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Abstract: Federated learning (FL) has garnered significant attention as a novel machine learning
technique that enables collaborative training among multiple parties without exposing raw local
data. In comparison to traditional neural networks or linear models, decision tree models offer higher
simplicity and interpretability. The integration of FL technology with decision tree models holds
immense potential for performance enhancement and privacy improvement. One current challenge
is to identify methods for training and prediction of decision tree models in the FL environment.
This survey addresses this issue and examines recent efforts to integrate federated learning and
decision tree technologies. We review research outcomes achieved in federated decision trees and
emphasize that data security and communication efficiency are crucial focal points for FL. The survey
discusses key findings related to data privacy and security issues, as well as communication efficiency
problems in federated decision tree models. The primary research outcomes of this paper aim to
provide theoretical support for the engineering of federated learning with decision trees as the
underlying training model.
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1. Introduction

Machine learning (ML) has experienced rapid development in the field of artificial
intelligence, particularly in areas such as computer vision, natural language processing,
speech recognition, etc. [1–6]. However, machine learning, especially use of deep learning
models, often requires large datasets to ensure model performance and that training results
are accurate. Currently, data are mostly stored in a decentralized manner, individually
maintained by data owners. Directly sharing this data poses privacy and security risks.
For instance, in the financial sector, user deposit and lending information are stored in
different financial institutions (such as banks, insurance companies, etc.), and user data
between these institutions are independent. In an ideal scenario, if institutions could collab-
orate and use federated data to train user credit models collectively, each institution could
benefit. However, due to concerns about data privacy and the establishment of relevant
laws and regulations [7,8], owners of highly sensitive data are unwilling to share them
and prefer to keep such data within their own control [9]. Simultaneously, the high cost
makes aggregating scattered data between different institutions challenging. Addressing
the fragmentation and isolation of data while adhering to privacy protection regulations is
a crucial challenge in the field of artificial intelligence.

Federated learning (FL) [10–13], as a distributed machine learning technique popular
in recent years, trains a central model by collecting local updates or model parameters from
users instead of raw data, thereby protecting users’ sensitive local data and addressing
privacy and security concerns in multi-party model training [13]. Based on different data
partitions, FL can be categorized into horizontal federated learning (HFL), vertical federated
learning (VFL), and federated transfer learning (FTL), as shown in Figure 1. In HFL, data
from different users differ in the sample space but are the same in the feature space. Each
party trains a local model, and the model parameters or gradients are sent to a central
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server. The server collects and aggregates the results, then returns the updated results
to each user. In VFL, the data samples between participants are aligned, but there are
differences in the data features. Each participant keeps the data and models locally and
exchanges intermediate computation results with the server. FTL is suitable for scenarios
where there is little overlap in both data samples and data features among participants.

Figure 1. Classification of federated learning in [10]. (a) Horizontal federated learning (HFL),
partitioned by samples. (b) Vertical federated learning (VFL), partitioned by features. (c) Federated
transfer learning (FTL).

In recent years, many researchers have dedicated their efforts to FL algorithms to
support effective machine learning models. Gascón et al. [14] proposed a linear regression
model on vertically partitioned datasets and combined multi-party computation protocols
to achieve scalable secure training. Cellamare et al. [15] introduced federated generalized
linear models for the privacy-preserving analysis of horizontally partitioned data in real-
world scenarios. Zhu et al. [16] used a multi-objective evolution algorithm to optimize
neural network structures and proposed a scalable method for encoding network con-
nectivity in a federated setting, thereby improving model training efficiency. Compared
to traditional linear models [14,17] and neural network models [16,18,19], decision trees,
as a significant machine learning algorithm, exhibit better accuracy and interpretability.
According to our survey, decision tree models are widely used in classification and regres-
sion problems. Liu et al. [20] introduced the concept of revocable federated learning and
implemented a new framework for federated random forests. Hou et al. [21] proposed a
vertically federated random forest scheme based on dynamic changes in user data, which,
while preserving privacy, can verify the integrity of data. Another highly representative
approach is gradient boosting decision trees (GBDTs). A GBDT consists of multiple decision
trees, and it sequentially builds weak learners through gradient boosting to minimize the
loss function. Specific implementations of GBDT include XGBoost [22], SecureBoost [23],
and FederBoost [24]. Due to the simple operation, high efficiency and interpretability, tree
models have been widely applied in FL in recent years, demonstrating robust performance
in practical applications, such as finance [25] and healthcare [26].

Many researches have explored the differences between tree-based models and other
deep learning models in terms of accuracy and efficiency. Memon et al. [27] demonstrated
that XGBoost exhibits superior performance in image classification tasks compared to
artificial neural networks. On the other hand, tree-based models outperform other models
on tabular datasets [28]. Due to the uneven distribution of features, small sample sizes,
and large outliers in tabular data, using neural networks for prediction and training
becomes challenging. In contrast, the inductive biases of decision trees make them perform
better on tabular data [29–31]. Despite the various advantages of FL, our research indicates
two challenges in using decision trees as the underlying model for FL.

The first types of challenge are security and privacy issues. In HFL, different partici-
pants can leverage local data for training, making privacy during gradient transmission
and backpropagation a focal point. In VFL, security concerns arise primarily from the labels
being on one side and the non-overlapping features. Different participants must ensure
that local feature information is not disclosed. Meanwhile, participants without labels need
to transmit gradient information for model training and enhancement. Current research
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often employs techniques such as homomorphic encryption [32,33] or secure multi-party
computation [34] to achieve federated decision tree training. Introducing lightweight se-
cure aggregation helps reduce the computational overhead for encryption and decryption
without exposing individual user data [24,35,36]. With the popularity of differential pri-
vacy techniques, training federated decision trees under differential privacy conditions can
protect user privacy while minimizing the impact on model accuracy [35,37,38].

Another type of challenge is model convergence and communication efficiency issues.
While tree models offer better interpretability compared to other machine learning models,
the decision-making at intermediate nodes also introduces significant communication
overhead. The characteristic of distributed storage in FL, coupled with the need to transmit
substantial gradient information during the training process, poses a disadvantage for
building decision tree models. In the context of federated decision tree implementation,
the lack of an efficient communication mechanism among multiple participants becomes
a critical limiting factor, especially when dealing with large-scale data communication.
Our research suggests that establishing asynchronous/parallel training mechanisms [39],
resource allocation optimization [36], and effective transformation of transmitted infor-
mation [40] can all be viable approaches to enhance the efficiency of federated decision
tree training.

We note that there are already many research schemes that combine federated learning
with decision trees. However, there is a scarcity of survey work that systematically consoli-
dates these efforts [41–43]. Therefore, the focus of this survey is the technical integration of
federated learning and decision trees. This work combines research in relevant fields in
recent years, covering various aspects, such as algorithm implementation, privacy protec-
tion, and the efficiency of tree models in different federated settings. Our contributions are
as follows:

• This survey categorizes and summarizes federated decision tree models, explains
the innovative points of each scheme, and compares the differences and connections
between different schemes in multiple aspects.

• We elaborate on the main issues currently facing privacy in federated learning and
summarize the performance differences brought about by using different crypto-
graphic techniques and privacy protection schemes in training federated decision
tree models.

• We consider using decision trees as the underlying model for federated learning, which
involves a large amount of computation and communication between multiple parties
during the training process. Therefore, we discuss iterative and aggregation strategies
in federated learning to improve the convergence and communication efficiency of
the model.

• Finally, we provide prospects for future research directions in this field.

The rest of the paper is organized as follows: Section 2 summarizes the implementation
of decision tree algorithms in various federated settings and introduces the performance
advantages of existing algorithms. Section 3 discusses the security and privacy protection
methods in federated decision trees in detail. Section 4 discusses schemes for improving
efficiency. The final section provides a conclusion to the paper.

2. Federated Decision Tree

A decision tree is a common machine learning algorithm. It judges data attributes in a
tree structure and outputs the judgment results layer-by-layer. The final leaf node represents
a classification or prediction result. The traditional ID3, C4.5, and Cart algorithms can
obtain good training results in large databases.

Using the decision tree as the underlying model for federated learning, each participant
can train a decision tree model locally and share the learned model parameters or gradients,
so as to build an overall model that uses decentralized data for training. One of the
main differences between the tree model and the neural network model is that when the
federated average of the neural network is used, the model structure is predetermined and
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sent to all participants. However, when building a decision tree, the tree structure is learned
according to the local data of the different participants. This means that when using neural
networks, all local models have the same structure, but when using decision trees, local
models may have different structures [44]. Table 1 summarizes tree-based training models
in different types of federated learning proposed in recent years.

Table 1. Summary of decision tree-based models under federated learning.

Proposed Model HFL/VFL Tree Algorithm Security Measure Performance Improvement
Security Accuracy Efficiency

Tree-based FL [35] HFL GBDT DP + SecAgg ✓ ✓

FEDXGB [33] HFL XGBoost HE + SS ✓ ✓

F-XGBoost [45] HFL XGBoost K-Anon ✓ ✓

Federated Forest [37] HFL Extra trees LDP ✓ ✓

DFedForest [46] HFL RF Blockchain ✓ ✓

FL-XGBoost [47] HFL XGBoost Encryption ✓

FedXGB [48] HFL XGBoost SS ✓ ✓

DPBoost [49] HFL GBDT DP ✓

SimFL [50] HFL XGBoost LSH ✓

eFL-Boost [36] HFL GBDT SecAgg ✓

Pri Fed GBDT [38] HFL GBDT RDP ✓ ✓ ✓

SecureBoost [23] VFL XGBoost HE ✓

SecureBoost+ [51] VFL XGBoost HE ✓ ✓

Pivot [34] VFL RF & GBDT HE + MPC ✓ ✓

Secure XGBoost [52] VFL XGBoost SecEnclave ✓

FLSectree [53] VFL XGBoost Encryption ✓ ✓

FedXGBoost [54] VFL XGBoost DP ✓

VF2Boost [39] VFL GBDT SecAgg ✓

FEVERLESS [55] VFL XGBoost SecAgg + CDP ✓ ✓

Fed-EINI [32] VFL RF & GBDT HE ✓ ✓

FedGBF [56] VFL RF & GBDT Encryption ✓

FedRF [57] VFL RF Encryption ✓

OpBoost [58] VFL XGBoost LDP ✓ ✓

VPRF [21] VFL RF HE ✓ ✓

SGBoost [59] VFL XGBoost SS + FE + SHE ✓ ✓ ✓

VF-CART [40] VFL CART HE ✓

PriVDT [60] VFL GBDT FSS ✓

FederBoost [24] HFL/VFL GBDT SecAgg + DP ✓ ✓

* DP denotes Differential Privacy. SecAgg denotes Secure Aggregation. HE denotes Homomorphic Encryption.
K-Anon denotes K-Anonymity. LDP denotes Local Differential Privacy. LSH denotes Locality Sensitive Hashing.
RDP denotes Rényi Differential Privacy. MPC denotes Multi-Party Computation. CDP denotes Center Differential
Privacy. FSS denotes Function Secret Sharing. SS denotes Secret Sharing. FE denotes Functional Encryption. SHE
denotes Symmetric Homomorphic Encryption.

In a horizontal federated setting, participants’ samples share the same feature dimen-
sions, as shown in Figure 2. At the beginning of training, participants initialize their local
models independently by selecting suitable decision tree structures and hyperparameters.
Participants autonomously construct decision trees on their local data using feature se-
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lection and node-splitting strategies for model training. Once the local model training is
completed, participants need to integrate their models into a global model. A common
integration method is to use aggregation algorithms, such as FedAvg. In FedAvg, partici-
pants send the weights of their local models to the server, and the coordinator averages the
model weights based on each participant’s contribution. This process results in a global
decision tree model. After one training round, participants update their local models and
repeat the training for the next round until the model converges.

Figure 2. Training process of federated decision tree in horizontal federated learning.

On the basis of traditional solutions, Zhao et al. [35] proposed a federated learning
scheme based on GBDT in data mining. Each participant uses local data to train a decision
tree, which is added to the global model in turn. The privacy protection method is provided
when sharing the model to reduce the risk of privacy data disclosure of the leaf node weight.
At the same time, each update only needs to send the global model to the next owner,
making the communication cost low. On this basis, Yamamoto et al. [47] used the greedy
idea to improve the prediction performance. Through the central server, this actively selects
the tree with the greatest loss to add to the global model, so that each model update only
requires one round of communication.

In building a tree-based model, we need to determine the splitting points of samples
and the weights of the leaf nodes. Usually, each participant selects the basis for node parti-
tioning based on the feature distribution of their local data, for example, selecting features
with the maximum information gain as the basis for node partitioning [61], or selecting
features with the minimum Gini index for node partitioning [62,63]. In order to maintain
the consistency and mergeability of the decision tree, participants need to coordinate the
basis for node partitioning by sharing local data feature statistical information or making
collaborative decisions for node partitioning in a secure computing environment. This can
ensure that participants have a consistent basis for node partitioning, thereby obtaining a
decision tree model that can be merged.

Different from horizontal federation settings, in vertical federated learning, data labels
are usually owned by one party, and other participants need to cooperate with the party
owning the labels to determine the tree partition structure. SecureBoost [23] defines the
participant with a label as the active party, and the participant without a label as the passive
party, as shown in Figure 3. After sample alignment, the active party sends the gradient and
Hessian value of the samples to the passive party. The passive party divides the samples
into buckets based on local features and returns the aggregated values of each bucket to the
active party in the form of a histogram, as shown in Figure 4. The active party calculates the
optimal splitting of nodes locally and synchronizes updates directly among the different
participating parties. SecureBoost provides a fundamental framework for future research.
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Figure 3. Training process of federated decision tree in vertical federated learning.

Figure 4. Passive parties build a histogram and aggregate the samples into bins.

The key step in building a decision tree is to find the optimal splitting of samples based on
a feature and calculate the weight values of leaf nodes, that is, to calculate Equations (1) and (2).

Lsplit =
1
2
[
(∑i∈IL

gi)
2

∑i∈Il
hL + λ

+
(∑i∈IR

gi)
2

∑i∈Il
hR + λ

− (∑i∈I gi)
2

∑i∈I hL + λ
]. (1)

w(t)
l = −

∑i∈Il
gi

∑i∈Il
hi + λ

. (2)

As can be seen, the calculation of this split score is only related to the first-order and
second-order gradients, as well as the order of the samples. Therefore, in the scheme
proposed by Tian et al. [24], each participant was asked to sort their samples based on
their eigenvalues and put them in different buckets, and the sorting was coneyed to the
active party for training. For any participant, they only know the order of the buckets
and do not know the order of the samples inside the buckets, so they do not require any
encryption or decryption operations. Xu et al. [40] proposed to hash the sample ID using
the same hash function for each participant and then sorted the hashed IDs according to
the characteristics. Participants divided the samples into histograms, where bins stored the
hash ID of samples. In this scheme, the active party can obtain the sample distribution of
the passive party in one communication, so the passive party only needs to communicate
with the active party once during the training phase.

In addition, most existing work assumes that participants are honest; however, malicious
clients may launch attacks on intermediate results or the final model. Blockchain [64–66]
provides a reliable method to ensure mutual trust in a distributed environment. The intro-
duction of blockchain, leveraging features such as consensus mechanisms, smart contracts,
and incentive mechanisms, provides a more secure model training process for FL [67,68].
Souza et al. [46] proposed an FL system for creating random forests in a distributed manner,
utilizing blockchain technology to ensure mutual trust. The system employs a distributed
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registration of references to local model addresses, preventing malicious participants from
compromising the model’s accuracy. This marked the first attempt to integrate blockchain
into federated decision tree models.

3. Security Scheme

Although in FL, participants do not send training data away from the local model,
the local model can complete the training of the global model only by uploading parameters
or gradients. However, attackers can still obtain the privacy information of users’ local data
through gradient or parameter information [69,70], and can steal the local model, which
greatly threatens data privacy and brings security risks. On the other hand, due to the low
level of mutual trust among participants in federated learning, the model is required to be
more robust. We have summarized several attack issues that federated decision trees may
face in practical applications. In real-world scenarios, federated decision trees often face
the following types of attacks:

• Model Inference Attack: Attackers can infer sensitive information about training data by
observing the output of the federated decision tree model [70–72]. Attackers can establish
training data or infer specific eigenvalues by utilizing the probability distribution or
decision path of the output, thereby infringing on the privacy of participants.

• Model/Data Poisoning Attack: Attackers may attempt to manipulate model updates
or gradients of participants during federated learning, or use malicious data for model
training, causing malicious interference to the aggregated decision tree model. This
may lead to a decrease in the performance of the final model or produce misleading
results during the inference stage [73–75].

• Aggregation Information Leakage Attack: Attackers can infer the data information
of participants by observing the aggregation process of the model parameters or
gradients [76,77]. By analyzing the changes in aggregation results, attackers may
obtain sensitive information about data distribution or features.

• Malicious Behavior: Participants in federated learning may engage in malicious be-
havior, such as providing false model updates [78,79], tampering with data labels [80],
or manipulating the aggregation process [81–83]. This malicious behavior may under-
mine the accuracy and reliability of the federated decision tree model and may also
threaten data privacy.

Many solutions have been proposed for different attacks in the process of federated
learning training and prediction. In the federated decision tree, privacy protection schemes
based on cryptography, differential privacy, or security aggregation are often used for pri-
vacy protection. Table 2 provides a comparison of different privacy protection mechanisms
and technologies used in the federated decision tree. In the next section, we explain these
in detail.

Table 2. Comparison of privacy protection mechanisms and technologies.

Mechanisms Technology Principle Advantages Disadvantages

Data ambiguity DP
Central/local noise pro-
vided to perturb data or
gradient values.

High computational
efficiency; Low com-
munication overhead;
Post-processing, protecting
published data.

Decreased accuracy and avail-
ability of training models.

Process encryption

HE Gradient encryption, oper-
ating on ciphertext. Strict privacy protection.

Unable to handle complex
operations; Low computa-
tional efficiency; High stor-
age overhead.

SMC
Intermediate data are pri-
vate and cannot be learned
by other parties.

Prevent man-in-the-middle
attack and data leakage.

Low computational effi-
ciency; High communica-
tion overhead.
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3.1. Cryptographic Technology

Homomorphic encryption (HE), as an important part of cryptography, has been used in
many federated learning algorithms [34,84,85] due to its good performance arithmetically.
From Equations (1) and (2), we can see that in the decision tree model, the decision
of split points and the calculation of leaf weights involve a large number of gradient
summation calculations, and some algorithms also need addition operations to build
histograms. Therefore, additive homomorphic encryption can be used as a good privacy
protection scheme.

HE can provide privacy protection for all parties in the training process of a federated
decision tree model [23,32–34]. An HE system allows direct operation of ciphertext without
decryption operation, which is proved to ensure high security [86]. In the typical model,
the active party homomorphic encrypts the calculated gradient value and the Hessian value
of the samples and sends them to other passive parties. The passive party accumulates
the encrypted data according to the feature, and finally returns them to the active party
for decryption. It can be seen for participants with data labels that HE can protect the
gradient values from being stolen by malicious parties during transmission to infer the
original data, and at the same time ensure that the data are used correctly, thus ensuring the
security of the label. On the other hand, for data providers without data labels in vertical
federated learning, HE can reduce the disclosure of feature dimension information by use
of the histogram.

Liu et al. [33] proposed solutions to two unresolved issues in the current HE-based FL
system. One was to perform forced aggregation on the server before decryption, otherwise
the server may be able to learn user model updates. Second, since most existing HE-based
federated learning solutions cannot solve the problem of accidental user dropout. They
first proposed a hybrid scheme combining homomorphic encryption and secret sharing,
which can force the central server to perform aggregation operations and is robust against
user exits.

For the passive party, the construction of a histogram is essentially a homomorphic
addition operation. If the addends differ in the exponential terms, homomorphic addition
will perform a scaling operation, as shown in Equation (3).

[[u]]⊕ [[v]] =


⟨eu, (Bev−eu ⊗ [[U]])⊕ [[V]]⟩, i f ev < eu
⟨eu, [[U]]⊕ [[V]]⟩, i f ev = eu
⟨eu, [[U]]⊕ (Bev−eu ⊗ [[V]])⟩, i f ev > eu

(3)

When constructing a histogram, the encrypted gradient statistical data are accumu-
lated one-by-one into the bin of the histogram. The exponential term of each bin is deter-
mined by the maximum exponential term, and the total number of scaling operations is
affected by the data order. Fu et al. [39] proposed a re-ordering encryption scheme. They
sorted the encrypted statistics according to the exponential term from the smallest to the
largest before performing the operation, so that only (E − 1) scaling was required, where E
is the number of unique values in the exponential term. This was also the first operation
proposed using the federal decision tree model to optimize homomorphic addition.

Another common solution is secure multi-party computing (SMC) [87,88]. It ensures
that all participants, except for the output, cannot learn any other information, which can
be used to securely aggregate the transmitted gradient. However, SMC does not provide
privacy guarantees for the final model and is still vulnerable to inference attacks and model
reversal attacks. These vulnerabilities have been highlighted in previous studies [89,90].

Mohassel et al. [91] applied SMC in their proposed solution. However, they assume
that each participant’s data can be outsourced to many non-collusive servers. However,
in practical application scenarios, this assumption is difficult to implement. Wu et al. [34]
proposed Pivot, which does not rely on any trusted third party to provide protection in
a vertically federated environment. Pivot makes use of two complementary encryption
technologies: threshold homomorphic encryption (TPHE) and MPC. When TPHE can only
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support a set of restrictive calculations, SMC is called to complete the training. This scheme
ensures that each client only learns the final tree model and does not learn anything else.

3.2. Different Privacy

The initial goal of federated learning is to share the weight of the training model rather
than the original data so as to protect local sensitive information. However, some studies
show that the weight will also leak privacy, thus enabling inference about the original
data [92].

Differential privacy (DP), as a robust standard for measuring privacy, establishes
security through rigorous mathematical proofs, enabling data analysis without disclosing
individual private information [93,94]. In the federated setting, compared to cryptography-
based techniques, DP reduces the computation and communication rounds, thereby mit-
igating significant time and space costs. The core idea of DP involves introducing noise
into individual data, making it challenging for attackers to distinguish whether a specific
individual’s data participated in the computation. Therefore, based on our research, in the
training process of federated decision tree models, DP techniques can be applied from three
perspectives: the data input, the learning process, and the learned model.

(1) Inputs. Participants can perturb their local training data by adding noise to
individual feature values or model parameters. For instance, Laplace noise [95] or Gaussian
noise [96] can be applied to real-valued data, while the exponential mechanism can be used
for adding noise to discrete data [97].

(2) Learning process. Participants can add noise to local model parameters during
model training. By adding noise to gradients or perturbing parameters, the privacy of
the model parameters can be protected. Participants need to control the privacy budget
for each training round to ensure a level of privacy protection is maintained during the
training process. Studies on the allocation of privacy budgets among different trees,
on the one hand, use sequential composition to evenly allocate budgets to each tree [98,99].
However, when the number of trees is large, the privacy budget allocated to each tree is
very small; if the noise scale is set to be proportional to the number of trees, it can cause
a significant loss of accuracy. On the other hand, consideration can be given to disjoint
inputs to different trees [35], with each tree satisfying differential privacy through parallel
composition. However, in this approach, when the number of trees is large, the instances
assigned to each tree may be very small because the inputs cannot overlap. As a result,
the tree can be too weak to achieve meaningful learnt models.

Li et al. [49] pointed out that invalid privacy budget allocations and overly loose
sensitivity bounds among different trees in the GBDT model may cause serious accuracy
losses to the final model. They proposed to adaptively control the gradients of the training
data and the clipping of leaf nodes in each iteration based on the property of the gradient
and the contribution of each tree in GBDTs. In their framework, a two-level boosting
structure named EoE was proposed, which allocates privacy budgets between trees through
a combination of sequential and parallel composition. For a single tree, half of the privacy
budget is allocated to the leaf nodes, and the remaining half is allocated equally to the
depth of each layer of the internal nodes. For multiple tree sets, parallel composition is
applied within the set by sampling disjoint subsets, and multiple such sets are continuously
trained using the same training set through sequential composition. This design allows for
increased effectiveness while leveraging privacy budgets.

(3) The learnt model. The split decision can reveal sensitive information about the
training set to a certain extent. In the class estimation process of leaf nodes, noise can
be added to blur the final prediction results to protect individual privacy. However,
the addition of noise will directly affect the accuracy of the final model, so the trade-off
between noise and error has been investigated. Currently, there are many studies on
training decision tree models under centralized differential privacy (CDP) [39,100,101].
Most of them are based on the decision forest, and due to the strict constraints of CDP, there
will be precision loss when it is extended to federal settings. Wang et al. [55] proposed to
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randomly select a noise leader according to the score in each iteration process to aggregate
the local noise provided by different participants, which not only eliminates the requirement
for a trusted third party, but also avoids the superposition of a large number of noises.

Considering that the tree splitting process will leak privacy, FederBoost [24] satifies
the ϵ− LDP, making any two samples in a bucket indistinguishable when dividing the
samples. FedXGBoost [54] uses LDP to add noise to perturb the first-order approximation,
and calculates the split score through the perturbed results so as to accelerate the training
process on the premise of small accuracy loss. OpBoost [58] desensitizes the training data
using distance-based LDP (dLDP), and combines an effective sampling distribution to find
the trade-off between desensitization values and privacy, thus improving the accuracy and
efficiency of the original LDP model.

In addition to the above plan, Rényi differential privacy (RDP) [102] is a new variant of
differential privacy, which is used to calculate the privacy loss of a composition mechanism.
Previous research [103,104] has added RDP as noise to the federated learning local model
training process. Recent research [38] has applied RDP to the calculation of split candidates,
the selection of split points, and the calculation of weights. The balance between impor-
tance and added noise through privacy accounting was used to constrain the cumulative
privacy loss caused by the DP algorithm. Through the combination of privacy, the model
performance was close to the non-privacy setting, and the training accuracy rate reached
over 90%.

3.3. Data Security Aggregation

In FL, different participants train private models through local data. When the cen-
tral server aggregates, the high-dimensional model or data will lead to the problem of
privacy budget explosion. Due to the requirements of the high dimensionality of the data,
uncertainty of users, and robustness of training models in FL, the demand for security
aggregation protocols has been stimulated [105].

A secure aggregation scheme based on secure shuffling [106–108] provides privacy
assurances through local encoders and a third-party shuffler. Erlingsson et al. [109] initially
demonstrated the amplification effect of shuffling models on local differential privacy.
Combining theoretical aspects of subsampling, Kasiviswanathan et al. proved that secure
shuffling can transform local differential privacy into centralized differential privacy, re-
sulting in a significant reduction in the privacy budget. The FLAME model proposed by
Liu et al. [110] builds upon secure shuffling by implementing high-dimensional gradient
second sampling, further reducing the privacy budget while significantly enhancing the
model’s usability.

In a distributed system, Google proposed a scheme to aggregate local training models
into a federated global model through iteration, and split the model training process into
multiple participants [111]. Different users can obtain local decision tree models through
parallel training, and for the resulting decision tree set, the aggregation algorithm usually
selects a representative tree or merges trees through an aggregation protocol. The tree
selection method usually employs the similarity to select the most similar and representative
decision tree with other models [112]. According to previous research [113], we classify the
aggregation of decision trees, as shown in Table 3.

The goal of tree merging is to minimize the entropy of the split nodes when building
each decision tree, which is consistent with the goal of reducing the prediction error of each
participant in federated learning. Zhao et al. [35] used only local data to promote each tree
in the training process, and did not use data information from other parties. This method
has limitations. Li et al. [50] proposed SimFL, which uses the idea of “weights” to collect
gradients from other parties through sample similarity and to aggregate them locally. Their
scheme resulted in a decrease in the error rate of the training model on different datasets.
The FEVERLESS mechanism proposed by Wang et al. [55] safely aggregates gradient
information into a private histogram by using an aggregation scheme, and uses a histogram
for subsequent calculations. At the same time, in order to avoid the problem of multiple
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noise accumulation leading to a decline in model accuracy, a verifiable random function
(VRF) was used to select the noise leader in their scheme, aggregate the differential privacy
noise from other participants, and adding them to the histogram for privacy protection.

Table 3. Classification of decision tree aggregation.

Aggregating decision trees

Structure-based: according to the hierarchical structure of the
tree, then aggregating different layers. Classifying the samples
in the sub-nodes in the hierarchy.

Weight-based: considering the division of the tree as a set,
and aggregating the weight values of the samples in the set.

Logic-based: considering the setting up of the decision tree as a
set of logical rules, and then aggregating the logical expressions.

Dataset-based: fitting the results of multiple decision trees
onto a complete dataset.

Selecting decision trees In one iteration, selecting the single tree that best represents
the information of all datasets as the global model.

From another perspective, the decision tree can be conceptualized as hierarchical
structures representing the dataset. Each record in the dataset is classified by the tree and
assigned to a specific leaf. By focusing solely on the hierarchical structure rather than the
queries associated with each node, the aggregation of decision trees can be understood
as the aggregation of these hierarchical structures [113]. Kargupta et al. [114] proposed a
method for tree aggregation based on datasets. They proposed transforming decision trees
into Fourier spectra, and combining them into an entire dataset through vector addition in
dual space.

Another solution for secure aggregation is direct selection. The purpose of tree se-
lection is to select a single tree that can represent the overall data features. Compared
with integrated methods, it reduces the workload of the additional calculations. On the
other hand, only representative models are retained without the need to provide additional
privacy levels for other data information. Miglio et al. [115] proposed a framework for
comparing decision trees through semantic similarity and dataset similarity. Semantic
similarity measures the consistency of class predictions across decision trees in the attribute
space, while dataset similarity considers attribute space probability distribution, class joint
probability distribution, and conditional class probability distribution. However, based
on these two methods, the selection phase of the tree requires additional runtime to apply
each decision tree to the validation instance. The decision tree with the highest accuracy
can simply be chosen from multiple decision trees [116,117]. The advantage of this method
is that it is simple and intuitive, easy to implement and explain. However, it ignores the
confidence differences between decision trees. If there are significant differences in the
accuracy of the decision trees, selecting only the decision tree with the highest accuracy as
the aggregation result may overlook the important contributions of the other decision trees.

Summary. We summarize the above studies as follows:

• Current research on decision trees in federated learning is mostly focused on VFL.
In a horizontal setting, it is difficult to aggregate directly through model parameters
like neural networks, as different participants use different features to split the inter-
mediate nodes. In VFL, it is more feasible to establish synchronization layer-by-layer
among the parties.

• We summarized the existing security schemes applied in the federal decision tree
model, including, but not limited to, HE, MPC, DP and secure aggregation. We
explained the application of various technologies in federated decision trees, as well
as the privacy protection capabilities and performance advantages and disadvantages
they provide.
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• The introduction of security technology has had an impact on the cost of computation
and communication, as well as on the accuracy of models. Following review, we
believe that balancing privacy protection and model accuracy in designing security
technology solutions is a direction for further research.

4. Efficiency Scheme

The performance evaluation of models is mostly considered from three aspects: accu-
racy, security, and communication efficiency. Various indicators can be used to evaluate
the accuracy of the decision tree model, such as accuracy, precision, recall rate, F1-score,
etc. These indicators can be calculated by predicting the model on local data and com-
paring it with real labels. The evaluation of the privacy protection level of the model
needs to consider the risk of privacy leakage. Both of these aspects are mentioned in our
earlier introduction. In this section, we focus on evaluating the efficiency of the federated
decision tree.

In FL, model training is usually carried out through federated iteration. The model
gradually improves and converges to a global optimal solution in each iteration. Due to the
distributed storage of data, it is very important to pay attention to the training efficiency
of the federated decision tree for the practical application of federated learning. Firstly,
federated learning involves model training and parameter exchange between multiple
participants. If the training efficiency is low, it will consume a lot of computing resources
and time. Secondly, if the training efficiency is low, model updates may become slow,
resulting in the model not being able to adapt to new data and situations in a timely
manner. Finally, in practical application scenarios, inefficient training processes can delay
the deployment and application of the model, as well as adversely affect the experience
and satisfaction of participants.

In terms of neural networks and linear regression models, the research on improving
the communication efficiency of federated learning focuses on the number of communica-
tion rounds and bandwidth. The main programs include selecting representative clients,
reducing the number of model updates, and compressing the model. The client can be
selected to reduce costs by limiting the number of participants.The framework proposed in
Chen et al. [118] used a probabilistic device selection scheme to select only those clients
with high probability for model transmission, thus enhancing convergence speed and
reducing training loss. Another approach involves reducing model updates, where tech-
niques like Bayesian neural networks [18,119,120] enable synchronous and asynchronous
model updates across multiple machines. Kasturi et al. [121] proposed a simpler federated
fusion learning scheme, which allows the distribution parameters of the local data to be
sent to the central server instead of the model parameters. These parameters are used to
generate synthetic data on the central server to train a global machine learning model,
reducing communication to a single round. In vertical federated learning, each party is
considered to make multiple local updates before each communication, which can reduce
the number of communication rounds between clients. Li et al. [120] proposed an asyn-
chronous vertical federated learning framework with gradient prediction and two-terminal
sparse compression, in which compression occurs on local models to reduce the training
time and costs. While existing compression techniques focus on gradient compression
to reduce the training time and transmission cost, considering compressing local client
data before aggregation for final model training can further minimize communication
rounds [122]. This approach protected privacy by not exposing local data and limited the
process to a single communication round.

In decision tree models, the improvement of efficiency can be considered in terms of
the two stages of training and prediction, as shown in Table 4.

In the training stage, the goal is to reduce the number of iteration rounds and accelerate
the speed of each iteration. Inspired by previous work, dimensionality reduction is a
strategy to improve the communication efficiency, which we define in two categories: client
dimensionality reduction and feature dimensionality reduction. Unlike previous random
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schemes [123,124], the FedMint scheme proposed by Wehbi et al. [125] uses a bootstrap
method to obtain initial accuracy values for new IoT devices, and utilizes a matching game
method to create selection lists for clients and federated servers based on specific criteria.
Unlike random selection, their method enables federated servers to consider the data type
and accuracy level of IoT devices to achieve an effective selection process. Methods for
feature dimensionality reduction include principal component analysis (PCA) [118], feature
selection based on information gain [126], and model-based feature selection [127].

Table 4. Tree-based model training in vertical federated learning.

Training Stage

Incremental learning.

Model compression and pruning.

Parallel and asynchronous computing.

Sampling and subsampling.

Prediction Stage
Client inference.

Compression model and quantization.

We can consider the reasonable arrangement of time and resources in different com-
ponents, allocate more data to the important parts, and allocate less data to the parts
that have little impact on the final results, thus improving the overall training efficiency
of the federated model. Yamamoto et al. [21] balanced resource allocation in local and
global computing. They suggest that the leaf node weights contribute more to prediction
performance. Therefore, the determination of the tree structure in their framework does not
require multiple communication of gradient histograms, but is determined and shared by
one party according to local data. The weights of leaf nodes are calculated by an aggregator
after collecting the results for each participant, which can optimize the cost function based
on the global distribution.

Xu et al. [40] suggested that in the previous training process of the federated learning
decision tree model, the passive parties need to establish a histogram of gradient and Hes-
sian values to send to the active party during each split, resulting in a huge communication
overhead. In the framework they proposed, the passive party places the hashed sample
IDs into bins at the beginning of model training so as to establish a histogram for each
feature. The passive party only needs to communicate with the server once during the
whole training phase, and then the server and the active party interact to determine the best
split point. In this process, the server only needs to transfer the dot product and feature
information triplets, which greatly reduces the traffic in the training process.

On the other hand, the training at different stages can be parallelized, which is very
common in vertical federated learning. In the process of vertical federated learning, due to
the restriction that the label is located on one side, more calculations need to be completed
by the side with the label, which makes other participants remain in the waiting state for a
long time. Fu et al. [39] proposed VF2Boost to improve the training efficiency through use of
a parallel protocol. They divided the samples into small batches for separate processing and
transmission, thereby shortening the waiting time of both parties and avoiding message
queue congestion caused by the transmission of a large amount of ciphertext in a short
period of time. They also parallelized the data encryption, gradient transmission, and
node-splitting stages in the training process, achieving an acceleration of 1.90–2.21×.

In the prediction stage, the existing scheme uses a multi-interactive reasoning frame-
work to calculate the reasoning results. The decision path is determined by sequentially
searching the decisions on the current node and moving to the next node, requiring a large
number of communications between both parties. In order to reduce the number of com-
munications and to improve efficiency, it is preferred to use local models and parameters
in federated learning to first predict, and then communicate with other parties, rather
than asking each node separately. A participant may judge a sample based solely on local
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information and fall into one or more leaf nodes, while the active party can combine the
results of multiple participants and associate them with the final prediction [32,37].

The Fed-EINI model proposed by Chen et al. [32] emphasizes the interpretability
and efficiency of the models. They proposed encrypting decision paths while making
feature meanings and importance public information. In the original SecureBoost model’s
inference process, when a tree node splits based on the features of the passive party,
the active party asks the passive party how to proceed. After obtaining the decision path
information, the active party continues with the prediction. In Fed-EINI, the passive
party (defined as the host) and the active party (defined as the guest) use their own node
information to infer possible prediction results, i.e., predicting which leaf node the instance
will fall into. By multiplying the output vectors obtained by different participants, the final
prediction result can be obtained. As shown in Figure 5, we can clearly see the difference
between the two approaches. Fed-EINI provides a more secure and interpretable inference
framework, avoiding the leakage of feature path decision information by encrypting the
matrix calculations. It has higher accuracy and efficiency.

Figure 5. Comparison between standard SecureBoost and Fed-EINI.

Gradient quantization is a technique that quantifies gradients to lower accuracy
values and reduces the number of transmitted gradients. The efficiency improvement
and effectiveness of quantization in neural network training was considered in [128].
However, the existing literature rarely discusses the possibility of low precision training for
GBDT. BitBoost [129] utilizes quantization gradients to improve efficiency, but it quantifies
gradients in a deterministic manner. On this basis, Shi et al. [130] adopted a random
quantization scheme and an adaptive method that is conducive to maintaining good
model accuracy and achieving significant acceleration on different computing platforms.
After investigation, we have reason to believe that quantitative training can be combined
with histogram-based schemes. Using histograms can reduce the amount of statistical
data and reduce the communication costs. Quantization training can reduce the size of
the histogram, compress the histogram by converting floating-point arithmetic numbers
into low precision values before sending, and then decode it into high precision values.
Therefore, we believe that it has universal benefits for distributed training.

Summary. We summarize the above studies as follows:

• Our efficiency evaluation of the federated decision tree is divided into the training
stage and the prediction stage. We summarized the existing improvement plans and
provided an overview of the experimental results.

• When training a decision tree model in a federated environment, many factors, such
as safety, accuracy, and efficiency need to be considered. Currently, most solutions
focus on one or two of them, and there is room for improvement.
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5. Discussion

In this survey, we consider the intersection of decision trees and federated learning,
exploring the amalgamation of these two powerful paradigms in contemporary machine
learning research.

This survey begins by establishing a fundamental understanding of federated learn-
ing, which is a collaborative approach where multiple participants cooperate to train a
global model using local data, aiming to enhance training accuracy. Then, it introduces
the collaborative training process of decision trees in various federated settings. Subse-
quently, it provides a comprehensive summary, classification, and analysis of research
schemes utilizing decision trees as the underlying model, focusing on both security and
efficiency aspects.

Combining our previous research findings with the practicality of federated learning,
we discuss its research feasibility in various domains, such as blockchain, the Internet of
Things (IoT), and fog computing.

Blockchain, as a distributed ledger, can be integrated well with federated learning.
The immutable and decentralized nature of blockchain ensures transparency and security in
the decision-making process. Each participant’s decision tree model updates are recorded
in a tamper-proof manner, providing a transparent and verifiable history of the federated
learning process. This not only enhances the integrity of the models but also establishes a
trust layer among participants. Fu et al. [131] proposed a verifiable decision tree prediction
scheme for decision tree prediction. The integration of decision tree models with blockchain
technology offers a robust solution to the security challenges associated with cloud-based
machine learning services. The Merkle tree, hash function, and commitments are leveraged
to generate efficient verification proofs, ensuring the integrity of decision tree predictions.
The transparency and immutability of the blockchain provide a secure platform for clients
to verify the correctness of results, addressing concerns related to malicious attacks or
computational failures [132,133].

Apart from the previously mentioned types of attacks, phishing attacks [134] are a
common form of network threat, particularly in the realm of blockchain, posing a significant
security risk. Attackers employ social engineering techniques to deceive miners, leading
them to add malicious blocks to the blockchain, potentially disrupting the entire blockchain
system. Current efforts to combat phishing attacks include consensus protocols, but they
may fail when miners attempt to add new blocks. Zero-trust policies are gradually being
introduced as a method, but their deployment is still ongoing and requires a considerable
amount of time. A more accurate approach to phishing attack detection involves the use
of machine learning models with specific features to automatically classify attempts as
phishing attacks or legitimate ones [135]. In the context of preventing phishing attacks in
blockchain, federated decision trees may be employed to consolidate information from var-
ious miners or nodes, collaboratively constructing a model capable of identifying phishing
attacks. This enables the entire model to gain a more comprehensive understanding of
behavior patterns within the network.

Next, we suggest that federated learning and machine learning are very valuable in
the context of software-defined networking (SDN) for the Internet of Things (IoT) and fog
computing. The centralized control plane of SDN provides a global view of the network
topology, aiding in achieving flexibility and simplifying the complexity of the network
nodes. However, the current SDN architecture faces significant security threats [136,137],
especially from distributed denial of service (DDoS) attacks. FL offers advantages in terms
of real-time responsiveness and adaptability for DDoS detection. Its capability to update
models in real-time enables it to adapt to new attack patterns, enhancing the timeliness
of detection. Furthermore, FL avoids the need to transmit large amounts of raw data to a
central server, thereby reducing the burden on network transmissions. This is particularly
crucial for IoT devices and edge computing scenarios as these environments often have
limited bandwidth and resources.
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In addition, we consider the possibility of constructing cross-domain and cross-modal
federated decision trees. Current research on federated decision trees primarily focuses on
data from a single domain with similar data distributions. Future research could extend
federated decision trees to scenarios involving cross-domain and cross-modal data, such
as jointly modeling and making decisions on data originating from different domains or
featuring different data types. This extension aims to enhance the capability of training
downstream tasks.

6. Conclusions

Federated learning is an emerging and rapidly advancing technology wherein multi-
ple participants collaborate to train models. Currently, extensive efforts have been invested
in the development of federated learning systems. This survey considers the federated
learning approach with the decision tree as the foundational model. It analyzes and intro-
duces the establishment of federated decision tree models, privacy protection technologies,
and efficiency evaluation schemes. The comparison of existing work across the technical
dimensions of accuracy, security, and efficiency enables this survey to serve primarily as
a theoretical reference for future endeavors in federated learning based on decision tree
models. Finally, we also consider the development direction of the integration of federated
decision trees with technologies such as blockchain and the Internet of Things.
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