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Abstract: Wildfires pose a direct threat to the property, life, and well-being of the population of
Montana, USA, and indirectly to their health through hazardous smoke and gases emitted into the
atmosphere. Studies have shown that elevated levels of particulate matter cause impacts to human
health ranging from early death, to neurological and immune diseases, to cancer. Although there
is currently a network of ground-based air quality sensors (n = 20) in Montana, the geographically
sparse network has large gaps and lacks the ability to make accurate predictions for air quality in
many areas of the state. Using the random forest method, a predictive model was developed in
the Google Earth Engine (GEE) environment to estimate PM2.5 concentrations using satellite-based
aerosol optical depth (AOD), dewpoint temperature (DPT), relative humidity (RH), wind speed
(WIND), wind direction (WDIR), pressure (PRES), and planetary-boundary-layer height (PBLH).
The validity of the prediction model was evaluated using 10-fold cross validation with a R2 value of
0.572 and RMSE of 9.98 µg/m3. The corresponding R2 and RMSE values for ‘held-out data’ were
0.487 and 10.53 µg/m3. Using the validated prediction model, daily PM2.5 concentration maps
(1 km-resolution) were estimated from 2012 to 2023 for the state of Montana. These concentration
maps are accessible via an application developed using GEE. The product provides valuable insights
into spatiotemporal trends of PM2.5 concentrations, which will be useful for communities to take
appropriate mitigation strategies and minimize hazardous PM2.5 exposure.

Keywords: Google Earth Engine; PM2.5; random forest; predictive modeling

1. Introduction

Wildfires pose a direct threat to the property, life, and well-being of the population
of Montana, and indirectly to their health through hazardous smoke and gases emitted
to the atmosphere, such as CO, CO2, and CH4 [1]. Wildfires in Montana are primarily
caused unintentionally by human error [2] or are caused naturally by cloud-to-ground
lightning strikes [3]. Regardless of the causes of wildfires, studies have shown that elevated
levels of particulate matter cause impacts to human health ranging from early death to
neurological and immune diseases to cancer [4]. The Global State of Air from 2019 details
that almost 5 million people (about twice the population of Mississippi) die prematurely
annually from exposure to outdoor air pollution [5,6]. Fine particulate matter 2.5 (PM2.5) is
a standard EPA measure that describes fine inhalable particles that are 2.5 µm (or microns)
in diameter or smaller [7]. The risk to those living in urban areas is even greater due to
anthropogenic emissions from transportation, industry, and energy production [8,9]. In the
past forty years, wildfire burn areas have quadrupled in the US [10]. One study finds that
wildfires contribute to 25% of PM2.5 in the US, with some western regions having up to
50% contribution of PM2.5 from wildfires [11].

Although there is currently a network of ground-based air quality sensors (20 stations
listed in the Montana Department of Environmental Quality’s (DEQ) Air Quality and
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Smoke Program) in Montana (Figure 1), the geographically sparse network has large gaps
and lacks the ability to make accurate predictions for air quality in many areas of the
state [12]. The DEQ Air Quality and Smoke program is based on the US Environmental
Protection Agency (EPA) Nowcast system for determining the Air Quality Index, which
uses a time-average calculation based on hourly particulate matter data.
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Figure 1. MT DEQ webpage screenshot showing the DEQ ground-based stations for tracking PM2.5
in Montana [12].

Montana has a ground-based air quality system in place to warn residents of the
potential for hazardous air conditions, but the sparsity of monitoring locations leads to
uncertainty in many rural areas of the state. There is also a lack of prediction capacity in
this monitoring system, since it is based on current conditions at the monitoring stations.

1.1. PM2.5 Prediction Using Satellite-Based Data

Over the past five decades, satellite systems have evolved to deliver higher resolution,
to have faster return times, and to have sensors to analyze more specialized variables for
earth observation. For example, the Sentinel 5P satellite can detect several trace gasses
and aerosols in the atmosphere at high spatial resolution [13]. Advances in cloud storage
and processing and atmospheric modeling have also improved significantly over the past
decade, including the creation of the Google Earth Engine platform in 2010 [14]. These
advances in satellite spatial resolution, cloud computing, and atmospheric modeling can
vastly improve our predictive abilities for hazardous air quality. Aerosol optical depth
(AOD) is defined as the measure of aerosols (i.e., smoke particles, sea salt, desert dust)
within a column of air from the earth to the top of the atmosphere [15]. The MODIS Terra
and Aqua Land Aerosol Depth product data are produced daily at a 1 km resolution. The
MODIS Terra (also known as EOS AM-1) and Aqua (also known as EOS PM-1) satellites
are timed so Terra passes from north to south across the equator in the morning and Aqua
passes the equator in the afternoon. The combination of the two satellites covers the entire
Earth surface every 1–2 days [16].

Researchers have used simple linear and multiple linear regression and machine
learning methods to predict PM2.5 based on AOD, land use, and meteorological data
(Table 1). Wang and Christopher [17] correlated MODIS AOD with PM2.5 using simple
linear regression and reported a linear correlation coefficient of 0.7. More sophisticated
statistical models have also been used to predict PM2.5. For example, Kloog et al. [18] used
a mixed effects model to predict PM2.5 using land use and meteorological data. Among
these more sophisticated models, ensemble machine learning models have been among the
most popular for predicting PM2.5 using satellite data. Ensemble models combine smaller
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models to generally reduce overfitting and improve results. Random forest and gradient
boosting are the most common ensemble models applied to this problem.

Table 1. Summary of random forest literature review.

Citation/
Setting/

Prediction Model Resolution
Features Methods Random Forest

CV Metrics

[19]
Contiguous USA

2011

Daily at 12 km

Aerosol optical depth
Air temperature

Dewpoint temperature
Visibility
Pressure

Potential Evaporation
Downward longwave-radiation flux
Downward shortwave-radiation flux
Connective available potential energy

Coordinates of ground stations
Relative humidity
U-wind, V-wind

Land use variables *
Dummy variables: climate region, day, month

Daily 24 h averaged ground-level PM2.5
measurements

Used GEOS-Chem model for imputing
missing aerosol optical depth.

Convolutional layers
(inverse-distance-weighted average

function) for nearby PM2.5 measurements
and land use variables.

R2: 0.80

RMSE: 2.83 µg/m3

[20]
Cincinnati, USA

2000–2015

Daily at 1 km

Aerosol optical depth (AOD)
Visibility

Planetary-boundary-layer height
Temperature

Relative humidity
Precipitation

Pressure
U-wind, V-wind

Land use variables *
Median PM2.5 from three close days

Grid identifier, year, day of year

Removed aerosol optical depth above 1.5,
since it indicates rare event for the area.

Convolutional layer for nearby
PM2.5 values.

Combined two random forest models: (1)
when AOD was unavailable and (2) when

AOD depth was available. Essentially used
the missingness of AOD as a predictor.

R2: 0.91

RMSE: N/A

[21]
Contiguous USA

2000–2015

Daily at 1 km

Aerosol optical depth
Surface reflectance

Absorbing aerosol index
Land use variables *

Spatially lagged PM2.5
Latitude

Longitude
Surface temperature

Upward longwave radiation
GEOS-Chem PM2.5 estimate

Removed aerosol optical depth over 1.5,
based on quality flags.

Used random forest to impute AOD using
other model variables.

Combined gradient boosting, random
forest, and neural network in generalized

additive model to improve results.

R2: 0.73 to 0.901 depending on
year

RMSE: N/A

[22]
Yangtze River Delta, China

2018

Daily at 1 km

Aerosol optical depth
Top-of-atmosphere reflectance

Planetary-boundary-layer height
Surface temperature

U-wind, V-wind
Relative humidity

Pressure
Land use variables *

Solar zenith and azimuth
Sensor zenith and azimuth

Top-of-atmospheric reflectance is the main
independent variable, since aerosol optical

depth has significant missing data.

R2: 0.96

RMSE:
4.21 µg/m3

[23]
Texas, USA
2014–2018

Daily at 1 km

Aerosol optical depth
Air temperature

Relative humidity
Pressure

Wind speed
Wind direction

Visibility
Precipitation

Planetary-boundary-layer height
Land use variables *

Total column densities of dust, sea salt, OC, BC,
SO2, and SO4

Random forest outperformed
linear-regression and mixed-effects models.

R2: 0.83 to 0.90 depending on
year

RMSE: N/A

* Land use variables include elevation, NDVI, road network data, forest coverage, impervious surface cover-
age, etc.

The random forest method can model non-linear relationships between independent
and dependent variables. Random forest regression is built on a simpler model called a
decision tree. Decision trees are highly sensitive to changes in data and are more effective
when combined. Random forest regression predicts values using the mean output of
decision trees that are each trained on different variations of the data. The variations in the
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training data are created using bootstrapping, which is a statistical method of sampling a
dataset with replacement to create pseudo-new datasets.

1.2. Objectives of the Study

The goal of the study was to develop a method to estimate daily PM2.5 concentrations
for Montana using daily satellite data. The objectives of the study were twofold: first, to
develop a random forest regression model to predict PM2.5 concentrations using satellite-
based measurements. Second, to use a random forest model to convert daily satellite data
into a statewide daily PM2.5 concentration map. The study significantly contributes to
the available PM2.5 concentration data, allowing individuals to take measures to mitigate
exposure during the wildfire season.

2. Study Area

Montana is the fourth largest state in the US, with a total area of 380,800 km2 [24].
The total population of Montana is 1,122,867, and it is ranked 43rd in total population and
48th in population density (2.73/km2) [25] in the US. Forests cover about 25% of Montana,
totaling about 22.5 million acres (9.1 million hectares), dominated by firs, larch, lodgepole
and hemlock [26]. About 33% of Montana is public lands (state and federal) totaling over
30 million acres (12.14 million hectares) [27].

Wildfires are very common in Montana, and pose a significant threat to people, long-
term health, and property. Montana’s peak fire season is typically July through September,
and in 2023 there were 501 reported fire alerts. The most fires recorded in a year in Montana
was in 2017, with 4418 reported fires [28]. According to the National Interagency Fire
Center (NIFC), over the past decade there was an average of 61,376 wildfires per year and
an average of 7.2 million acres (about the area of Massachusetts) burned per year [10] in
the US.

During the 2020 fire season, western wildfires contributed 42% to surface PM2.5
measurements in the mountain region and wildfires were the primary contributor to 3720
exceedances of the National Ambient Air Quality Standard for PM2.5. During the peak
days, wildfire contribution to surface PM2.5 reached 72% in the inter-mountain region [29].

The average summer-long surge in PM2.5 due to fires is 1.84 µg/m3 in Forest Ser-
vice Region 1 (which includes Montana) and is approximately doubled during large-fire
years [30]. Since 1950, the western US has seen near exponential growth in fire frequency
and size, as well as the increased occurrence of megafires (burns of more than 100,000
acres) [31]. Estimates of future fire-related PM2.5 increases range from 55% to 190% and
the number of premature deaths in the continental US is expected to double by 2100 [32].

3. Methods
3.1. Data Sources
3.1.1. PM 2.5 Concentrations

PM2.5 concentration data for Montana was downloaded from the Montana Depart-
ment of Environmental Quality webpage (Table 2, [33]). The ground-station data was
averaged over the 17:00 to 19:00UTC and 19:00 to 21:00UTC time-windows and then for-
matted into a Google Earth Engine (GEE) tabular data structure. There are missing and
faulty observations (negative values and values exceeding 1000 µg/m3) from the 20 ground
stations that measure PM2.5 hourly. Faulty PM2.5 values were removed prior to data
integration. Of the 176,660 expected observations (two per day per station over 10 years),
there were 123,932 observations left, due to missing or invalid values. The distribution
of the 123,932 observations is available in Figure 2. The distribution without logarithmic
scaling is available in the (Figure A1).
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Table 2. Datasets.

Dataset Variable Units Spatial Resolution Temporal
Frequency Available After

Montana DEQ
Ground-Stations PM2.5 µg/m3 NA Hourly 1 January 2012

MCD19A2 OPTICAL DEPTH 047
(AOD) 1 km Daily 24 February 2000

NOAA NWS
RTMA

RH *
TMP

%
C 2.5 km Hourly 1 January 2011

DPT C
WIND m/s
WDIR deg
PRES Pa

M2T1NXFLX PBLH m (70, 55) km Hourly 1 January 1980

* RH was calculated using DPT and TMP [34]. MCD19A2 is from the NASA MODIS satellite and M2T1NXFLX is
from the NASA MERRA-2 reanalysis.
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3.1.2. Google Earth Engine Cloud Platform

The GEE platform combines a huge catalog of geospatial datasets with the GIS and
statistical tools sufficient to analyze them [35]. The GEE platform offers JavaScript and
Python Application Programming Interfaces (APIs). The GEE Code Editor runs JavaScript
and allows users to visualize GEE objects easily, including a built-in map for viewing
geospatial data and the incorporation of Google Charts. The GEE Code Editor can also
be used to create dynamic GEE Apps for sharing results. Both APIs include advanced
statistical tools, including several machine learning models such as random forest, gradient
tree boosting, k-nearest neighbors, support vector machine, and naive Bayes.

3.1.3. MCD19A2 AOD

GEE provides the MCD19A2 dataset, which includes AOD from Terra and Aqua
satellites at 1km using the multi-angle implementation of atmospheric correction (MAIAC)
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algorithm [36]. The Terra and Aqua satellites each cover Montana twice daily. In this study,
we used two time-windows to extract 470 nm wavelength AOD values each day. The Terra
satellite completes a midday pass over Montana between approximately 17:00Z and 19:00Z
and the Aqua satellite completes a midday pass over Montana between approximately
19:00Z and 21:00Z [37]. The MCD19A2 dataset guide recommends cloud masking based
on given quality-control bands. Although cloud masking reduces available data, it is not
the primary reason that AOD data is missing. Seventy-five percent of the AOD data is
missing prior to cloud masking, and cloud masking removes an additional 10 percent of
possible data points (Table 3). The majority of missing MCD19A2 AOD is likely from snow
reflectance or additional heavy cloud cover. Cloud masking improved the results of both
the linear-regression and random-forest models and was used for all models (Table 4).

Table 3. Data loss by variable.

Variable PM25 AOD Cloud
Mask

DPT,
PRES, RH WIND WDIR

Observations 123,932 31,511 19,151 18,950 18,943 18,800

Table 4. Cross validation with and without cloud masking.

Cross Validated R2

Simple Linear
Regression

Multiple Linear
Regression Random Forest

Cloud Mask 0.532 0.541 0.572
No Cloud Mask 0.485 0.498 0.557

The distribution of the cloud-masked MCD19A2 AOD data is shown in Figure 3.
Although there is a positive skew to the AOD data, it is less severe than in the PM2.5 data.
Since there is a significant amount of data loss in the AOD dataset, the PM2.5 distribution
after co-locating with the AOD data is shown in Figure 4. Distributions without logarithmic
scaling are available in the in Figures A2 and A3.
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3.1.4. Other Satellite-Based Weather Data Sources

In addition to aerosol optical depth (AOD), several other climate variables were intro-
duced to improve modeling. Many studies have utilized temperature, relative humidity,
pressure, wind speed, and wind direction [19,20]. Hu et al. [19] used dewpoint temper-
ature and Brokamp et al. [20] used planetary-boundary-layer height. We used pressure
(PRES), wind speed (WIND), wind direction (WDIR), and dew point temperature (DPT)
from NOAA NWS RTMA [38] and planetary-boundary-layer height (PBLH) from the
M2T1NXFLX data product [39]. These variables were selected based on availability on the
GEE, on ability to improve model performance, and on their efficacy in related studies.
Although temperature was utilized in other studies, we did not utilize it any of our models.
Temperature was excluded from the linear regression models, since it is colinear with
relative humidity and dewpoint and temperature was excluded from the random forest
model since it did not improve modeling results. The dew point temperature, pressure,
wind speed, and wind-direction data were missing for some of the available cloud-masked
AOD observations (Table 3), but the relative data loss from each was insignificant.

3.2. Generated Tables of PM2.5 and Corresponding Satellite Data

To co-locate the ground-station PM2.5 and the satellite datasets (Figure 5), the average
values at the ground stations during each satellite window were uploaded to GEE. Since
the Montana DEQ publishes the hourly PM2.5 values at the beginning of the subsequent
hour, the 17:00Z-to-19:00Z satellite window corresponded to the average of PM2.5 values
from 18:00Z to 19:00Z, and similarly, the 19:00Z-to-21:00Z satellite window corresponded
to the average of PM2.5 values from 20:00Z to 21:00Z. For each time window, the satellite
datasets were filtered to necessary bands, composited by the mean band values over the
time window, reprojected into the 1984 World Geodetic System, and scaled. The MCD19A2
Optical_Depth_047 (AOD) was cloud masked to the highest standards described in the
dataset guide [36] Then, the bands in each composite image were concatenated, creating a
single image containing the AOD, TMP, PRES, DPT, WIND, WDIR, and PBLH bands. The
raster data were matched to the corresponding PM2.5 data at each ground-station. Null
values of all variables and negative AOD values were filtered out and RH was calculated
using DPT and TMP [34].
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3.3. Predicting PM2.5 with Satellite-Based Data

Several studies have promising results from using random forest models for predicting
PM2.5 from satellite data (Table 1). Random forest is an ensemble machine learning model
built on simpler models called decision trees. In random forest, these decision trees are
split based on a random subsample of the predictor variables and each tree is built on a
bootstrapped sample of the training data [40]. Bootstrapping is the statistical method of
sampling data with replacement to generate pseudo-new datasets [40].

Although random forest models are generally effective without much tuning, there
are several hyperparameters that can be adjusted for optimization. These hyperparameters
vary with respect to the implementation of the random forest algorithm. GEE utilizes the
Statistical Machine Intelligence and Learning Engine (SMILE) library for random forest,
gradient tree boosting, and certain other machine learning algorithms available in the GEE
API [13]. The SMILE random forest hyperparameters selected for tuning were the bagging
fraction, the minimum leaf value, and the minimum variables per split. The minimum leaf
value and the variables-per-split limit the depth of individual decision trees. The leaves
are the terminal nodes on the tree that output predicted values based on the data traversal
through the tree [40]. The variables-per-split are the number of random predictor variables
available to choose from at each split.

We performed a complete grid search over select hyperparameters, minimizing the
root-mean-squared error. Standard scaling and normal scaling of the features decreased
performance and were omitted. The predictive performance of the model based on the
number of trees was evaluated with the other parameters left at default to decrease the
time complexity of the grid search. Since the increase in predictive performance after 100
trees was negligible, 100 trees were used (Figure 6).
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3.4. Cross Validation

Cross validation was utilized to compare the efficacy of the various models. Cross
validation more accurately measures how well the model will perform on new data [40].
Thirty percent of the data available during the 10-year period from 2012 to 2022 was held
out for a final performance test. The other 70 percent of data was randomly split into 10
approximately equal subsets (or folds). The model was trained on nine folds and tested on
the remaining fold. This process was repeated ten times (per combination of hyperparame-
ters) and a different fold was selected for testing on each iteration. The hyperparameters
with the lowest cross-validated RMSE were selected for the final model (Table 5). The nine
folds of data with the lowest RMSE, using the optimized hyperparameters, were selected
for training the final model.

Table 5. Grid search space.

Parameter Range Optimal Value

Bag fraction [0.1, 0.2, . . ., 0.9] 0.9

Minimum leaf value [1, 2, . . ., 10] 3

Variables per split [1, 2, . . ., 7] 3

3.5. Montana State-Wide PM2.5 Concentration Map

The GEE JavaScript API provides the framework for publishing interactive, web-based
applications for displaying data analysis performed on their platform. These applications
are public interfaces for reading and visualizing results using charts and interactive maps.
GEE hosts the applications on Google Cloud for free, and permits 100 requests per second
among all viewers on each application. Academic organizations can request a free, one-year
increase to this quota [13].

4. Results and Discussion
4.1. PM2.5 Concentrations in the State of Montana

In total, we extracted 123,932 total data points from 20 ground-based stations spread
over the State of Montana from 2012 to 2022. Of these data points, 18,800 were available
after matching each data point to the three satellite datasets. Each of the 18,800 data
points contain PM2.5, aerosol optical depth (AOD), relative humidity (RH), wind direction
(WDIR), wind speed (WIND), pressure (PRES), dewpoint temperature (DPT) and planetary-
boundary-layer height (PBLH).

PM2.5 concentrations in Montana have significant spatial variation (for example, see
Table 6). This is unsurprising, since Montana is the fourth-largest state in the US and has a
total area of 380,800 km2 [24]. During 2017, residents of Seeley Lake, Montana, experienced
extremely high levels of PM2.5 (average of 220.9 µg/m3) due to wildfire smoke from 31 July
to 18 September (Table 6). Researchers discovered a significant decrease in lung function in
Seeley Lake residents that remained decreased for two years following the exposure [41].
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Table 6. Montana PM2.5 concentration data summary for 2017. Please note that the lower bound is
inclusive and upper bound is exclusive in each category range.

Station Name Good
[0.0–12.0)

Moderate
[12.0–35.5)

Unhealthy for
Sensitive
Groups

[35.5–55.5)

Unhealthy
[55.5–150.5)

Very
Unhealthy

[150.5–250.5)

Hazardous
[250.5–500.0) [500.0–1000.0) Total Measure-

ments *

Billings
Lockwood 665 55 3 0 0 0 1 753

Bozeman 6062 1514 160 29 0 0 0 8760

Broadus 5737 1578 256 147 2 0 0 8760

Butte 4951 2170 462 167 7 0 0 8760

Flathead
Valley 5996 1606 163 101 67 2 0 8760

Frenchtown 6010 2106 260 215 15 8 0 8760

Great Falls 6854 1256 92 19 0 0 0 8760

Hamilton 5562 1863 518 395 10 0 0 8760

Helena 5316 1999 459 277 0 0 0 8760

Lewistown 6129 993 125 63 0 0 0 8760

Libby 4689 3078 359 135 30 0 0 8760

Malta 6292 923 64 33 0 0 0 8760

Missoula 5997 1714 254 283 20 4 0 8760

NCore 6384 709 194 68 6 0 0 8760

Seeley Lake 3628 2954 779 594 96 181 193 8760

Sidney 4539 751 51 35 0 0 0 5969

Thompson
Falls 2841 1409 156 67 72 40 1 4682

West
Yellowstone 6152 767 67 15 2 1 2 8755

* Please note that total measurements include all the reported values, including invalid values (negative values).

4.2. PM2.5 Random Forest Predictive Model

As discussed in the methods, 10-fold cross validation was used to measure perfor-
mance across models (Figures 7–10). For comparison purposes, cross validation was
performed on simple-linear-regression and multiple-regression models with the same ten
folds used for the random forest cross validation. Based on the cross-validated R2 and
RMSE values, the random forest method performs better than simple linear and multiple
linear regression (Table 7).

Table 7. Validation results.

Type of Validation R2 RMSE (µg/m3)

Simple Linear Regression
Cross Validation 0.532 10.46
Held-out Data 0.440 11.16

Multiple Regression
Cross Validation 0.541 10.36
Held-out Data 0.448 11.07

Random Forest
Cross Validation 0.572 9.98

Held-out data 0.487 10.53
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Collinearity negatively affects the performance of multiple linear regression models
but does not affect the performance of random forest models [42]. Temperature, pressure,
and wind direction were the least important factors for multiple linear regression. Remov-
ing these variables from the multiple linear regression model improved the RMSE and
brought the variance inflation factors of the remaining variables below five. The Pearson
correlation coefficients and variance inflation factors are available in Tables A1–A3.

The out-of-bag error estimate uses the data excluded from each bootstrapped sample
to provide an additional metric for model generalization [43]. The optimized random forest
model generated a 10.53 µg/m3 out-of-bag error estimate using the built-in method from
SMILE random forest.

There is a built-in method on Google Earth Engine (GEE) for calculating feature
importance (Table A4). Due to uncertainty about this built-in method, it was not used for
feature engineering. Instead, features were selected based on efficacy in related studies and
on their improvement of model metrics.

4.3. Montana State-Wide PM2.5 Concentration Map

We published a GEE application that displays daily, PM2.5 values across the map of
Montana (https://ee-aspenjkmorgan.projects.earthengine.app/view/mt-hazardous-gas-map,
accessed on 18 March 2023, Figure 11). There is a toggle that allows users to select any date
from 1 January 2012 to the present. The application combines the AOD, RH, PRES, DPT,
WDIR, WIND, and PBLH during the Terra flyover window on that date. If a user requests
data from the present day prior to when Terra has passed over Montana, the app displays
the values from the day before. The random forest model, with optimized hyperparameters
and trained on the cross-validation fold with the lowest RMSE, runs predictions on the
satellite data. Users can click anywhere on the map to view the predicted PM2.5 in that
location, alongside the coordinates.

https://ee-aspenjkmorgan.projects.earthengine.app/view/mt-hazardous-gas-map
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Figure 11. Google Earth Engine App screenshot. Areas without a PM2.5 estimate are due to cloud
cover or other missing data. PM2.5 data corresponds to daily mean between 17:00 and 19:00 UTC.

The map (Figure 11) displays the predicted PM2.5 values across Montana on 4 Septem-
ber 2017. This date was selected to show the potential of the web app during peak wildfire
season. The selected location in Figure 11 corresponds to the Butte ground station at
latitude −112.5 and longitude 46.0. During the Terra satellite flyover time on September
4th, 2017, the average PM2.5 value at the Butte ground station was 50.77 µg/m3 [33]. The
predicted value, 39.68 µg/m3, is within reason, given the held-out error of 10.53 µg/m3.

5. Discussion
5.1. Estimating PM2.5 Concentrations Using Ensemble Machine Learning Models

Aerosol optical depth (AOD) has been used to estimate PM2.5 concentrations for
several years. Simple linear regression and multiple linear regression have been effective
models for predicting PM2.5 in certain regions [17]. However, ensemble models are
becoming more popular, particularly in areas where the relationships between PM2.5 and
AOD and between PM2.5 and other climate variables are less linear (Table 1). It appears
that the random forest model is one of the most common, likely due to its interpretability
and relatively small computational burden as compared to other ensemble models like
gradient boosting.

There are some drawbacks to ensemble models as compared to linear regression
models. For instance, ensemble models perform optimally when their hyperparameters are
tuned. This requires grid searching. The most common options are complete grid search
(iterating over all hyperparameter combinations) and random grid search (iterating over
a random selection of combinations). A complete grid search is more computationally
expensive but is guaranteed to find the optimal parameters out of the given options. In
general, ensemble models are less widely known, but some can be nearly as interpretable
as linear regression. The implementation of an ensemble model is comparable to linear
regression but requires some research to understand the underlying mechanics.

5.2. Using Google Earth Engine from Beginning to End

Out of the many applications that provide ensemble learning models, GEE offers a
relatively limited selection of models and auxiliary functions. For example, there are no
built-in methods for cross validation or grid searching. One advantage of GEE is that
all computation can be carried out on Google Cloud, which can make a complete grid
search over hyperparameters more feasible. Additionally, the ability to create GEE Apps



Air 2024, 2 155

streamlines the process of creating a seamless map of PM2.5 in Montana. By utilizing GEE
for modeling, and not just for its datasets, the workflow overall is simplified.

The code for this project (available at https://github.com/mt-pm-concentration-map
accessed on 18 March 2023) is open source. The data preparation, cross validation, and
final testing were completed in Python using the GEE API and libraries for graphing and
searching the data. The cross validation and the held-out testing scripts are organized by
model (i.e., simple linear regression, multiple linear regression, and random forest). The
JavaScript code used to create the GEE App is also available for reference.

5.3. Future Work to Improve the PM2.5 Prediciton Model

A major obstacle for predicting PM2.5 in Montana using MCD19A2 was data loss.
Over 80 percent of the available ground-station PM2.5 data were lost when combined with
MCD19A2 AOD data. Then, an additional five percent was removed by cloud masking to
improve the accuracy of the models. One explanation for the data loss is cloud coverage.
The data loss in MCD19A2 AOD (Figure 12) follows a similar trend as the average percent
cloud coverage in Montana by month (Figure 13).
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The studies referenced in Table 1 also utilize MODIS AOD and yet outperform the
models used in this study. These other studies either supplemented the MODIS AOD
with other AOD data [19], imputed the missing AOD [20,21] or did not use MODIS AOD
as the primary input variable in their study [22,23]. As such, filling in the missing AOD
data will lead to improvements in both the linear regression and random forest models we

https://github.com/mt-pm-concentration-map
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trained. There are a variety of methods for imputing or compensating for the missing AOD.
Goldberg et al. [42] imputed missing AOD values by using a seasonal average of AOD and
adjusting this based on ground-station PM2.5. Hu et al. [19] used the GEOS-Chem model.
Brokamp et al. [20] combined two random forest models, one when AOD was available
and one when AOD was unavailable. Di et al. [21] used an additional random forest
model for imputing AOD with other aerosol satellite data and validated the results using
the Aerosol Robotic Network (AERONET). And Yang et al. [22] primarily relied on the
top-of-atmosphere reflectance (TOA), which is used to calculate AOD. As there is no daily
TOA available on GEE and the GEOS Chem model would substantially increase the project
complexity, the methods used by Goldberg et al. [44], Brokamp et al. [20], and Di et al. [21]
are promising next steps for improving PM2.5 predictive modeling. And although there
are only six AERONET stations in Montana, five of which are in the Missoula area, these
stations could be used for partially validating the results of any method of imputing AOD.

Evaluating Other Machine Learning Methods and Additional Data Sets

After filling in the missing AOD, we will pursue several other options for improving
the accuracy of our PM2.5 predictions. One possibility is incorporating land use variables
into our modeling. Several of the studies in Table 1 were primarily focused on PM2.5 from
urban pollution and utilized land use variables in their models. All studies in Table 1,
besides Hu et al. [19], used the normalized difference vegetation index (NDVI). Brokamp
et al. [20] used the length of major roadways, Di et al. [21] used road density, and Hu
et al. [19] used population density. These variables were excluded from our modeling for
the sake of simplicity and due to our focus on PM2.5 from wildfires rather than urban
pollution. However, the effectiveness of these variables for modeling PM2.5 in Montana
should be tested. Hu et al. [19] Ghahremanloo et al. [23], and Di et al. [21] also used
elevation in their models, and we considered it for this study. However, elevation had a
negative impact on all models in preliminary testing.

We also plan to test deep learning models and heterogeneous ensemble machine
learning models. Di et al. [45] used a neural network to predict PM2.5 across the United
States and achieved a cross-validated R2 of 0.84 for their daily predictions at 1 km spatial
resolution. Then, they improved their results, achieving a cross-validated R2 of 0.86, by
stacking a gradient-boosted model, a neural network, and a random forest model in a
general additive model [21]. In both [21] and [45], their cross-validated R2 was lower in
the Western United States, particularly in the Rocky Mountain region, where the cross-
validated R2 was 0.77 in the 2019 study. Similar machine learning models should be applied
to Montana with the optimal variables for this region.

6. Conclusions

We used a random forest model to predict daily PM2.5 in Montana at 1km-resolution
using aerosol optical depth and other meteorological variables available on Google Earth En-
gine (GEE). The other meteorological variables—pressure, dewpoint temperature, relative
humidity, wind speed, wind direction, and planetary-boundary-layer height—were selected
based on their use in other studies and ability to improve the predictive model. The data
from 2012 to 2022 were split into 70 percent for training and 30 percent for held-out testing.
A GEE random forest model outperformed linear regression on both the cross validation
and held-out data. We performed a cross validation grid-search over random forest hyper-
parameters to optimize the RMSE, resulting in a cross validation R2 of 0.572 and RMSE of
9.98 and a held-out R2 and RMSE of 0.487 and 10.53, respectively. We applied the optimized
random forest model to generate an interactive PM2.5 map in a GEE web application, avail-
able at https://ee-aspenjkmorgan.projects.earthengine.app/view/mt-hazardous-gas-map
(accessed on 18 March 2024). The map allows users to select any date from 2012 to 2023
and displays the PM2.5 at any location in Montana. One notable limitation in this study
was missing aerosol optical depth from cloud and snow cover. For future improvement,

https://ee-aspenjkmorgan.projects.earthengine.app/view/mt-hazardous-gas-map
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we could estimate the missing AOD using a seasonal average or use an additional machine
learning model.
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Appendix A. Supplementary Data

Table A1. Pearson correlation coefficients among independent variables.

Feature AOD DPT RH WIND WDIR PRES TMP PBLH

AOD 1

DPT 0.13 1

RH −0.08 0.09 1

WIND −0.08 −0.21 −0.19 1

WDIR −0.03 −0.13 −0.15 0.21 1

PRES −0.02 0.15 0.18 0.03 −0.10 1

TMP 0.17 0.70 −0.63 −0.03 0.01 −0.01 1

PBLH 0.05 0.35 −0.52 0.015 0.05 −0.17 0.64 1

Table A2. Variance inflation factor for random forest variables.

Feature VIF

DPT 1.95

PBLH 13.79

PRES 44.59

RH 13.30

WDIR 6.74

WIND 3.04

AOD 1.55
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Table A3. Variance inflation factor for multiple-linear-regression variables.

Feature VIF

AOD 1.49

WIND 2.62

RH 3.39

DPT 1.82

PBLH 4.88

Table A4. Feature importance.

Variable Relative Importance

AOD—Aerosol Optical Depth 29.6%

DPT—Dewpoint 14.5%

RH—Relative Humidity 12.9%

WIND—Wind Speed 12.4%

PRES—Pressure 11.1%

PBLH—Planetary Boundary Height 10.9%

WDIR—Wind Direction 8.5%
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