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Abstract: Protein kinase A (PKA) signaling exemplifies phosphorylation-based signaling as we under-
stand it today. Its catalytic-subunit structure and dynamics continue to advance our understanding
of kinase mechanics as the first protein kinase catalytic domain to be identified, sequenced, cloned,
and structurally detailed. The PKA holoenzyme elaborates on the role of its regulatory subunits
and maintains our understanding of cAMP-dependent cellular signaling. The activation of PKA
holoenzymes by cAMP is an example of specialized protein allostery, emphasizing the relevance of
protein binding interfaces, unstructured regions, isoform diversity, and dynamics-based allostery.
This review provides the most up-to-date overview of PKA structure and function, including a
description of the catalytic and regulatory subunits’ structures. In addition, the structure, activation,
and allostery of holoenzymes are covered.

Keywords: protein kinase A; PKA holoenzymes; regulatory subunits; catalytic subunit; allostery;
PKA signaling

1. Introduction

Several cellular signaling and developmental processes are regulated by the counter-
actions of two sets of enzymes: protein kinases (those that phosphorylate proteins) and
protein phosphatases (those that remove these phosphates from proteins) [1–3]. Dysregu-
lated protein kinases are associated with inflammatory, neurodegenerative, cardiovascular,
and metabolic diseases and various forms of cancer [4–8]. Understandably, protein kinases
are critical targets for disease control and therapeutic development strategies [9,10].

The first protein kinase discovered and structurally explored was protein kinase A (or
simply PKA) [11,12]. In the 1950s, Edmond H. Fisher and Edwin G. Krebs discovered the
activation of glycogen phosphorylase (conversion of inactive phosphorylase b to the active
phosphorylase a) to be dependent on a serine phosphorylation by a then unknown “phos-
phorylase kinase” [13,14]. At the same time, Earl Sutherland and Thomas Rall discovered
3′,5′-cyclic-adenosine monophosphate (cAMP) in liver cells as a ‘second messenger’: a
mediator biomolecule that communicated the effect of exogenous hormones into the cell’s
interior [15,16]. Eventually, these discoveries converged to uncover a cAMP-dependent
protein kinase (now called protein kinase A) that regulated the function of phosphorylase
kinase in response to cAMP. These pioneering studies established a connection between
hormone action, second messengers, and protein phosphorylation and continue to be the
foundational understanding of cellular signaling today. Also, while this was the first evi-
dence of protein kinase–kinase cascades, multisite protein phosphorylation, as suggested
by Philip Cohen [17], was quickly discovered to be a signaling norm.

PKA was first purified from rabbit skeletal tissue by D. Walsh [18] and was subse-
quently reported to be widespread in various mammalian tissues by J.F. Kuo and Paul
Greengard [19]. PKA was also the first protein kinase to be sequenced [20], the first to be
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cloned for purifying in recombinant form [21], and also the first to be explored with X-ray
crystallography [22]. PKA is a major target of therapeutic interventions for Alzheimer’s
disease, diabetes, and cardiovascular diseases [23–25]. PKA and its cAMP-dependent
signaling pathway continue to be relevant in furthering our understanding of signaling,
protein allostery, and the role of protein kinases in human disease [26]. The cAMP-sensitive
PKA holoenzyme is made of two types of subunits: the regulatory (R)-subunit that contains
cAMP binding sites and the catalytic (C)-subunit that performs phosphotransfer onto
substrate proteins. The C-subunit of PKA serves as the prototype for the entire eukaryotic
protein kinase (EPK) superfamily. This review focuses on explaining the structural proper-
ties of the PKA subunits, its holoenzyme architecture, and the allosteric underpinnings of
cAMP-dependent PKA signaling. We also highlight the amino acid networks that mediate
the interactions between the R- and C-subunits of PKA and how these interactions serve as
critical allosteric sites for the holoenzyme structures.

2. cAMP-Mediated PKA Signaling

Canonical PKA signaling is initiated in response to hormone binding to GPCRs and
the subsequent activation of the adenylate cyclase (AC) enzyme that converts ATP to
cAMP (Figure 1) [27–29]. As cAMP diffuses into the cell interior, it binds the basal PKA
signalosome that typically consists of two R-subunits and two C-subunits in a tetrameric
holoenzyme (R2C2) anchored to an A-kinase anchoring protein (AKAP). Both R-subunits
bind two molecules of cAMP, each using their cyclic nucleotide binding (CNB) domains
to simultaneously release two C-subunit monomers from the holoenzyme. These free
C-subunits then perform their biological function by phosphorylating target proteins on
their Ser/Thr residues [30]. Substrates of the PKA C-subunit include CREB, RAF, BAD,
GSK3, CIP4, and other proteins critical to cell survival [31–33]. Finally, termination of PKA
signaling is achieved by the action of phosphodiesterase (PDE) enzymes that hydrolyze
cAMP and promote the re-formation of the R2C2 holoenzyme complexes [34,35]. Here,
the PKA C-subunit participates in maintaining cAMP homeostasis by feedback inhibition
of ACs and activation of PDEs to promote a lowering of the levels of available cAMP
molecules [36,37].

Spatial regulation of PKA holoenzyme signaling is achieved by their binding to var-
ious AKAPs in the cell [38]. Approximately 70 AKAPs can target PKA holoenzymes to
various compartments in the cell; splice variants of AKAP genes additionally increase their
spatial diversity [38–40]. For example, AKAPs on the outer mitochondrial membranes
are critical for PKA-holoenzyme localization and signaling to prevent apoptosis [41]. In
neurons, AKAPs anchor PKA holoenzymes to plasma membranes and the NR1 subunit of
NMDA receptors and allow PKA to regulate synaptic plasticity [42,43]. Recently, AKAP79/
150-mediated, PKA-dependent regulation of L-type Ca2+ channels was also reported at cel-
lular membranes [44]. AKAPs (like WAVE1) allow for the association of PKA holoenzymes
with the cytoskeletal network to regulate basic cellular processes [45]. Muscle-specific
AKAP (mAKAP) anchors the PKA holoenzyme to the nuclear envelope and allows for
PKA-mediated gene regulation [46]. While the extended diffusion of the free C-subunit
from the dissociated holoenzyme remains controversial [47–49], free C-subunit has been
reported in the nucleus, where it regulates gene transcription by phosphorylating the
cAMP-response element binding (CREB) protein (Figure 1) [50,51].

The free PKA C-subunit is also reported to associate with a cAMP-independent in-
hibitor protein called PKI that allows for the shuttling of the C-subunit into and out of
the nucleus by using its nuclear export sequence (NES) [52,53]. This NES is unmasked
when PKI attaches to the PKA C-subunit. PKI is a heat-stable inhibitor of the C-subunit
that is widely distributed in mammalian tissues, including the brain, heart, liver, testes,
muscles, etc. [53,54]. PKI is approximately 75 amino acids long and is mostly unstructured.
Endogenous PKI includes three isoforms, PKIα, β, and γ, and is localized in the cell cyto-
plasm and nuclei [53]. PKIα and PKIγ are quite abundant and are expressed in the brain,
liver, heart, pancreas, kidney, and colon, whereas PKIβ is expressed in the testes [55]. The
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N-terminus of PKIα includes residues (1–25) that strongly bind to and inhibit the C-subunit
(Kd = 2 nM) [53,56]. This segment, called IP20, is routinely used in biochemical experiments
to study the C-subunit and is allied interactions with the R-subunits [56–59] (Figure 2D).
The PKIβ isoform binds the C-subunit with a Kd = 7.1 nM. PKIγ uses a unique Cys13
residue to bind the C-subunit at Kd = 0.4 nM. All three isoforms use their pseudosubstrate
site to bind the C-subunit active site and to inhibit its ATP-bound “active” conformation.
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the holoenzyme to free the C-subunit. The “active” free C-subunit phosphorylates its substrate pro-
teins in the cytosol. A subpopulation of C-subunits binds the inhibitory protein PKI and shu les to 
the nucleus. After dissociation from PKI, the C-subunit phosphorylates CREB and initiates target 
gene transcription. 
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Figure 1. Signaling pathway of cAMP-dependent protein kinase A (PKA). Basal PKA is a tetrameric
holoenzyme that contains two catalytic (C)-subunits and two regulatory (R)-subunits. The PKA
holoenzyme is localized to membranes or cell organelles by their interactions with AKAP proteins.
Signaling is initiated by ligand binding to heterotrimeric G-proteins and the dissociation of its α-
subunit to bind and activate adenylate cyclase (AC). AC converts ATP to the “second messenger”
cAMP. As cAMP diffuses in the cytosol, it binds the PKA R-subunits’ CNB domains and dissociates
the holoenzyme to free the C-subunit. The “active” free C-subunit phosphorylates its substrate
proteins in the cytosol. A subpopulation of C-subunits binds the inhibitory protein PKI and shuttles
to the nucleus. After dissociation from PKI, the C-subunit phosphorylates CREB and initiates target
gene transcription.
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Figure 2. Structure and properties of the C-subunit of PKA. (A) The C-subunit contains a kinase core
flanked by two Nt and Ct tails. The kinase core is a bi-lobal structure that encloses an ATP-binding
pocket between the two lobes. (B) The active site of the C-subunit binds ATP with two divalent metal
ions that participate in the transition state formation. Lys72 from β3 contacts the Glu91 from the
αC helix and also contacts the phosphates of ATP. His87 of the αC helix engages the activation loop
phosphorylation site pThr197 and maintains the kinase active conformation. The catalytic residues
Asp166, Asp184, and Asn171 coordinate catalysis at the active site. (C) The N-terminal and C-terminal
tails tether to the catalytic subunit at specific locations. The N tail docks to the back of the kinase domain
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using Phe26 and Trp30 aromatic residues. The C-terminal tail uses three tether points: the N-lobe
tether (NLT) includes the hydrophobic motif residues Phe347 and Phe350; the active-site tether
(AST) includes the FDDY motif residues Phe327 and Tyr330; the C-lobe tether (CLT) includes the
PxxP residues Pro313, Pro316, and Arg308. (D) Two phosphorylations are critical to the kinase
functioning of the C-subunit. The pThr197 phosphorylation on the activation loop triggers its
catalytic activity. The pSer338 phosphorylation allows for tethering of the Ct tail to the kinase core
and stabilizes the C-subunit. (E) Contact maps obtained for the peptide bound conformation of
the subunit (PDB:1ATP) highlights residues in the substrate binding cleft that recognize the PKA
specific Arg-Arg-X-X-Ser/Thr motif.

3. PKA and Human Disease

Given the critical importance of the PKA subunits in cellular signaling, it is not
surprising that mutations or aberrations in the activity of any of its subunits are associated
with human diseases. Mutations in either the R- or C-subunits that interfere with their
interactions to form holoenzymes lead to unregulated PKA signaling. The diseases arising
from these mutations include Cushing disease (mutations on the C-subunit) [60–62] and
multiple endocrine neoplasia syndrome, known as Carney complex disease (CNC) and
acrodysostosis (mutations on the RI-subunit) [63–65]. The inhibitory role of the R-subunits
is indicative of their role as tumor suppressors in CNC-associated tumors [65,66]. Decreased
expression of the R-subunits (30% decrease in RIα and 65% decrease in RIβ) is associated
with the idiopathic autoimmune disease called systemic lupus erythematosus (SLE) that
is characterized by impaired T-lymphocyte functions [67,68]. PKA is reported to play
a critical role in the regulation of metabolism and triglyceride storage, such that it is a
lucrative target for therapeutic targeting or obesity and aging [69,70]. Leptin is reported
to improve the antiproliferative activity of cAMP-increasing agents in breast cancer cells,
where PKA inhibitors (like KT-5720) suppress the antiproliferative effects of leptin plus
cAMP elevation [71–74].

A specific chimera created by the fusion of a chaperonin-binding domain fused to
the Cα isoform of the catalytic subunit is observed to cause a rare hepatocarcinoma called
fibrolamellar carcinoma (FLC) [75,76]. The Cβ isoform of the catalytic subunit is reported
to be a direct transcriptional target of c-MYC and is upregulated in c-MYC associated
cell transformation [77]. PKA’s kinase activity regulates actin dynamics by modulating
structural proteins, such as integrins, myosin light chain, and VASP, as well as regulatory
proteins, such as Rho GTPases, Src kinases, p21-activated kinases, phosphatases, and
proteases [78]. PKA’s activity is reported to play a role in hypoxia-mediated epithelial–
mesenchymal transition, migration, and invasion in lung cancer cells [79]. PKA activity is
associated with cell migration and invasion in cancers of the breast and ovaries [80,81].

Research indicates that PKA type I and type II R-subunits are inversely expressed
throughout cell differentiation and ontogeny, where they govern proper cell proliferation
and differentiation into nondividing states [82,83]. The RI:RII ratios are substantially greater
in normal breast specimens with enhanced proliferation [83]. Antisense repression of RI,
which upregulates RII, downregulates a wide variety of genes involved in cell proliferation
and transformation while upregulating cell differentiation and reverse transformation genes
in prostate cancers [84,85]. Despite the fact that the RI:RII ratio varies widely amongst
breast cancers, those with a high RI:RII ratio have a poor prognosis in terms of early disease
recurrence and mortality following initial therapy [83].

4. The PKA Catalytic Subunit

Four isoforms of the C-subunit are reported in mammals, including Cα, Cβ, Cγ, and
PrKX, as coded by the genes PRKACA, PRKACB, PRKACG, PRKX, and PRKY [21,86–90].
Additionally, multiple splice variants have been reported for the Cα and Cβ isoforms [91,92].
There are two alternative 5′ exons in the PRKACA code for the two variants Cα1 and Cα2,
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respectively [93–96]. The Cα1 form is the predominant ubiquitously expressed catalytic
subunit [90]. The Cα2 form is reported to be expressed exclusively in mammalian sperm,
where it regulates sperm motility and fertilization [97–99]. Splicing of the PRKACB gene
at exons 2 and 4 creates multiple Cβ isoforms, including Cβ1, Cβ2, Cβ3, Cβ4, Cβ3ab,
Cβ3b, Cβ3abc, Cβ4ab, Cβ4b, and Cβ4abc proteins [100–103]. Cβδ4 is a particular isoform
expressed in the brains of higher primates, where it is reported to permanently associate
with R-subunits and is insensitive to cAMP-mediated activation [104]. Human Cα1 and
Cβ1 are 93% identical, indicating that the two PRKACA, PRKACB genes are a result of gene
duplication [90]. The Cγ isoform is expressed exclusively in the testes, but its biological
role remains unknown [105]. Biochemical experiments indicate that this isoform strongly
associates with R-subunits and requires higher cAMP levels for holoenzyme dissociation
and activation [106]. PrKX is a unique isoform encoded on the X chromosome and associates
specifically with the RIα isoform of the R-subunit [87]. PrKX is understudied and shares
just 56% identity with Cα1. The biological function of PrKX and its associated protein PrKY
is unclear [90].

Critical post-translational modifications of the C-subunit include its N-terminal myristylation
(that allows for its anchoring to plasma membranes) [107] and two phosphorylation sites,
Thr197 and Ser338, that regulate its activation [108,109]. Both Thr197 and Ser338 are auto-
phosphorylation sites [108,110] where the activation-loop (Thr197) phosphorylation can
also be mediated by other kinases, such as PDK1 (Figure 2C) [111].

The structure of the C-subunit continues to serve as the exemplar for the EPK kinase
domain architecture ever since its initial detailing [11,22]. It contains 351 amino acids,
where residues 40–300 are the core of every EPK kinase domain. This kinase core contains
two lobes: the N lobe that has the five-stranded β-sheet (β1–β5) and the functional αC helix
and the C lobe that is predominantly helical and houses the β6–β7 β-sheet (Figure 2A). By
convention, all helices are named alphabetically, while all strands are numbered in order
of their positioning from the N-terminus of the C-subunit. This nomenclature is applied
to all EPK structures, where the αC helix of the N lobe is still called the αC, even in the
absence of the αA/αB helices in many cases. The kinase active site is sandwiched in the
cleft separating the N and C lobes. The C lobe has a surface grove that binds peptide
substrates. The N lobe contains residues for ATP binding that are situated under a glycine-
rich loop that connects the β1 and β2 strands. A conserved Lys72 [112] from the β3 strand
engages the divalent ions (Mg2+ or Mn2+) that stabilize ATP in the charged cleft while
simultaneously making a salt bridge with a conserved Glu91 of the αC helix [113]. A short
linker, called the ‘hinge’, connects the two lobes and contacts the adenine ring of ATP via
hydrogen bonds. The activation loop phosphorylation pThr197 arranges the activation
segment (from residues 184–208, DGF-APE motif) appropriately to place the catalytic loop
(containing the HRD motif) in a catalytically suitable orientation. A critical Cys199 at the
+2 position to the Thr197 phosphorylation site makes the C-subunit resistant to inactivation
by protein phosphatases [114].

The N-terminus of the αC helix contains a pH-sensitive histidine (H87) [115] that
makes a salt bridge with the phosphorylated pThr197 of the activation loop (Figure 2B).
Residues from the magnesium binding loop (DFG motif) and Lys168 coordinate the ATP
and metal ions to facilitate phosphotransfer to the incoming substrate Ser/Thr. At the
PKA active site, Asp184 and Asn171 bind the “primary” Mg2+ ion (M1) [116] that helps
position the terminal gamma phosphate of ATP for nucleophilic attack. A transition state
is formed between the substrate Ser/Thr, two Mg2+ ions, and ATP with the terminal
phosphate stabilized by hydrogen bonds. QM/MM studies show that Asp166 of the
C-subunit functions as a catalytic base and accepts a proton as delivered by the substrate
Ser/Thr [117]. The catalytic cycle concludes with the dissociation of a Mg2+-bound ADP
from the PKA active site. This last step is the rate limiting step in the C-subunit’s steady-
state kinetics and accounts for its kcat = 20 s−1 [118].

The N- and C-terminal regions outside the kinase core are called the C-subunit Nt
and Ct tails, respectively (Figure 2A) [119,120]. The Nt and Ct tails are both tethered



Kinases Phosphatases 2023, 1 271

to the kinase core and play a key role in controlling the C-subunit’s interaction with
other proteins [121,122]. The Nt tail is the large, amphipathic, αA helix that contains the
C-subunit myristylation site Asn2. The residues Phe26 and Trp30 anchor the αA helix to the
hydrophobic kinase core (Figure 2C). The Ct tail is a conserved structural feature of all AGC
kinases [122] and contains three tethering regions. The N-lobe tether (NLT) binds at the
N-terminus of the αC helix and contains the residues Phe347 and Phe350 that are required
to recruit PDK1 for activation-loop phosphorylation [119]. Phosphorylation of Ser338
allows for stable binding of NLT to the kinase core and promotes kinase function [120].
The active site tether (AST) includes the residues Phe327 and Tyr330 in the FDDY motif
that participate in ATP binding and in allosterically maintaining the “closed” catalytically
competent conformation of the C-subunit. The C-lobe tether (CLT) uses Arg308 to bind
Phe100 and Phe102 at the αC-β4 loop of the C-subunit. This interaction maintains the
monomeric conformation of PKA (and other AGC kinases) as it engages the αC-β4 loop
that can serve as a back-to-back dimerization motif [123] (Figure 2C). CLT also contains a
Pro-X-X-Pro motif (Pro 313 and Pro316) that binds SH3 domains in interacting proteins.

A comparison of PKA structures in the inactive/dephosphorylated vs. the active/
phosphorylated forms (Figure 3A,B) highlights the local spatial pattern (LSP) alignment-
derived kinase “spines” [124]. These are non-linear motifs in the kinase core that illustrate
its switching between kinase conformations and how activation affects internal restruc-
turing of the kinase domain. An assembled regulatory (R)-spine is a signature of the
active C-subunit conformation. This motif is formed by four residues, including Leu95
from the αC helix, Leu106 of the β4 strand, Phe185 of the magnesium positioning loop
DFG motif, and Tyr184 of the catalytic loop HRD motif. In the active conformation that
contains a phosphorylated pThr197, the R-spine is dynamically aligned at the core of the
C-subunit. In the dephosphorylated C-subunit, electrostatic contacts between the pThr197
and corresponding His87, Lys189, Thr195, and Arg165 are removed, such that its activa-
tion segment becomes unstructured and the αC helix swings outwards. In this inactive
conformation, the R-spine is misaligned (Figure 3B). Another hydrophobic motif revealed
with LSP alignment is the catalytic (C)-spine that highlights the catalytically competent
conformation of PKA. The C-spine includes the residues Val57; Ala70 from the N lobe; and
the residues Leu171, Leu172, and Ile173 from the C-subunit that bind the adenine ring of
ATP and orient it suitably in the PKA active site. Other C-spine residues, including Met127,
Leu227, and Met231, integrate entropy-driven dynamic information through the large lobe
of the C-subunit [56,125,126].

An activated/free C-subunit is an efficient Ser/Thr phosphotransferase that identifies
substrate sites in two general recognition motifs: Arg–Arg–X–Ser/Thr–Hyd and Arg–
X–X–Arg–X–X–Ser/Thr–Hyd, (where Hyd is a hydrophobic residue, and X denotes any
residue) [119]. The P-2/P-3 Arg residues of the substrate engage with Glu127, Glu170,
and Glu230 on the C-subunit’s active-site surface. A contact network obtained from the
crystal structure of the C-subunit bound to ATP/Mg2+ and IP20 (peptide derived from the
N-terminus of PKI) also shows residues Thr51 and Ser53 to make hydrogen bonds with the
peptide (Figure 2D, Supplementary Table S1). PKA’s turnover rate (kcat) averages 20 per
second for small peptide substrates, like kemptide, and is limited by the last step of ADP
release from its active site [127]. While the steady-state kinetics are constrained by protein
movements and dynamic conformations through successive catalytic cycles to produce a
slower kcat, pre-steady-state kinetics have shown the rate of phosphotransfer at its active site
to be >500 per second [128]. The C-subunit binds ATP and ADP with micromolar affinity
(Kd = 20–25 µM) [56] and peptide substrates with a Km of approximately 10–20 µM [129].
However, inhibitory peptides, like IP20, bind the C-subunit cooperatively with ATP with a
high nanomolar affinity (Kd = 2 nM) [56,130].
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Somatic mutations in the C-subunit have been reported to be associated with cortisol-
secreting adrenocortical adenomas responsible for Cushing’s syndrome [131]. The most
abundant mutation, as observed in 65% of patients with Cushing’s syndrome, changes
Leu206 to arginine [61,132–134]. The location of the L206R mutation interferes with the
C-subunit’s association with PKI and the R-subunits, such that the mutant is constitu-
tively active to cause Cushing’s syndrome [61]. Biochemical experiments comparing the
L206R mutant to the wild-type protein show that this mutation causes dynamic changes in
the enzyme’s intramolecular allosteric network, resulting in nucleotide/pseudo-substrate
binding cooperativity losses [60]. Recently, an in-frame fusion of the PRKACA gene with
the heat-shock DNAJB1 gene has been reported in the fibrolamellar variant of hepatocel-
lular carcinomas [75,135]. The resultant chimeric enzyme contains the J domain of the
chaperonin-binding domain of the heat-shock protein 40 or DnaJ (the amino-terminal
69 residues), fused to the carboxyl-terminal 336 residues of the catalytic subunit [62]. Un-
like the Cushing’s syndrome mutations, this tumorigenic chimera does not show any
alterations in associating with the R-subunits and in being sensitive to cAMP signaling [62].
Here, approximately a ten-fold increase in chimeric transcript levels (under the control of
the DNAJB1 gene promoter) results in increased kinase activity and upregulation of PKA
signaling to cause tumor pathogenesis [136].

5. The PKA Regulatory Subunit

In mammals, four isoforms of the PKA R-subunit can organize four kinds of PKA
holoenzymes: two each of the type-I and type-II R-subunits, viz., RI (RIα2C2, RIβ2C2)
and RII (RIIα2C2, RIIβ2C2) [137]. These RI and RII isoforms differ in their affinities to
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binding cAMP, cellular localization, and affinity to AKAPs. RIα is the most abundant and
widely distributed isoform that maintains the RIα2C2 holoenzymes in the cytosol [138].
RIα is also the only embryonic lethal isoform [138], and various mutations in RIα lead
to Carney complex disease (CNC) and acrodysostosis [139,140]. Mutations and loss of
expression of RIβ lead to neurodegenerative disorders [141]. RIIβ-knockout mice exhibit a
lean phenotype and show resistance to diet-induced obesity [142].

All four isoforms share a common domain organization, where the N-terminal dimer-
ization domain (D/D domain) is connected to the two tandem CNBA and CNBB domains
by a long unstructured linker (Figure 4A). The D/D domain serves as a docking site for
binding AKAPs and recruiting the PKA holoenzyme to various cellular locations and is
the most divergent in sequence of the four isoforms. Deletion of the D/D domain does
not impair R- and C-subunit binding, and deletion mutants have been used to study the
R–C heterodimer [143,144]. The linker connecting the CNB domains to the D/D domains is
an intrinsically disordered region (IDR) that is highly dynamic and functions to mediate
protein–protein interactions by recruiting interacting binding proteins [11]. It contains
the inhibitor site with the pseudosubstrate Arg-Arg-X-X motif to bind the C-subunit’s
active site cleft [145]. Here, the biggest difference between the RI and RII isoforms is the
presence of C-subunit-specific substrate sites in the RII subunit that make the RIIα2C2,
RIIβ2C2 holoenzymes sensitive to phosphorylation-based control [50,146]. The RII subunit
is both a substrate and an inhibitor of the C subunit; the phosphorylated RII subunit cannot
dissociate from the holoenzyme without binding cAMP. The RI subunit functions as a true
inhibitor and uses its pseudosubstrate region to bind the C-subunit with high affinity [145].

While each CNB domain is highly conserved, the relative orientations of the two domains
are distinct in the type-I and type-II R-subunits (Figure 4B) [147]. The two CNB domains are
eight-stranded β-barrels with an N-terminal N3A motif in a helix-turn-helix motif preceding
the β1 strand and the αB/C helix following the β8 element. These contain an evolutionarily
conserved phosphate-binding cassette (PBC) that binds cAMP molecules [147]. The PBC
cassette includes an Arg residue (Arg209 in CNBA (RIα)/Arg230 in CNBA (RIIβ) and
Arg333 in CNBB (RIα)/Arg359 in CNBA (RIIβ)) that form hydrogen bonds with the
phosphates of cAMP. Mutating the PBC arginine to lysine creates cAMP-resistant R-subunit
constructs that have been utilized to crystallize the holoenzyme structures [146,148,149].
The cAMP bound and unbound conformations of the CNB domain are distinct. In the
cAMP-bound conformation, PBC moves towards the phosphate group of cAMP, and the
αB/C helix moves ‘in’ to push the N3A motif ‘out’. The reverse happens when cAMP
dissociates from the CNB domain [150]. The bound cAMP is stabilized using hydrophobic
interactions with a “capping” residue that comes from outside the CNB β-barrel and is
isoform specific [147]. Differences in the capping residues also exemplify the difference
between the tandem domain constructs of type-I and type-II R-subunits. In RIα, Trp260
at the CNBA–CNBB interface caps cAMP in the CNBA site, and Tyr371 caps cAMP in the
CNBB site. Here, the N3A motif of the CNBB merges with the αB/C element of CNBA to
create an interdomain interface with the capping residue for the CNBA site. The W260A
mutation in RIα is sufficient to uncouple allosteric interactions between the tandem CNBA
and CNBB domains [151,152]. In RIIβ, cAMP in the CNBA site is capped by the long
side chain of Arg381 from the αB of the CNBB domain, while cAMP in the CNBB site is
stabilized by Tyr397.

The CNBB domain binds cAMP with higher affinity and slower off-rates when com-
pared to the CNBA domain in solution. Dynamics data obtained from NMR, H/D exchange,
and MD simulations hint towards a unidirectional flow of allosteric signals from the CNBA
to the CNBB domain [152,153]. Mutations of the PBC arginine in the CNBA domain of RIα
(R209K) cause internal dynamics to change in its β2–β3 loop, but a corresponding change
in the CNBB domain (R333K) does not alter its chemical shifts. The R209K mutation shows
a global reduction in protection factors across the tandem CNBA:CNBB length, including
the β2–β3, PBC, and B/C helix of CNBA and N3A, β2–β3, and αB–αC of CNBB. However,
in the R33K mutation, loss of protection is limited to PBC and αB–αC of CNBB alone. In
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RIIβ, a PBC arginine mutation of the CNBA domain (R230K) decreases the affinity (increase
in activation coefficient) for cAMP binding to the holoenzyme from 584 nM for the WT
to 12.9µM in the mutant [149]. In contrast, a mutation of the corresponding PBC arginine
in the CNBB domain slightly increases the affinity (decrease in activation coefficient) for
cAMP binding to 490 nM. Taken together, these observations suggest that cAMP binding to
the CNBA domain is allosterically coupled to dynamic changes in the CNBB domain but
not vice versa. Molecular dynamics simulations explain how the lower affinity the cAMP-
binding CNBA domain impedes cAMP release from the CNBB domain, even allowing
C-subunit binding to the R-subunit in the presence of cAMP at the CNBB site [152]. This
unidirectional allosteric communication is lost in the W260A mutation as mentioned above.

Kinases Phosphatases 2023, 1, FOR PEER REVIEW 10 
 

dissociate from the holoenzyme without binding cAMP. The RI subunit functions as a true 
inhibitor and uses its pseudosubstrate region to bind the C-subunit with high affinity 
[145]. 

 
Figure 4. The type-I and type-II R-subunits of PKA. (A) Domain arrangement of the two types of R-
subunits is similar, where both contain a dimerization domain connected to their cAMP binding 
domains by a long linker. This linker includes the pseudosubstrate/inhibitor site that binds the ac-
tive site of the C-subunit in the holoenzyme. The type-II R-subunits contain a Ser residue in this site 
that can be phosphorylated by the C-subunit. (B) Tandem cAMP binding CNBA and CNBB domains 
in RIα and RIIβ. Structures of the cAMP-bound state show isotype differences in the orientation of 
the CNBB domain versus the CNBA domain. (C) R-subunits toggle between an active (cAMP 
bound) and inactive (C-subunit bound) conformation. (D) Binding of the C-subunit to the R-subunit 

Figure 4. The type-I and type-II R-subunits of PKA. (A) Domain arrangement of the two types of
R-subunits is similar, where both contain a dimerization domain connected to their cAMP binding
domains by a long linker. This linker includes the pseudosubstrate/inhibitor site that binds the active
site of the C-subunit in the holoenzyme. The type-II R-subunits contain a Ser residue in this site that
can be phosphorylated by the C-subunit. (B) Tandem cAMP binding CNBA and CNBB domains in
RIα and RIIβ. Structures of the cAMP-bound state show isotype differences in the orientation of the
CNBB domain versus the CNBA domain. (C) R-subunits toggle between an active (cAMP bound)
and inactive (C-subunit bound) conformation. (D) Binding of the C-subunit to the R-subunit isotypes
requires a huge conformational change at the CNBA:CNBB interface that creates an extended R:C
interaction surface.
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6. The PKA Holoenzymes and Contact Networks of R:C Complexes

The structures of the CNBA domains of type-I and type-II R-subunits with the C-subunit
explain the mode of inhibition observed in the heterodimers (Figure 5 and Table 1) [154,155].
In both types, the inhibitor sequence of the R-subunit is positioned in the peptide-binding
cleft of the C-subunit and engages its Glu127, Glu170, Glu203, and Glu230 residues via
the two arginine residues in the Arg-Arg-X-X motif. Additionally, in the ATP-bound,
‘closed’ conformation of the C-subunit, residues from the glycine-rich loop, including
Thr51 and Ser53, make hydrogen bonds with the inhibitor site residues of the R-subunit
(Supplementary Tables S2 and S3). Isotype specific contacts include residues Arg95, Arg230,
His138, and Tyr205 on the RIα CNBA domain that make contacts with Lys168, Trp196,
Lys213, and Tyr247 on the C-subunit, respectively. Correspondingly, the RIIβ CNBA
domain specifically uses Tyr226, Arg110, Ala111, and Ala259 to engage Tyr247, Lys168,
Thr201, and Arg194 on the C-subunit, respectively. The CNBA domain of RIIβ uses its
Tyr118 to hydrogen bond with the activation loop phosphorylation site pThr197 of the
C-subunit in a specific interaction.
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Figure 5. The smallest R:C heterodimers: (A) Structure of the CNBA and inhibitor segment of RIα
bound to the C-subunit. (B) Structure of the CNBA and inhibitor segment of RIIβ bound to the
C-subunit. (C,D) R:C interaction interface parameters for the C-subunit and the CNBA domains of
the type-I and type-II R-subunits. (E,F) Contact network at the R:C interaction interface as computed
from the structures of the C-subunit with the CNBA domains of the type-I and type-II R-subunits.
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Table 1. Protein kinase A holoenzyme structures as available from the PDB.

PDB Description R-Subunit C-Subunit Reference PubMed

3PVB RIA Heterodimer RIA (73–244)
CNBA

C-Subunit with ANP + 2
Mn 21300294

5JR7 RIA ACRDYS
Heterodimer

RIA (92–365)
CNBA + CNBB C-Subunit with ADP 27825928

2QCS RIA Heterodimer RIA (91–379:R333K)
CNBA + CNBB C-Subunit with ANP/2 Mn 17889648

4X6R RIA Heterodimer RIA (91–379:R333K)
CNBA + CNBB C-Subunit Myr 26278174

6NO7 PKA RIA
Holoenzyme RIA Full length CNBA + CNBB C-Subunit in two states:

Apo and ATP/2 Mg bound 31363049

4DIN RIB Holoenzyme RIB full length
CNBA + CNBB C-Subunit with ATP/2 Mg 22797896

2QVS RIIA Heterodimer RIIA (108–416)
CNBA + CNBB C-Subunit Apo 17932298

4WBB RIIB Heterodimer
RIIB (108–416)

Phospho IS
CNBA + CNBB

C-Subunit with ADP+ 2 Ca 26158466

3TNQ RIIB Holoenzyme
RIIB (108–416)

Phospho IS
CNBA + CNBB

C-Subunit with ATP+ 2 Mg 22323819

3TNP RIIB Holoenzyme RIIB full length R230K
CNBA + CNBB C-Subunit Apo 22323819

4X6Q RIIB Heterodimer RIIB (108–416)
CNBA + CNBB C-Subunit Myr 26278174

3IDB RIIB Heterodimer RIIB (108–268)
CNBA Only

C-Subunit with ANP + 2
Mn 19748511

3IDC RIIB Heterodimer RIIB (102–265)
CNBA Only

C-Subunit with ANP + 2
Mn 19748511

The relative orientation of the two CNBA and CNB domains in the R-subunit is
observed to be significantly different in the cAMP-bound (active) and C-subunit (inactive)
conformations (Figure 4C,D). In the C-subunit-bound conformation, the C-terminal αB–αC
helices of CNBA and the N-terminal αC′:A helix of CNBB merge to form the B/C helix that
creates space to bind the C-subunit to the tandem domains. The binding of the C-subunit
shields the PBC of CNBA and makes it inaccessible to cAMP [144]. The cAMP-binding to
the two tandem CNB domains kinks their connecting B/C helix (residues Arg226–Ser249
in RIα) to fold the two domains over each other at Tyr244 (RIα). This αC/αC′ helix of the
CNBA domain bends between residues Tyr244-Glu245 (RIα). The binding of the R-subunit
linker and the CNBA domain is retained in a high-affinity interaction in the absence of the
CNBB domain [143]. While the conformations of the type-I and type-II R-subunits in the
cAMP-bound state are significantly different, both types bind the C-subunit in a similar
orientation to create near identical R:C heterodimers (Figure 6).

The structures of the tandem CNBA and CNBB domains with the C-subunit
(R:C heterodimers where the R-subunit lacks the D/D domain) reveal important R:C
interacting residues (Figure 6) [156]. Alongside the common interactions observed in the
CNBA:C-subunit structure, specific isoform interactions are also observed in these struc-
tures. The CNBB domain of RIα uses the residues Arg230, Arg241, Arg352, Asp67, and
Arg355 to engage with the C-subunit residues Lys213, Asp276, Thr278, Arg194, and Lys285,
respectively (Supplementary Tables S4 and S5). Also, in these tandem constructs, the
inhibitor site Arg92 of RIα engages with the FDDY Asp328 positions in the active-site tether
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of the Ct tail of the C-subunit. The corresponding Arg106 in the tandem domain construct of
RIIβ does not engage with the C-subunit’s Ct tail and makes hydrogen bonds with Arg133
instead. The CNBB domain of RIIβ uses Asn258, Arg262, Lys285, and Arg281 to engage
the residues Ser212, Lys213, Asn283, and Thr278, respectively, on the C-subunit surface.
Asp288 of RIIβ makes a strong salt bridge with the activation loop Arg194 of the C-subunit.
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Figure 6. The R:C heterodimers: (A) Structure of RIα (including the tandem CNBA/CNBB domains
and the inhibitory segment while excluding the dimerization domain) bound to the C-subunit.
(B) Structure of RIIβ (excluding the dimerization domain and including the tandem CNBA/CNBB
domains with the inhibitory segment) bound to the C-subunit. (C,D) R:C interaction interface
parameters for the C-subunit and the tandem CNBA/CNBB domains of the type-I and type-II R-
subunits. (E,F): Contact network at the R:C interaction interface as computed from the structures of
the C-subunit with the type-I and type-II R-subunits.
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The isoform-specific contact residues on the C-subunit are highlighted in Figure 7.
These include the residues Asn84, Ser212, and Asp276 that interact specifically with the RIα
isoform and the residues Asp166, pThr197, Gly214, Asn283, and Asp 241 that specifically
engage RIIβ. Overall, the C-subunit makes 12 more interactions (salt bridges and hydrogen
bonds included) with the tandem CNBA:CNBB domains of RIα compared to RIIβ. Sur-
prisingly, these interactions do not correlate with the activation parameters of the RIα2C2
(Ka = 101 nM cAMP, Hill Coefficient = 1.7) [149] or RIIβ2C2 (Ka = 584 nM cAMP, Hill Coef-
ficient = 1.8) [149] and indicate an allosteric role of the regions outside of the tandem CNB
domain regions. Combined with small angle X-ray scattering (SAXS) data showing differ-
ent solution structures for the type-I and type-II holoenzymes [149], it becomes important to
analyze the full-length R2C2 holoenzymes rather than the R:C heterodimers. The N linker
that connects the D/D domain to the inhibitory site is unstructured in the heterodimers.
In the R2C2 holoenzymes, the N linker contributes to isoform-specific organization of
the R- and C-subunits.
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Figure 7. C-subunit footprints in the R:C heterodimers. Contact maps reveal the specific residues on
the C-subunit that interact with RIα (left) or RIIβ (right) CNBA or tandem CNBA/CNBB domains.
Residues where identified by analyzing PDB structures in PDBePISA [157] and comparing the type-I
and type-II holoenzyme complexes. Detailed residue list, including hydrogen bonding and salt
bridge profiles, is provided in Supplementary Tables S1–S5.

In the RIα2C2 holoenzymes, the complex is Y-shaped, where the N linker of one heterodimer
stabilizes the other heterodimer to assemble an elongated holoenzyme (Figure 8) [145,158]. In
the two conformations observed in the same crystal [158], the R-subunits are in the center
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with the CNBA and CNBB domains sitting in a head-to-toe orientation, while the C-
subunit is on the outside. In one conformation, the N3A motifs of the two R-subunit
CNBA domains nucleate the interaction interface. This RIα2C2 holoenzyme captures the
‘closed’ conformation of the C-subunit with an ATP/2Mg2+ bound at its active site. This
extended RIα2C2 conformation is stabilized by ATP and requires higher cAMP levels for
activation (EC50 ∼2600 nM). The second conformation in the RIα2C2 holoenzyme includes
RIα dimers bound to the ‘open’ apo conformation of the C-subunit and use the αN helices
of the CBNA domains to dimerize. This is the more compact of the two conformations
and is sensitive to activation by cAMP (EC50 ∼450 nM). Size exclusion and fluorescence
polarization (FP) experiments show that the RIα2C2 holoenzyme can switch between these
two conformations and, in fact, uses these as a sensory switch to capture the ATP-bound
C-subunit for inactivation [158].
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Figure 8. The R2C2 holoenzymes. Two R:C heterodimers assemble in a 2-fold symmetry to organize
the R2C2 holoenzymes. The RIα2C2 holoenzyme is elongated and dimerizes with the R-subunits
in the center and the C-subunits at the periphery. It also toggles between two conformations as it
functions as an ATP sensor to capture the catalytically competent C-subunit. The RIIβ2C2 holoenzyme
is compact and uses the C-subunit and the CNBA domains of the R-subunits to form the dimerization
interface. Conformation of the RIIβ2C2 holoenzyme does not vary in the presence or absence of ATP
at the C-subunit active site.
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In contrast, the RIIβ2C2 holoenzyme is a compact, dumbbell-shaped structure that
uses the C-subunit and the CNBA domain of the R-subunit as the dimerization interface.
Also, unlike the RIα2C2 holoenzyme, the RIIβ2C2 holoenzyme captures the C-subunit
in the ‘closed’ conformation even in the absence of ATP at its active site. Experimental
data confirm the RIIβ2C2 holoenzyme to be insensitive to ATP concentration in solu-
tion [158]. Here, RIIβ shows a higher preference to bind the apo and ADP-bound C-subunit
(EC50 ∼5 nM) compared to the ATP-bound active kinase domain (EC50 = 10 nM). As the
inhibitor site of RIIβ includes a C-subunit phosphorylation site, RIIβ2C2 holoenzyme
appears to be coupled to RIIβ phosphorylation rather than ATP levels in the cellular mi-
lieu. Moreover, RIIβ2C2 holoenzyme activation by cAMP is easier for the ATP-bound
C-subunit (EC50 = 94 nM) when compared to the apo or ADP-bound C-subunit in the
RIIβ2C2 complex (EC50 ∼200 nM) [158].

In conclusion, the varied quaternary structures of the type-I and type-II holoenzyme
are reflective of their biological function. The RIα2C2 holoenzymes are localized to the mito-
chondria, where they regulate stress-related PKA signaling [159]. The extended quaternary
assembly of this holoenzyme makes it an effective ATP sensor that allows PKA activation
in ATP-depleted conditions [159,160]. In contrast, the RIIβ2C2 holoenzyme localizes to
plasma membranes, where its activation is rendered insensitive to ATP levels.

7. Conclusions and Future Directions

PKA holoenzyme diversity and allostery continues to be a relevant topic for under-
standing cAMP-dependent signaling. The recent structures of the full-length holoenzymes
have been successful in accomplishing quaternary structure diversity, but many ques-
tions remain unanswered. How does the C-subunit choose its R-subunit for holoenzyme
assembly? Do the R-subunits dimerize first, or do the R:C homodimers come together
to form the holoenzymes? We still do not understand how holoenzymes are activated.
Do both the R:C homodimers dissociate together or one after another? What are the
isoform-specific dynamics-based parameters for holoenzyme activation? Does interac-
tion of AKAPs affect holoenzyme activation? While many milestones in PKA allostery
have been achieved, the complete mechanistic picture of PKA allostery continues to be an
ongoing and persuasive study.
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244)of RIA (PDB ID: 3PVB); Table S3: Interface parameters C-subunit and CNBA(102-265)of RIIB
(PDB ID: 3IDC); Table S4: Interface parameters C-subunit and CNBA + CNBB (91-379) of RIA (PDB ID:
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