 0.0000 0.0175 0.0919 €595,000.00 €54,680.50
4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 €530,000.00 €0.00
5 0.0421 0.0395 0.0175 0.0000 0.0233 0.1224 €560,000.00 €68,544.00
6 0.0468 0.0439 0.0194 0.0000 0.0259 0.1360 €635,000.00 €86,360.00
8 0.0760 0.0714 0.0316 0.0000 0.0421 0.2211 €520,000.00 €114,972.00

Estimated Value for Comparable no. 7 (Sum of contributions Oi·Pi) €542,870.50

Optimal Value of objective function −2.71 × 106

Table 10. Solutions for comparable no. 8 (if considered as subject).

Comparable
Optimal Weights (wi) Optimal

Solution (Oi)
Comparable

Sale Price (Pi)

Contribution to the
Estimated

Value (Oi·Pi)ROOMS BATH SUR LEV MAIN

1 0.0622 0.0739 0.0051 0.0000 0.0546 0.1958 €490,000.00 €95,942.00
2 0.0739 0.0879 0.0060 0.0000 0.0649 0.2328 €530,000.00 €123,384.00
3 0.0051 0.0060 0.0004 0.0000 0.0045 0.0160 €595,000.00 €9520.00
4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 €530,000.00 €0.00
5 0.0546 0.0649 0.0045 0.0000 0.0479 0.1718 €560,000.00 €96,208.00
6 0.0429 0.0509 0.0035 0.0000 0.0376 0.1349 €635,000.00 €85,661.50
7 0.0790 0.0939 0.0065 0.0000 0.0693 0.2487 €530,000.00 €131,811.00

Estimated Value for Comparable no. 8 (Sum of contributions Oi·Pi) €542,526.50

Optimal Value of objective function −2.71 × 106

Table 11. Optimal solutions of the objective function for different standard deviation values.

Comparable
σ = €5000 σ = €10,000 σ = €20,000

Estimated
Value % Error Estimated

Value % Error Estimated
Value % Error

1 €557,444.00 13.76% €557,859.00 13.85% €558,570.00 13.99%
2 €551,786.00 4.11% €552,190.00 4.19% €552,852.50 4.31%
3 €542,508.00 −8.82% €542,801.00 −8.77% €543,568.00 −8.64%
4 €551,787.00 4.11% €552,144.50 4.18% €552,860.50 4.31%
5 €547,492.50 −2.23% €547,805.00 −2.18% €548,520.50 −2.05%
6 €536,946.50 −15.44% €661,361.50 4.15% €806,879.50 27.07%
7 €551,781.50 4.11% €552,141.50 4.18% €552,913.00 4.32%
8 €553,210.50 6.39% €553,517.00 6.45% €554,237.00 6.58%
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Table 12. Results summary.

Comparable Sale Price

Maximum Entropy Basic
Model

Best Fit (Basic/σ Upper
Limit)

% Error Estimated
Value % Error Estimated

Value

1 €490,000 12.27% €550,121.50 12.27% €550,121.50
2 €530,000 3.63% €549,249.00 3.63% €549,249.00
3 €595,000 −10.11% €534,833.00 −8.64% €543,568.00
4 €530,000 3.43% €548,189.00 3.43% €548,189.00
5 €560,000 3.43% €537,796.00 −2.05% €548,520.50
6 €635,000 −15.61% €535,904.00 4.15% €661,361.50
7 €530,000 2.43% €542,870.50 2.43% €542,870.50
8 €520,000 4.33% €542,526.50 4.33% €542,526.50

Mean absolute % error 6.91%
Mean

absolute %
error

5.12%

5. Discussion

The results obtained through the application of the proposed method are excellent and
suggest that the Maximum Entropy Principle with Lagrange multipliers can be successfully
used for real estate valuations. In the case study, the average prediction error for sales
prices ranged from 5.12% to 6.91%, indicating a very high potential for its application in
real estate valuations.

The proposed methodology has demonstrated particularly strong adaptability in
cases where small real estate samples, consisting of a limited number of transaction data
points, are necessary. This is due to spatial and temporal limitations in data collection,
the atypicality and complexity of real estate, as well as challenges in certain national con-
texts (e.g., Italy) arising from difficulties in obtaining and verifying market prices. The
most common purposes to which the model can be applied include real estate sale or pur-
chase, mortgage or financing, inheritance or judicial divisions, legal disputes, regeneration
and real estate development operations, leasing or rent, asset valuations, insurance, and
regulatory compliance.

In practical circumstances, the real estate samples may be so small as to preclude
the use of statistical tools designed for samples categorized as small or very small in the
statistical sense [41,42].

In these latter circumstances, the so-called “Appraisal System” (or “General Appraisal
System”, SGA) and the “Market Comparison Approach” (MCA) have traditionally rep-
resented the only paradigm capable of providing a quantitative measure of the value of
a property [43]. Compared to these established methodologies, the Maximum Entropy
Principle with Lagrange multipliers aims to be a valid alternative with superior advantages.

Among the drawbacks of SGA is the strong instability in solving the mathematical
system that supports it in the presence of possible anomalies or outliers, with direct
consequences on the estimation of marginal prices of real estate characteristics considered
for comparison. In MCA, marginal prices are almost always determined empirically, so their
estimation might not accurately reflect the dynamics of real estate market price formation.
Unlike these limitations, the method proposed in this study does not require inferring
marginal prices of real estate characteristics and demonstrates considerable stability from
a computational perspective. This is because entropy is exploited as a tool for modeling:
by using the Maximum Entropy method, it is possible to determine the probability of a
configuration or set of real estate characteristics for the purpose of property valuation.

Future developments of the methodology certainly concern the minimum size of
the real estate sample necessary to implement the methodology, the incorporation of
qualitative features in the dataset (e.g., architectural, cultural or environmental resources,
panoramic views, etc.), the study of constraints and parameters capable of optimizing the
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result computationally, and the potential integration with other statistical methodologies
to explain the marginal prices of real estate characteristics considered in the model (e.g.,
hedonic price models).

6. Conclusions

In the dynamic landscape of the real estate sector, the accuracy of property valuations
has become a crucial element for market operators, investors, and industry professionals.
The increasing complexity of factors influencing property values requires a more sophis-
ticated approach, where scientific research and the use of advanced computational tools
become essential. This study aimed to explore the convergence between scientific research
and the practical needs of real estate valuation, highlighting the importance of robust and
accurate statistical models to address current and future challenges in the real estate sector.

Traditional real estate valuations, based on conventional approaches, can often un-
derestimate the complexity of market dynamics, macroeconomic trends, and specific
property characteristics. The need for more in-depth analysis is evident, pushing in-
dustry experts to increasingly turn to advanced statistical tools to obtain more reliable and
informed estimates.

The Maximum Entropy Principle applied in this study allows deriving models sub-
stantially analogous to those of Statistical Mechanics, without the need to formulate any
specific hypotheses to develop models describing the statistical behavior of an economic
system. This is not the first time that economic sciences draw from the “hard” sciences, or
vice versa, namely scientific disciplines that use quantitative, empirical, and often experi-
mental methods to study natural phenomena. However, compared to the past, the current
perspective is entirely new: no longer are universal laws sought to define the economic
nature of a good according to a deterministic view of reality, but rather, there are some
fundamental mechanisms that naturally emerge in a network of interconnected elements,
regardless of the nature of the network itself. There are, in other words, some dynamics
that repeat when there is a set of interacting units, be they humans, particles, or economic
goods and systems. Often, in practice, recourse is made to mean-field models, which imply
strong assumptions and simplifications, but in reality, the interactions between individual
units of a system do not always have constant intensity.

In this context, the present research aims to represent a significant innovation in real
estate valuation methodologies. Currently, the utilization of sophisticated statistical models
and the integration of complex variables are crucial aspects for overcoming the limitations
of traditional valuations.
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