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Abstract: Forage yield estimates provide relevant information to manage and quantify ecosystem
services in grasslands. We fitted and validated prediction models of forage yield for several prominent
grasses used in restoration projects in semiarid areas. We used field forage harvests from three
different sites in Northern Utah and Southern California, USA, in conjunction with multispectral,
high-resolution UAV imagery. Different model structures were tested with simple models using a
unique predictor, the forage volumetric 3D space, and more complex models, where RGB, red edge,
and near-infrared spectral bands and associated vegetation indices were used as predictors. We found
that for most dense canopy grasses, using a simple linear model structure could explain most (R2 0.7)
of the variability of the response variable. This was not the case for sparse canopy grasses, where
a full multispectral dataset and a non-parametric model approach (random forest) were required
to obtain a maximum R2 of 0.53. We developed transparent protocols to model forage yield where,
in most circumstances, acceptable results could be obtained with affordable RGB sensors and UAV
platforms. This is important as users can obtain rapid estimates with inexpensive sensors for most of
the grasses included in this study.
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1. Introduction

Reliable estimates of yield for forage grasses can provide insights for the quantification
of ecosystem services (i.e., carbon sequestration, water infiltration, pollination), plant
breeding, as well as tools for the allocation of resources in livestock production. Grass
forage yield estimates are important in ecology for several reasons. Forage grasses are
a crucial source of nutrition for ruminant livestock and estimates of forage yield can
help ensure an adequate feed supply, which, in turn, can increase the availability and
affordability of livestock products. This is important in regions where land resources are
scarce, as increasing forage yields can enable greater herd densities on existing pasture [1].
Furthermore, estimates of grass forage yields are important for the determination of the
grazing capacity of a grassland ecosystem [2]. In addition, the knowledge of available
forage enables land managers to make informed decisions about stocking rates and grazing
management practices to prevent overgrazing and maintain the health of grasslands [3].
Yield estimates are important for understanding the relationship between climate and
forage growth, as research has shown that forage yield is closely related to climatic factors
such as precipitation [2]. Forage yield estimates also have implications for soil health and
carbon sequestration. High-yielding forage grass cultivars with extensive root systems
can contribute to increased soil organic carbon (SOC) stocks. Roots are an important
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input of organic matter into the soil, and cultivars bred for increased forage yield can
lead to important increases in SOC. This has implications for climate-smart agriculture
and the potential for grasslands to sequester carbon and mitigate climate change [4].
Moreover, understanding the forage value of different grass species and cultivars can help
stockholders make informed decisions about which species to grow and how to manage
their pastures [5].

Unmanned aerial vehicle (UAV) imagery has been used to model grass forage yield in
semiarid landscapes through various approaches and techniques. Prediction models for
dry matter yield (DMY) in temperate grasslands using UAV red, green, and blue (RGB)
imaging was developed and compared to the remote sensing technique with the following
two conventional methods: destructive biomass sampling and ruler height measurements.
The results of the temperate grassland study showed that yield prediction by UAV RGB
imaging provided similar accuracies as the ruler height measurements [6]. Agronomic
parameters have also been monitored using low-cost UAV RGB imagery to observe the
biophysical characteristics of winter wheat crops [7]. UAVs with higher-end sensors such
as multispectral or hyperspectral imagery have been used for (a) assessing the effects of
fertilizer application on yields of rice and wheat [8], (b) quantifying grassland biomass
and nitrogen content [6,9], and (c) the calibration of robust yield and quality models [10].
These hyperspectral sensors are usually much more expensive than simple RGB systems.
Generally, UAV imagery (RGB, multispectral, or hyperspectral) has been utilized to model
accurate estimates of grass forage yield in semiarid landscapes by capturing high-resolution
imagery and extracting relevant features and vegetation indices.

We modeled forage yield for several grasses that are used in dryland and irrigated
pasture and restoration projects across the western USA. Grasses evaluated in our analysis
include orchard grass (Dactylis glomerata L.) and tall fescue (Festuca arundinacea Schreb.).
Tall fescue has been reported to reduce soil and water loss [11] and is considered one
of the most important species used in phytoremediation projects [12]. We also included
intermediate wheatgrass (IWG) (Thinopyrum intermedium (Host) Barkworth & D.R. Dewey),
which has shown promise to enhance soil ecosystem services [13,14] and is valued as a
dual-use forage and grain crop and for its ability to suppress weeds [15]. We also included
drought-tolerant, perennial grass bluebunch wheatgrass (BBWG) (Pseudoroegneria spicata
(Pursh) Á. Löve), which is one of the prevalent native grass species used in restoration
projects in the Great Basin area of the Western USA [16] and is also known for its ability to
physically stabilize and remediate contaminated sites in semiarid environments [17]. We
used BBWG in this research to reflect how well a forage yield model can accommodate
sparse canopy grass.

The main objectives of our research were threefold: (a) fit and validate a global
model to predict forage yield for important grasses of semiarid landscapes using UAV
multispectral imagery, (b) assess the strength of an affordable, photogrammetry-derived
volumetric 3D space as the sole predictor of forage yield, and (c) evaluate data requirements
to obtain transparent predictions in sparse canopy grasses.

2. Materials and Methods
2.1. Study Areas

Forage samples were acquired from existing grass monoculture experiments at two
research farms in Northern Utah and one location in Southern California, where several
grass and legume species were established (Table 1).

2.2. Forage Data Collection

In this research, we emphasize the building of models for grasses that exhibit dense
and sparse canopy architectures. The sparse canopy grass species used in this research was
Bluebunch wheatgrass (BBWG) (Pseudoroegneria spicata), and the rest of the species were
considered grasses with dense canopies. The main criterion used to differentiate sparse
from dense canopies was the number of lignified stems in the canopy. Bunchgrasses such
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as BBWG, unlike sod-forming grasses (the rest of the species used here), have a crown area
composed of many individual stems packed into the canopy. This structural difference
raises the likelihood that bunchgrasses have more stems in the canopy compared to sod-
forming grasses [18]. The growth form of bunchgrasses can also lead to the self-shading of
their foliage, reducing the overall amount of the photosynthetically active leaf area [19].
Conversely, the foliage of sod-forming grasses tends to be more abundant and continuous
due to their spreading (rhizomatous) nature, contributing to greater overall coverage of
foliage [20] compared to bunchgrasses. In this context, the canopies of sod-forming grasses
are comparatively denser (i.e., more foliage or green matter) than bunchgrasses, which, for
our research purposes, was considered to have a sparse canopy.

Table 1. Characteristics of research sites where forage samples were collected.

Site Location Species

Richmond UT, Research Farm 1 41◦53′19.7586′′ N,
−111◦49′46.8372′′ W Thinopyrum intermedium

Millville UT, Research Farm 1 41◦39′23.9394′′ N,
−111◦48′51.3246′′ W Pseudoroegneria spicata

Shandon, CA, Canyon Ranch 35◦32′25.9074′′ N,
−120◦20′1.1832′′ W

Multiple—please see data
collection at Shandon for details

1 Utah State University field research sites.

2.2.1. Shandon, Canyon Ranch Site—California Central Coast, San Luis Obispo
County—Dense Canopy Grasses

The Shandon site is located approximately 11.5 km southeast of the city of Shandon,
along Shell Creek Road, California. The mean elevation at the site is 373 m.a.s.l. with an
average annual temperature of 15.7 ◦C and 330 mm of yearly precipitation. At this site,
490 plots (dimensions 5 × 1 m) were established in 2022. A total of 12 forage grass species
and several legumes (Figure 1) were planted at this site and were available for harvest.
Legumes were not included in this analysis due to a considerable presence of weeds and
non-desirable plant matter.
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Figure 1. Geographic location and layout of the Shandon experiment with the list of grasses that 
were harvested at this site. White arrow indicates North. 

The plots were harvested in a serpentine (east to west) direction using a Wintersteiger 
forage harvester. In addition to cutting and picking up the green matter for each plot, the 
harvester recorded the total plot wet weight (kg) into an electronic spreadsheet. The har-
vester was equipped such that the operator could collect a representative sample from the 
total green matter for each plot immediately after harvest (Figure 2). The samples were 
placed in paper bags, and their contents were recorded as wet weight at the field. Samples 
were transported back to Logan, Utah, and air-dried. Dry weights for each sample were 
recorded subsequently. Air drying was conducted by leaving the bagged samples at the 
drier for several days at 60 °C until constant weights were achieved. At this site, two har-
vests were conducted: the first harvest in the second week of May 2023 and the second 
harvest in the second week of July 2023. This provided the opportunity to assess the ability 
of geospatial models to predict forage yield at different stages of growth for the grasses of 
interest.  

 
Figure 2. (a) Plots harvested at the Shandon site using a motorized forage harvester—the harvester 
records total plot weight; (b) Immediate collection of a plot-representative sample to obtain wet and 
dry weights back at the laboratory. 

2.2.2. Richmond Farm 
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Figure 1. Geographic location and layout of the Shandon experiment with the list of grasses that
were harvested at this site. White arrow indicates North.
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The plots were harvested in a serpentine (east to west) direction using a Wintersteiger
forage harvester. In addition to cutting and picking up the green matter for each plot,
the harvester recorded the total plot wet weight (kg) into an electronic spreadsheet. The
harvester was equipped such that the operator could collect a representative sample from
the total green matter for each plot immediately after harvest (Figure 2). The samples were
placed in paper bags, and their contents were recorded as wet weight at the field. Samples
were transported back to Logan, Utah, and air-dried. Dry weights for each sample were
recorded subsequently. Air drying was conducted by leaving the bagged samples at the
drier for several days at 60 ◦C until constant weights were achieved. At this site, two
harvests were conducted: the first harvest in the second week of May 2023 and the second
harvest in the second week of July 2023. This provided the opportunity to assess the ability
of geospatial models to predict forage yield at different stages of growth for the grasses
of interest.
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2.2.2. Richmond Farm

The Utah State University (USU) Richmond research farm is roughly 2.5 km southwest
of the city of Richmond and 4 km north of the city of Smithfield, Utah. The research site sits
at 1375 m.a.s.l. This is a dry-summer humid continental climate with an annual precipitation
of 515 mm and a mean annual temperature of 8.5 ◦C. A large intermediate wheatgrass
(IWG) (Thinopyrum intermedium) genetic experiment was established in 2020 with the
main goal of assessing traits for the selection of individuals that provide higher grain
yield. The experiment per se contains 1800 individual rectangular plots (approximately
3 × 0.9 m plots arranged over 18 rows of 100 plots each) whose grain is harvested on a
yearly basis. Surrounding the 1800 plots, there are 240 border plots that were available for
this forage analysis.

The 240 border plots were assigned a unique identifier. The unique identifier allowed
the random selection of ten (10) plots for each harvest date. Harvest data were acquired
on the following dates: May 05, 12, 19, 23, 31; June 06, 16, and July 05 and 19 of the year
2023. By randomizing the selection of border plots, we attempted to capture as much
spatial variability of forage yield from this experiment as possible. Furthermore, because
the harvests were conducted during the span of two and a half months, we were able to
sample different growth stages of IWG. Border plots at Richmond (Figure 3) were harvested
using a gas-powered grass trimmer, and the green matter was then placed inside plastic
tote containers (Figure S1 Supplementary Material). The total weight (kg) was recorded at
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the field (with and without a tote). A representative sample from each plot was bagged,
weighed, and then taken to the lab to be dried to determine dry matter weight.
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Figure 3. (a) General location of the IWG main experiment and border plots; (b) Closer look at the
far eastern section showing individual border plots as they were used in this study. Arrow points to
zoomed in area.

2.2.3. Millville Farm—Sparse Canopy Grass

Bluebunch wheatgrass (BBWG) (Pseudoroegneria spicata) forage samples were collected
at the USU Millville, UT research farm. The elevation at this site is 1433 m.a.s.l. It has a
warm-summer continental climate with an annual precipitation of 419 mm and a mean
annual temperature of 8.2 ◦C. The BBWG experiment was established in the fall of 2021
and consisted of 2236 rectangular plots with dimensions of 2 × 0.25 m (Figure 4). Forage
harvests were conducted during the first (2022) and second year (2023) of establishment.
During the first year of sampling, we collected 111 plots (~5%), and in the second year,
214 plots (~10%). For every year of sampling, we randomized the locations of the plots to
be harvested to capture enough spatial variation across the field.
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The total weight (kg) of green matter was recorded at the field, and subsequently
taken to the laboratory to be air-dried and weighed. Bluebunch wheatgrass plants for each
plot were manually harvested using grass clippers (Figure 5). We must report that there
was significant herbivory damage to the BBWG plant canopies during the year 2023 due to
chewing insects, namely grasshoppers. Examples of defoliation in this site can be seen in
the Supplementary Materials (Figure S2).
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Figure 5. (a) Harvest activities during the 2022 sampling season; (b) recently harvested plots in 2023.
Grasshopper damage can be observed in the surrounding plants.

Plot boundaries for all three sites in this study were obtained by manually digitizing
over high-resolutions recent (2022) orthophotomaps, and in the case of Millville, the
boundaries were verified using Emlid Reach-2 global positioning systems GPS rover
devices with an average root mean square (RMS) error of ±2.0 cm.

2.3. RGB and Multispectral Data
2.3.1. Field Data Collection

We acquired very high spatial resolution imagery over each of the three sites using
unmanned aerial vehicles (UAVs) prior to each forage harvest. We utilized a Matrice
600 Pro hexacopter (Shenzhen, China), carrying a Micasense Altum-PT multispectral sensor
onboard. The Altum-PT collects co-registered spectral information on the red, green,
and blue (RGB) spectrum, as well as the red edge and near-infrared (NIR) parts of the
electromagnetic spectrum. UAV flights were prepared using the professional drone mission
planning software UgCS version 4.17. All missions were collected at an altitude of 34.8 m,
which resulted in a ground spatial distance (GSD) of 1.5 cm (i.e., pixel size).

For all missions, sidelap (the distance between flight lines) and frontlap (the distance
between successive photos inside each flight line) were configured to yield a minimum
of 75% overlap. UgCS missions (Figure 6) were prepared so that the UAV would be able
to follow the variations in the terrain and, thus, maintain a constant elevation above the
ground. Before each harvest was scheduled, the weather forecast was followed carefully to
avoid cloudy or rainy days. All missions were conducted during sunny or lightly overcast
days and only during a particular window of time of two hours before and after local
solar noon.

Immediately before and after each flight mission, we took images of the Micasense
sensor-calibrated reflectance panel. This is fundamental during post-processing in order
to generate surface reflectance [21] products. The Micasense sensor was placed onboard
the aircraft in such a way that was always pointing straight down or as close to the nadir
(perpendicular to the ground) as possible. All missions were flown using a lawn-mowing
pattern from east to west and vice versa. Terrain relief at all sites was flat, and thus, there
was no need to account for slope effects during the flights. An average of six to ten ground
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control points (GCPs) were laid out on the corners and center areas of each experiment.
The location (latitude and longitude) and altitude of each GCP were collected using the
Emlid Reach-2.
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2.3.2. Post-Processing of Aerial Imagery

We used the Micasense image processing scripts [22] to convert the raw digital num-
bers of the images to radiance and then to actual surface reflectance. Images were then
processed using the photogrammetry platform WebODM [23]. Within WebODM, the im-
agery was first aligned and rectified to real-world coordinates using the collected GCPs.
Subsequently, a georeferenced digital surface model (DSM)—a three-dimensional repre-
sentation of the surface—and fully stitched orthorectified spectral (RGB, red edge, NIR)
mosaics were extracted for each single flight mission at each study site prior to each forage
harvest. All the raster or image outputs were generated in TIFF format files.

2.3.3. Derivation of Vegetation Indices: RGB and Multispectral

We developed computational workflows in the R scientific language [24] to generate
vegetation indices (VIs) [25] of interest for the modeling of our variable of interest: forage
yield. VIs are spectral transformations of the original RGB, red edge, and NIR bands that are
generated to highlight the contribution of vegetation in comparison to other land features
(rocks, soil, water, etc.) and allow spatiotemporal comparisons of photosynthetic activity
and canopy variations between different types of vegetations [26]. This is particularly
useful in our analysis to compare variations between the forage grasses of interest. We
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used the R package FIELDimageR [27] to generate VIs that are exclusive to the RGB part of
the electromagnetic spectrum and also VIs that require the extra red edge and NIR spectral
bands (Table 2). The formulae for the different indices can be found in [25,27].

Table 2. Vegetation indices—RGB and multispectral—used in this study.

Index Major Application

RGB Exclusive

Brightness BI
Soil Color SCI

Green Leaf GLI
Normalized Green Red Difference NGRDI

Visible Atmospheric Resistance VARI
Blue Green Pigment BGI

Water content, canopy cover
Soil color

Chlorophyl
Biomass, water content

Canopy cover, biomass, chlorophyl
Leaf area index, chlorophyl

Multispectral (require red edge and NIR)

Plant Senescence Reflectance PSRI
Normalized Difference Vegetation NDVI
Green Normalized Difference Vegetation

GNDVI
Ratio Vegetation RVI

Normalized Difference Red Edge NDRE
Enhance Vegetation EVI

Difference in Vegetation DVI

Nitrogen, canopy maturity, chlorophyl
Leaf area index, biomass, yield

Leaf area index, nitrogen, water content
Biomass, water content, nitrogen

Chlorophyl
Biomass, nitrogen,

Nitrogen, chlorophyl

All these vegetation indices were calculated at the pixel level (GSD of 1.5 cm), and
thus, covered the same spatial domain as the DSM and orthophotos extracted using the
WebODM photogrammetry software (https://www.opendronemap.org/webodm/).

2.3.4. Extraction of Representative Values per Plot: Zonal Statistics

The polygons that correspond to each field plot in this analysis can contain thousands
(Millville~2223) to tens of thousands (Shandon~22,223) of cells or pixels for each image
or raster file. Recall that each pixel was 1.5 cm or 0.000225 m2. A sample of the imagery
for the plots at the Shandon site can be seen in the next figure (Figure 7). In this figure,
different imagery representations are provided (i.e., natural color and false color). For
the same spatial subset, we provide two vegetation indices: the normalized difference
vegetation index and the normalized difference red edge index. This helps to depict how
each plot’s feature (fully covered by grass or vice versa) can impact the values of the
resulting vegetation indices (Figure 7).

To use the raster information in a modeling scheme, we needed to summarize it for
each plot. We computed zonal statistics using the R package exactextractr [28], which has
the advantage over other zonal statistics algorithms that accounts for pixels that are fully
or partially contained within each plot polygon. The exactextractr package is written in C++
language and can provide summarizations faster than other R packages.

The zonal statistic used in this research is the median, as this value is not affected by
extreme outliers for land features (i.e., bare ground, rocks) that may be present in each plot.
Median values for the individual spectral bands (red, green, blue, red edge, and NIR) and
the generated vegetation indices were calculated for each plot polygon for each available
UAV flight.

2.4. Statistical Modeling
2.4.1. The Response and Independent Variables

We designated the response variable as forage yield (kg ha−1), which we computed
for each individual plot by dividing the total plot weight (kg) recorded at the field (i.e.,
mechanic harvester, grass clippers) by the area of the plot in hectares. Because plots of
three different sizes were used in this analysis, we needed to normalize the forage wet

https://www.opendronemap.org/webodm/
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weights measured at the field across the three research sites into one cohesive variable. The
denominators used were (a) 0.00027 ha for Richmond (plot dimensions 3 × 0.9 m = 2.7 m2),
(b) 0.0005 ha for Shandon (plot dimensions 5 × 1 m = 5 m2), and (c) 0.00005 ha for Millville
(plot dimensions 2 × 0.25 m = 0.5 m2).
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Figure 7. Subset of imagery for the Shandon, CA, site in (a) natural color (RGB), (b) NIR red and
green false colors, (c) the normalized difference vegetation index (NDVI), and (d) the normalized
difference red edge index (NDRE).

Our predictor variables were the median values extracted for the spectral bands, and
derived vegetation indices. In addition, we included the volumetric or 3D space that the
grasses project from the soil to their canopy at each plot (Figure 8). We extracted this
volume from the digital surface model as follows:

1. We intersected the polygon boundaries for each plot with the DSM;
2. The upper level (canopy height per se) equaled the proper DSM values in m.a.s.l.;
3. The base level (ground height) was computed as the average elevation (m.a.s.l.) of the

plot polygon vertices that intersected the DSM;
4. The height profile differences (grass canopy height—ground level height) were ex-

tracted at the pixel level;
5. A simple volume cut/fill calculation was conducted whereby height differences

were multiplied by the area (0.000225 m2) and summed over all pixels within the
plot’s polygon.

The volumetric 3D space was added to the median values obtained previously
(Section 2.3.4). A modeling matrix was built for each site where rows contain individ-
ual observations (plots), and the columns are (a) the response variable to forage yield in kg
ha−1 and (b) predictors or independent variables, such as spectral data, vegetation indices,
and the volumetric 3D space.
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selected for forage harvest; (b) the same plot was collected and green matter placed inside tote; and
(c) typical grass canopy height (green line) and ground level (red line) used for the volumetric 3D
space calculation. Arrows point to the same plot pre and post-harvest.

2.4.2. Model Fit—Stratified Cross-Validation (SCV)

Our main goal was to develop a global model that was able to make reasonable
predictions across sites, across grass species, and across the different stages of growth
of our continuous variable forage yield. In this case, we used a regression model. We
chose to evaluate the performance of basic linear regression, as well as a non-parametric
modeling approach using random forest [29] regression via a k-fold cross-validation routine.
Although the response variable forage yield was standardized, there were a few situations
that needed to be dealt with before attempting to find an appropriate model fit:

1. Species with dense (i.e., Richmond IWG, and all the grass species at Shandon) and
sparse (BBWG at Millville) canopies were included.

2. There were three research sites.
3. Harvests were conducted multiple times to include variability in plant growth stages.

In light of these situations, we chose to conduct a stratified cross-validation SCV [30]
scheme where each of the strata would be left out at each iteration for model validation
while the rest of the strata are used for model fit. We believe that such a strategy equalizes
opportunities for sites, species, and stages of growth to fully participate in the final model’s
fit. We organized the strata by concatenating the site, harvest at each site, and species into
an additional attribute in the database (Table 3). Only species with a number (n) equal
to or higher than 50 observations were used in the training of the model. Species with
n < 50 were used as another set of validation for the developed models. The following
sample sizes were available for those species directly used in model training: 61 for orchard
grass (Dactylis glomerata), 138 for intermediate wheatgrass IWG (Thinopyrum intermedium),
325 for bluebunch wheatgrass BBWG (Pseudoroegneria spicata), and 457 for tall fescue
(Festuca arundinacea).
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Table 3. Sample preparation of the strata to be used during K-fold cross-validation model fit.

Species Site/Code Harvest Number Resulting Stratum

IWG 1 Shandon CAL 1 IWG_CAL23_1
IWG Shandon CAL 2 IWG_CAL23_2
IWG Richmond RICH 2023 IWG_RICH23

BBWG 2 Millville MILL 2022 BBWG_MILL22
BBWG Millville MILL 2023 BBWG_MILL23

tall fescue 3 Shandon CAL 1 TF_CAL23_1
tall fescue Shandon CAL 2 TF_CAL23_2

orchard grass 4 Shandon CAL 1 ORC_CAL23_1
orchard grass Shandon CAL 2 ORC_CAL23_2

1 Thinopyrum intermedium. 2 Pseudoroegneria spicata—the only sparse canopy grass included. 3 Festuca
arundinacea. 4 Dactylis glomerata.

The resulting stratum was added to each observation (plot) in the modeling matrix in
an additional column containing this string or concatenation of text. This attribute could
then be used as a factor for assigning one stratum to each observation.

2.4.3. Fitting and Validating Models for RGB and Multispectral Imagery

We utilized a stratified k-fold cross-validation strategy to find the “best” model in
terms of a model structure that balances performance by minimizing the root mean square
error RMSE, R2, and mean absolute error MAE. We conducted this process in the following
five independent ways:

A. A simple ordinary least square linear OLS regression model used only volumetric 3D
space as a predictor. Hereafter, it is referred to as LM-3D.

B. Multiple linear regression models used volumetric 3D space, RGB bands, and related
Vis, hereafter referred to as LM-RGB.

C. Multiple linear regression models included using volumetric 3D space, RGB bands
and related VIs in addition to the red edge, NIR bands, and related VIs. Hereafter, it
is referred to as LM-Multi.

D. The random forest regression model used volumetric 3D space, RGB bands, and
related VIs (Table 2), hereafter referred to as RF-RGB.

E. A full random forest model, in addition to volumetric 3D space and RGB spectrum,
also included red edge, NIR, and related Vis., hereafter referred to as RF-Multi.

Except for (A) above, the process to select the predictors for use in each one of the
model variants was the following:

(a) Fit temporary random forest models with all their available predictors for a particular
model variant, as explained above. For instance, for variant (B) above, a temporary
random forest model with volumetric 3D space, the three RGB bands, and all the RGB
indices (i.e., BI, SCI, GLI, NGRDI, VARI, BGI) were fitted.

(b) For each of these temporary random forest models, we extracted information of vari-
able importance [31,32] to identify the most relevant features or predictor covariates
for prediction. At the same time, the variable importance rankings allowed us to filter
out low-importance or irrelevant variables to enhance model performance.

(c) From the variable importance plots, we used the mean decrease in predictive accuracy
to select the predictors that would participate in each model variant. While there was
no consensus [33] in the literature about what threshold to use to select the major
predictors, we arbitrarily chose to keep the predictors with the highest scores (>35%
in importance).

Five major steps were followed and coded in an R programmatic routine:

1. Divide the entire modeling matrix into two sets: (a) one for a model fit with 75%
of the observations and (b) the rest of the observations for independent validation.
This second set is a completely independent set that was never used during the cross-
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validation process. We used the splitTools R package [34] with the Species-Site-Harvest
strata (Table 3) as an attribute to guarantee that each set (training and validation)
would include observations from all available strata.

2. We used the R package caret [35] “groupKFold” function to split the data based on
groups—using the Species-Site-Harvest attribute. Using this function makes sure one
of the groups is not contained in the training and is left out for validation.

3. The output object from “groupkFold” was used in caret’s “trainControl” function as
an index. This index is the observations (plots) unique identifier in the modeling
matrix, and it is used to tell the algorithm which observations are used during each
k-fold iteration. In the “trainControl” function, we specified the method to be “cv” or
cross-validation.

4. We used the train function of the caret package to iteratively run all the k-fold cross-
validations and select a model that minimizes the error, as stated earlier. The method
selected in this function was “LM” for simple/multiple linear regression and “RF” for
random forest regression, the response variable was the forage yield in kg ha−1, and
the predictor’s volumetric 3D space, individual spectral bands, and vegetation indices.

5. The previous steps were repeated for the simple model LM-3D, the reduced RGB
models (LM-RGB and RF-RGB), and the full multispectral models (LM-Multi and
RF-Multi). Recall that in the simple LM-3D model, we only included the volumetric
3D space, while in the reduced RGB models, we only included the red, green, and blue
RGB bands, associated Vis, and the volumetric 3D space. The full models included all
available predictors.

2.4.4. Comparison of the Global Models

The general performance of our SCV global models (LM-3D, LM-RGB, LM-Multi, RF-
RGB, and RF-Multi) was assessed using traditional regression metrics, such as RMSE and
MAE. In addition, we calculated scores for the Regression Receiver Operating Characteristic
(RROC), as proposed by [36] and implemented in the R package auditor [37]. Due to the
nature of the SCV models, where each grass species was left out at each iteration, extraction
of the RROC on a per-species basis was not feasible, and thus, we conducted the RROC
calculation for each global model.

The following schematic (Figure 9) graphically summarizes the Methods section for
our research.
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3. Results
3.1. Field Harvest Wet Weights Are a Reasonable Representation of Forage Yield

Apart from Bromus sitchensis, we found very good relationships (R > 0.75) between
the sample wet and dry weights (Figure 10). This is an indication that modeling the wet
weights—or, in our case, the standardized variable forage yield—to make inferences is a
reasonable approach.
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In addition, collecting the per-plot grass samples provided us with a clear idea of
the plant water content variation between species. As can be seen (Table 4), the range
of the percentage of moisture content is almost 20%, with a global average of 70.1%.
Among the studied species, Elymus glaucus Buckley (blue wildrye) showed the lowest plant
moisture content, while Pseudoroegneria spicata (bluebunch wheatgrass) had the highest.
Plant moisture content was calculated by dividing the difference between wet and dry
weights by the wet weights.

Once we converted the per-plot wet weights to forage yields (kg ha−1), we were
able to see the differences in yield among grass species (Figure 11). The range for the
calculated means of the standardized variable was 23,393 kg ha−1 between the highest yield
Phalaris aquatica L. (bulbous canarygrass) and the lowest Pseudoroegneria spicata (bluebunch
wheatgrass BBWG).
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Table 4. Mean sample wet and dry weights with calculated plant moisture content for the grasses
used in this study.

Grass Species Wet (g) Dry (g) Plant Moisture (%)

Pseudoroegneria spicata 0.088 0.010 82.444

Phalaris aquatica 152.826 37.217 74.144

Thinopyrum ponticum 148.667 42.333 71.466

Festuca arundinacea 136.313 38.740 71.122

Dactylis glomerata 116.311 34.197 70.219

Thinopyrum intermedium 46.935 15.071 70.218

Psathyrostachys junceus 104.900 32.100 68.740

Bromus commutatus 102.600 32.125 68.628

Bromus hordeaceus 139.545 44.273 68.297

Bromus sitchensis 139.647 45.353 66.920

Leymus triticoides 151.167 50.500 66.237
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3.2. Photogrammetry-Derived Volumetric 3D Space

Since one of the main goals of this research was to explore the feasibility of using
RGB-based systems, we explored the strength of the relationship between volumetric 3D
space (Section 2.4.1) and the forage yield. We expected to find stronger relationships for
the denser canopy grasses as opposed to the sparse canopies (i.e., P. spicata). We found
(Figure 12) that the strongest linear relationships (R2 > 0.8) were found for Phalaris aquatica
and Bromus sitchensis, both of which showed a fuller canopy at the time of harvest. The
poorest associations were found for the sparse canopy grasses, where it was very clear that
the computed volumetric 3D space struggled to capture the acceptable fit of the measured
forage yield.
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Figure 12. Linear correlations and Spearman significance between the computed volumetric 3D space
and forage yield for the grasses used in this research. “ns” indicates that the correlation was not
significant, and the rest were significant at p-values 0.05. “n” indicates the number of observations.
Statistical significance: ** p ≤ 0.01, *** p ≤ 0.001.

While these results did not provide much promise for the sparse canopy grasses,
they were encouraging for the majority of the dense canopy species. The volumetric 3D
space is a relatively straightforward variable to model forage yield. This is quite important
since it is a variable that can be generated from either simple RGB sensors or from more
complex high-end multispectral sensors. While the volumetric 3D space was not a strong
linear predictor for sparse canopies, the rest of the covariates (spectral bands and derived
vegetation indices) showed a relatively strong (R2 > 0.7) association with the response
variable of forage yield.

3.3. Model Outputs
3.3.1. Chosen Predictor Variables

With the application of the rule that we set up (Section 2.4.3) of only selecting predictors
with an importance of 20% or higher, the following covariates were selected:
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• We selected five (5) variables for model variants B (LM-RGB) and D (RF-RGB). These
were (in order of importance) as follows: volumetric 3D, BI, GLI, SCI, and BGI.

• For model variants C (LM-Multi) and E (RF-Multi), we selected eight (8) predictor
variables. These were (in order of importance) as follows: volumetric 3D, GNDVI, RVI,
NDVI, NDRE, GLI, BI, and BGI.

We provide variable importance plots for the model variants in the Supplementary
Materials (Figure S3).

3.3.2. Linear Regression Models—Validation Dataset

Results (Figure 13) suggest that using only the volumetric 3D space in a very simple
linear regression model may be quite sufficient for orchard grass (D. glomerata), as the R2

obtained did not show much variation between the simple model LM-3D and the LM-
RGB or multispectral LM-Multi models (R2 in the mid 0.70 s). There was considerable
gain, however, between using the LM-3D model and the LM-RGB or LM-Multi model
for tall fescue (F. arundinacea). The results show that using RGB + derivatives (LM-RGB)
increases the R2 by 0.09 units compared to the simple LM-3D model. The increment in
this value increases up to 0.14 when using the entire array of multispectral bands and
vegetation indices (LM-Multi). Poor results were obtained for the mostly sparse canopy
grass bluebunch wheatgrass (P. spicata) as the best R2 using linear models was 0.27 (LM-
RGB model). Here, the LM-RGB was nearly as good as using the full multispectral model
(LM-Multi). The best model for IWG (T. intermedium) was the multispectral LM-Multi and
gave moderate accuracy (R2 = 0.41). Using the simple LM-3D model or the LM-RGB gave
fundamentally the same results (R2 in the low 0.3 s) for IWG.
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3.3.3. Random Forest Regression Models—Validation Dataset

About the RF model fit (Figure 14), the results were very similar to those shown for the
linear models (Figure 13) for tall fescue and orchard grass. Considerable gains with respect
to the linear model fit were obtained, particularly for bluebunch wheatgrass, however. The
best RF model was the one using the multispectral dataset (RF-Multi), which provided a
two-fold improvement in accuracy (RF-Multi R2 of 0.53 compared to R2 0.26 for the LM-
Multi) for this grass. Furthermore, using the multispectral data resulted in a gain of 0.13 R2

compared to using the RF-RGB model. While not as prominent as the gains observed for
BBWG, the RF model using the multispectral data RF-Multi for intermediate wheatgrass
IWG resulted in an R2 of 0.57, which is much better than the best linear LM-Multi model
(R2 of 0.41).
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3.3.4. Regression Models—Exploration of Defoliation Effects

Given the severe defoliation by grasshoppers observed (Figure 5b and Figure S2) at
the Millville, UT site for the year 2023, we hypothesized that this was a major element in the
poor performance of the simpler models (i.e., LM-3D, LM-RGB, LM-Multi—Figure 13). We
explored this effect by fitting a different model structure, where we completely excluded
the stratum corresponding to Millville BBWG 2023 while keeping the rest of the strata intact.
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Coefficients of determination are presented in the next table (Table 5) for this variation
in the overall model structure. While quite positive effects are evident for intermediate
wheatgrass IWG (highest R2 being 0.65 compared to 0.57—Figure 14) and for bluebunch
wheatgrass BBWG (highest R2 being 0.76 compared to 0.53—Figure 14), overall, there
were neither negative nor positive effects for tall fescue. The results for orchard grass
(D. glomerata) are detrimental; however, regarding the linear models. The highest R2 was
obtained using LM-Multi at 0.6 compared to values in the ~0.75 range (Figure 13) for this
species. The highest value for this grass was 0.63 using the random forest model with the
multispectral datasets RF-Multi.

Table 5. Coefficients of determination for the different model structures (Linear and RF) using the 25%
validation data where the BBWG 2023 stratum was excluded. Bold and underlined entries identify
the best model (highest R2).

Grass Species Linear Models R2 Random Forest R2

LM-3D LM-RGB LM-Multi RF-RGB RF-Multi

Dactylis glomerata—orchargrass 0.41 0.58 0.60 0.57 0.63

Festuca arundinacea—tall fescue 0.71 0.81 0.84 0.88 0.89

Pseudoroegneria spicata BBWG 0.59 0.35 0.76 0.76 0.76

Thinopyrum intermedium IWG 0.50 0.33 0.54 0.50 0.65

3.3.5. OLS and Random Forest Regression Models—Unused Grasses

We present (Table 6) the adjusted R2 for the grasses (n < 50) that were left out as a
completely independent dataset. Scatter plots can be found in the Supplementary Material
(Figures S4 and S5). Based on the coefficients of determination alone, it is shown that
the simple LM-3D model structure (linear model with the volumetric 3D space as lone
predictor) provides the best fits for three (tall wheatgrass (T. ponticum), meadow brome
(B. commutatus), and Alaska brome (B. sitchensis)) out of the seven grasses. While the
best model for harding grass (P. aquatica) turned out to be the LM-Multi multispectral,
this resulted in a difference of only 0.03 R2 units compared to the simple LM-3D model.
Much greater differences were found for brome grass (B. hordeaceus), beardless wildrye (L.
triticoides), and blue wildrye (E. glaucus), where it was very clear that using a multispectral
dataset LM-Multi provides a significant gain over the LM-RGB or just the volumetric 3D
space LM-3D.

Table 6. Coefficients of determination for the different model structures (Linear and RF) for the grass
species that were not used during model building. Bold and underlined entries identify the best
model (highest R2).

Grass Species OLS Random Forest

LM-3D LM-RGB LM-Multi RF-RGB RF-Multi

Phalaris aquatica 0.88 0.88 0.91 0.86 0.86

Thinopyrum ponticum 0.76 0.74\ 0.73 0.71 0.70

Bromus commutatus 0.68 0.66 0.54 0.43 0.42

Bromus hordeaceus 0.66 0.74 0.82 0.84 0.86

Bromus sitchensis 0.83 0.81 0.83 0.80 0.77

Leymus triticoides 0.62 0.71 0.80 0.38 0.54

Elymus glaucus 0.71 0.79 0.81 0.80 0.80



Grasses 2024, 3 102

3.3.6. Global Models’ Performance

The RROC curves for the different regression models are shown (Figure 15a). This
plot shows for each model the magnitude of overestimation (x-axis) and underestimation
(y-axis) as defined by [36]. The base of the plot is a shift, which is equivalent to the threshold
for traditional ROC curves. The point where the shift equals 0 is represented by a dot.
Shifts that are closer to the 0,0 origin (upper-left corner of the plot) are indicative of an
overall better model performance. In Figure 15a, we can see that there is a gradual trend
in model improvement in the incremental order: LM-3D, LM-RGB, LM-Multi, RF-RGB,
and LM-Multi. This trend corresponds quite well with the performances shown for each
species in Figures 13 and 14. In addition, we present the scaled (values 0 to 1) scores for the
performance metrics (RMSE, MAE, and RROC) in a model ranking radar plot (Figure 15b).
In this plot, values closer to one (one) indicate an overall better model performance. It
becomes more evident that the non-parametric models (RF-RGB and RF-Multi) outperform
the linear regression models in all three calculated metrics.
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4. Discussion
4.1. On the Use of Wet Weights Instead of Dry Weights

Research has shown that using dry weights is more fitting to model forage yield than
wet weights due to various reasons that deal with accuracy, reliability, and consistency. Wet
weights include the weight of the water in the forage, and these can vary widely depending
on the moisture content and environmental conditions. Conversely, dry weights represent
the actual mass of the organic matter in the forage and, thus, make it a more direct measure
for estimating biomass [38]. Regarding nutrient content, dry weights are a better indicator
of forage quality, which is assessed based on the concentration of nutrients, and these
are present in higher concentrations in the dry matter of the forage. Therefore, using dry
weight allows for a more accurate assessment of the nutritional value of the forage [39].
Furthermore, dry weights are more suitable for comparing forage biomass across different
studies or locations because wet weights can be influenced by environmental factors, such
as moisture content [40]. In our modeling, there is a fundamental reason to utilize the
wet weights. The spectral information that the digital sensors (i.e., RGB, multispectral)
captured at the fields is a direct reflection of the grasses’ green matter, which includes the
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water content at the time of each flight. While there are exceptionally high correlations
between wet weights and dry weights for our samples (Figure 10), we did not want to
conduct an indirect regression using the dry weights as the response variable since the
spectral data and derivatives (i.e., NDVI, NDRE) collected over the green matter plots.
Furthermore, using dry weights carries the complexity that samples must be transported
and dried in specialized facilities. Drying the full contents of 5 m × 1 m plots (i.e., the
dimensions of the Shandon site) was neither practical nor feasible. We considered that the
strong correlations between wet and dry weights for the samples support our utilization
of wet weights as a transparent proxy for forage yield. Finally, the multispectral imagery
provides wall-to-wall spatial coverage of each field plot, not just the bagged sample that
was taken to the lab to measure dry weights, and thus, its information can only be related
to the wet weights of the plot. We are confident that variability between sites and harvests
was minimized by converting all the wet weights to a standardized measure; forage yield
allows for more meaningful comparisons and analysis of forage biomass data. While we
conducted different harvests, all the values were standardized, as described in the methods;
however, our modeling results were not intended to provide additional insights about
growth stages.

4.2. Using UAVs to Estimate Forage Yield for Grasses of Semiarid Environments

Our emphasis on testing the ability of reduced RGB datasets and derivatives is justified
as several references jointly suggest that RGB imaging is the most commonly used method
for estimating aboveground biomass (AGB) in grass systems using UAVs [41,42]. Overall,
these papers suggest that RGB imaging is a simple and cost-effective method for estimating
forage biomass using UAVs compared to higher-end multispectral sensors, such as the
Altum-PT used in this study. While extensive information is found for modeling forage
yield in prairie grassland systems, few studies have documented work on the grasses
that were the focus of this research. A combination of the plant-normalized difference
vegetation index (NDVI) and LiDAR measurements to estimate the biomass of a tall
fescue pasture was conducted in Australia. In this study [43], they mounted a LiDAR
unit on a vehicle to derive canopy height and used an active optical reflectance sensor to
determine NDVI. The measurements of NDVI and pasture height were then combined to
estimate biomass. There are reports that satellite imagery has been used to model forage
biomass for Phalaris aquatica and Dactylis glomerata. In that study, they used satellite remote
sensing and machine learning techniques to quantify the total standing dry matter (TSDM),
standing green biomass, and standing dry biomass of these two species [44]. This research
demonstrated the use of remote sensing technology, specifically satellite imagery, to model
forage biomass. However, no UAV data collection was used, and plots were much larger
(~1 ha) than the ones used in our research. We did not find direct evidence in the literature
regarding the use of UAV imagery to model forage yields for BBGW or IWG. Studies about
biomass partitioning leaf, stem, and inflorescence [45] have been reported for Thinopyrum
intermedium, but this study was observational, and no UAV or remote sensing data were
used. No references were found either for any of the Bromus spp. or Leymus triticoides
(beardless wildrye) grasses. In this context, our research presents pioneer results in forage
yield estimates for prominent species used in restoration efforts across the Intermountain
United States.

4.3. The Volumetric Space as a Strong Predictor of Forage Yield

The use of metrics such as the 3D volume derived from UAV RGB imagery has been
widely documented in modeling forage biomass. Researchers [46] have found that super
high-resolution (1 cm/pixel) crop surface models can estimate the fresh and dry biomass of
barley (Hordeum vulgare) with high accuracy. In another study [42], the application potential
of consumer-grade UAV RGB imagery in estimating maize above-ground biomass was
reported, and the results showed that plant height directly derived from UAV RGB point
clouds had a high correlation with ground-truth data. A deep learning-based method
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using UAV-based RGB images was developed [47] to estimate the biomass yield of forage
grass species (Panicum maximum Jacq.) with high accuracy in tropical areas. Research on
maize [48] that maximized the volumetric space called by the authors BIOVP was found to
retain the largest strength effect on biomass estimates. Our research has shown that for most
of the grasses (Figure 13 and Table 6), the utilization of the volumetric 3D space as the sole
predictor using simple linear models LM-3D rivals those results from more complex data
structures (e.g., LM-RGB and LM-Multi) and more powerful modeling algorithms, such as
random forests. This was evident for the dense canopy grasses whose wet weights had a
very strong linear relationship (Figure 12) with the volumetric 3D space. For dense canopies
(e.g., Phalaris aquatica), the digital surface model DSM that can be extracted from the dense
point cloud could more accurately represent the 3D space occupied by the leafy material
from the soil to the top of the canopy at the field (See Figure S6 on the Supplementary
Material). The linear model can easily explain most of the variation in the estimated forage
yield due to how well these grasses fill the space and how well this space can be represented
by the DSM.

Conversely, poor results using the volumetric 3D space were obtained for sparse
canopy grasses, such as bluebunch wheatgrass BBWG (Pseudoroegneria spicata). We hypoth-
esize that two main factors affected the poor performance of the volumetric 3D space in
this case. One factor is the severe herbivory attack that was present during the year 2023
(Figure 5b and Figure S2), where defoliation by grasshoppers eliminated vast quantities
of green leaf matter. We observed better results for most of the grasses when a newer
model structure did not include the year 2023 (Table 5). This clearly indicates the impact
of the defoliation by grasshoppers on overall model performance. The second factor is
the over-generalization that can occur with the dense point cloud during photogrammetry
processing. We illustrate this assumption in the Supplementary Material (Figure S7). A
grass such as BBWG projects multiple stems and seedheads in a panicle-shaped canopy that
can be represented in the dense point cloud, although not completely due to the size of the
stems, which, in most cases, are smaller than the pixel size used in our flights. Furthermore,
many of the stems are not captured in the dense point cloud. This situation creates multiple
empty spaces in the canopy that cannot be accurately represented in the digital surface
model DSM. The density of the point cloud is simply not enough to generate an appropriate
interpolation of elevations and 3D volumetric space estimations.

While strong limitations to modeling yield for grasses with sparse canopies using
only the volumetric 3D space have been shown in our research, very acceptable results
(Figure 14 and Table 6) were obtained for dense canopies. This is quite important as the
volumetric 3D space can be estimated using dense point clouds generated from low-end
RGB sensors, which are much more affordable than multispectral sensors.

4.4. Differences across Model Structures—How Multispectral Datasets Improve Model Fit

We found that by using the full array of spectral bands (RGB, red edge, and NIR)
and vegetation indices, we were able to increase the accuracy of our predictions for
sparse canopy grasses (i.e., BBWG). This was possible, however, only when the multi-
spectral dataset was used with the random forest algorithm (i.e., RF-Multi model structure,
Figure 14). We observed very poor relationships between the RGB VIs and our response
variable (Supplementary Material Figure S8a), while moderately strong correlations were
present between forage yield and the multispectral VIs (Supplementary Material Figure
S8b). The RF-Multi model variant included covariates, such as NDVI, RVI, BGI, and GLI
(Section 3.3.1), which have been heavily used to model biomass and yield (Table 2). Our
results showed that the inclusion of these near-infrared vegetation indices (i.e., NDVI,
RVI, and NDRE) was far more beneficial in improving the accuracy of forage yield for the
sparse than for dense canopy grasses. Studies using hyperspectral canopy reflectance [49]
have found that VIs from the visible and near-infrared can be used to estimate yields in
water-stressed forages, such as alfalfa (Medicago sativa) and tall wheatgrass (Agropyron
elongatum L.). The NDVI and the NDRE are commonly used as proxies for vegetation
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quantity and quality [50], and the NDRE, in particular, has been used to model biomass
in rangelands with significant spatial and temporal variability [51]. Furthermore, scien-
tists [52] have also found that NDRE can outperform the NDVI to model the nitrogen
content for switchgrass (Panicum virgatum). And, concordant with our results, this study
found that some traits could be modeled using simple linear models, but other traits (N
content) required nonlinear approaches.

Our findings clearly suggest that when it is necessary to obtain forage yield estimates
for sparse canopy grasses, then a sensor that can collect information on the red edge
and NIR parts of the electromagnetic spectrum is necessary to obtain moderately accurate
predictions. Nevertheless, even with a multispectral sensor, linear models are outperformed
by non-parametric modeling approaches such as random forests. This was distinctly
demonstrated with the addition of the Regression Receiver Operating Characteristic RROC
curves and the comparison of the scaled regression performance (RMSE, RROC, MAE)
metrics for all the global models, as depicted in Figure 15a,b. In both plots, it was evident
that the non-parametric global models (RF-RGB and RF-Multi) surpassed all the linear
model variants.

4.5. Limitations of the Global Models and Future Work

The models presented in this study only apply to the grasses that were harvested in
our three site locations, and due to the utilization of multiple research fields, species, and
harvests, we acknowledge that the comparison between species and models is unbalanced.
However, we do not consider that this situation creates additional uncertainty in our results.
As we indicated earlier (Section 2.4.2), our strategy of using stratified cross-validation
(SCV) homologizes the chances of sites, species, and harvests to fully participate in the
global model. Using SCV in statistical problems dealing with unbalanced datasets has
shown promise [53,54] to prevent model bias toward the class or stratum that has more
observations (i.e., grasses such as Festuca arundinaceae and Pseudoroegneria spicata in this
research) as SCV guarantees equal representation in both training and validation sets [55].
There certainly is a need to include more species with sparse canopies to evaluate if our
assumptions about over-generalizations of the dense point cloud apply to other species
with a similar canopy as BBWG (Pseudoroegneria spicata). There is a high likelihood that our
models may be biased by not including data from drier years, as the year 2023 was one
of the wettest on record for the Western USA, and most grasses responded with vigorous
forage production, which is not the norm. Having full canopies with green matter does
augment the prediction power of volumetric 3D space, as demonstrated in this research.
Nevertheless, herbivory can drastically impact model performance when trying to explain
the variation in sparse canopy grasses. We cannot infer whether the models apply to
grasses in very dry years, however. We are advocating for simpler RGB sensors from
which the 3D volumetric space can be generated. This type of research can be enhanced in
the future by testing pure RGB systems as opposed to multispectral sensors, as we used
here. If RGB sensors are to be used, the field protocol must include the utilization of hand
spectroradiometers to capture samples at the time of flight so that raw digital numbers of
the imagery can be converted to percent surface reflectance.

5. Conclusions

We developed models to predict forage yield for grasses that are important in range-
land restoration across the western USA. We used predictors that were generated from
multispectral imagery acquired using unmanned aerial vehicles (UAVs), aka “drones”.
These models performed quite well for grasses with dense, full canopies but struggled with
those that had sparse panicle-type canopies. We hypothesized that this was due to observed
defoliation by insects and the over-generalization that can occur when deriving the digital
surface model from the photogrammetry-derived dense point cloud. We evaluated the
strength of the 3D volumetric space to generate predictions and concluded that for most
grasses, the volume was sufficient as a lone predictor and could be used in simple linear
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regression models. Our results suggest that to generate moderately accurate predictions
for sparse canopy grasses, a full dataset (one that includes the RGB, red edge, and NIR
spectrum) is required and that this should be used with a more robust non-parametric
algorithm, such as random forests. The development of geospatial models that capitalize
on high spatial resolution imagery collected using UAVs can provide researchers and
managers with rapid and replicable estimates of forage yield, which can contribute to the
understanding of ecosystem services provided by grasses. Our workflows are transparent
and highly replicable and were developed to foster grass forage yield estimates, which are
important in grassland management and for ecological assessments. Grass forage yield
estimates are central for ensuring an adequate supply of feed for livestock, sustaining
the ecological balance of grasslands, understanding the relationship between climate and
forage growth, promoting soil health and carbon sequestration, and optimizing agricultural
practices. Accurate and replicable estimates of grass forage yields offer valuable knowledge
for land managers, researchers, and farmers, enabling them to make informed decisions
and manage grassland ecosystems.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/grasses3020007/s1, Figure S1: Forage harvest activities at the
Richmond, UT site in 2023.; Figure S2: Examples of poor canopy conditions due to defoliation by
grasshoppers at the Millville, UT site in 2023.; Figure S3: Variable importance plots for the RGB (left
panel) and multispectral (right panel) derivatives. Red line indicates the threshold (20%) that was
arbitrarily used to choose predictors to include in the stratified cross-validation models.; Figure S4:
Linear models LM-3D, LM-RGB, and LM-Multi scatterplots and adjusted R2 for the different model
structures (red panels) using the grasses (blue rows) that were not included during model fit using
cross-validation.; Figure S5: Random forest RF models scatterplots and adjusted R2 for the different
model structures (red panels) using the grasses (blue rows) that were not included during model fit
using cross-validation.; Figure S6: Schematic representation of the dense point cloud for a 5 × 1 m
plot of a dense, canopy grass Phalaris aquatica with a fraction of the derived digital surface model
DSM. A picture taken prior to the first harvest is also included.; Figure S7: Schematic representation
of a typical sparse canopy grass Pseudoroegneria spicata that shows the multiple empty spaces that
cannot be depicted in the dense point cloud and, thus, in the corresponding digital surface model
DSM.; Figure S8: Linear relationships and coefficients of determination between the response variable
forage yield: (a) RGB VI, (b) Multispectral red edge and NIR VIs.
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