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Abstract: The drug discovery and development process is very lengthy, highly expensive, and
extremely complex in nature. Considering the time and cost constraints associated with conven-
tional drug discovery, new methods must be found to enhance the declining efficiency of traditional
approaches. Artificial intelligence (AI) has emerged as a powerful tool that harnesses anthropo-
morphic knowledge and provides expedited solutions to complex challenges. Advancements in
AI and machine learning (ML) techniques have revolutionized their applications to drug discovery
and development. This review illuminates the profound influence of AI on diverse aspects of drug
discovery, encompassing drug-target identification, molecular properties, compound analysis, drug
development, quality assurance, and drug toxicity assessment. ML algorithms play an important
role in testing systems and can predict important aspects such as the pharmacokinetics and toxicity
of drug candidates. This review not only strengthens the theoretical foundation and development
of this technology, but also explores the myriad challenges and promising prospects of AI in drug
discovery and development. The combination of AI and drug discovery offers a promising strategy
to overcome the challenges and complexities of the pharmaceutical industry.
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1. Introduction

Drug discovery and development is a multifaceted, ravelled endeavour. This intricate
process encompasses four pivotal phases, beginning with the identification and validation
of targets, progressing through compound screening and lead optimization, and culminat-
ing in preclinical investigations and clinical trials. The identification of pathophysiological
factors and biological targets is the first step of this process. Bioinformatics, genomics, and
proteomic research are necessary to unravel cellular and genetic targets. Initially, the first
molecule, i.e., hit, that exhibits activity against the specified target is identified. This can
be achieved using chemical libraries or by isolating natural products from bacteria, plants,
and fungi [1]. In the next step, the lead molecule that has favourable potential for the devel-
opment of a drug is identified. Lead optimization is the process of further modifying the
selected lead to increase its specificity and effectiveness even at lesser doses. The functional
properties of newly synthesized therapeutic candidates are improved through an iterative
cycle combining cellular assays and structure–activity relationships. The animal models are
then used for in vivo studies, including pharmacokinetic analyses and toxicity assessments.
The drug candidate is finally administered to patients in clinical trials after all preclinical
testing. Clinical trials play a fundamental role in determining whether the drug candidate
can deliver the intended medical benefits while ensuring the well-being of the patients
involved [2]. The process is time-consuming and cumbersome.

Drugs Drug Candidates 2024, 3, 148–171. https://doi.org/10.3390/ddc3010009 https://www.mdpi.com/journal/ddc

https://doi.org/10.3390/ddc3010009
https://doi.org/10.3390/ddc3010009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ddc
https://www.mdpi.com
https://orcid.org/0000-0002-2029-3424
https://doi.org/10.3390/ddc3010009
https://www.mdpi.com/journal/ddc
https://www.mdpi.com/article/10.3390/ddc3010009?type=check_update&version=1


Drugs Drug Candidates 2024, 3 149

Therefore, pharmaceutical companies seek methods to decrease expenses and speed
up their initiatives. Artificial intelligence (AI) is the ability of a machine to imitate the
cognitive activity of the human brain in problem-solving and learning [3]. Technology-
based AI systems can replicate human intelligence using a range of cutting-edge tools
and networks. AI-based technologies are increasingly being used at different stages of the
drug discovery process to save time and improve profitability. These include real-time cell
sorting, cell classification, calculation of compound attributes based on quantum mechanics
(QM), computational organic synthesis, creation of new compounds, and a variety of
other tasks [4–7]. Figure 1, illustrates the comparative analysis between conventional and
AI-driven drug discovery timelines, providing a visual representation of the significant
acceleration achieved by AI technologies in this critical domain.
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Figure 1. Impact of Artificial Intelligence on drug discovery: a comparative analysis of time required
for key steps.

All phases of drug discovery and development use machine learning (ML) algorithms
and software to hasten the process. McKinsey Global Institute predicts that rapid advances
in AI-driven automation will fundamentally change in the way society works [8]. AI
has recently gained importance in drug development as it serves to reduce the time and
money spent on research, and the failure rate of clinical trials. Many AI companies are
focusing on drug development due to the availability of big data for life sciences and the
rapid development of ML techniques [9]. The applications of ML are now visible in novel
target identification, deciphering disease-target associations, small-molecule design and
optimization, uncovering disease mechanisms, understanding of disease and non-disease
phenotypes, identification of unknown biomarkers for prognosis, and many more [10–14].
In recent years, the pharmaceutical industry has undergone significant data digitization, but
it is difficult to acquire, verify, and use this knowledge [15]. AI can process large amounts
of data through better automation and this encourages its adoption [16]. Numerous
ML algorithms such as Support Vector Machine (SVM) and Random Forest (RF) have
been employed in drug design to bridge the gap between random and rational drug
discovery [17,18]. Hence, an increasing number of medicinal chemists have been using
various AI techniques to address the fundamental problem of evaluating and predicting
the biological effects of compounds [19]. The pattern recognition approach has gained
special attention, and it focuses on explaining and exploring common patterns of chemical
entities. It operates under the fundamental assumption that compounds sharing analogous
structural formulas are likely to exhibit comparable physicochemical properties and in vitro
biochemical effects [20,21].

2. The Drug Discovery Process: A Brief Overview

Various diseases or clinical conditions have no effective treatment available on the
market; hence, drug development programmes still need to address these unmet clinical
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needs. Early academic research often results in the identification of proteins or pathways
that may have therapeutic benefit; however, the selection of a target may require further
validation before drug development proceeds. Once clues are discovered, in-depth research
is conducted to identify a biological or small-molecule drug candidate. It undergoes
preclinical testing and clinical trials to become a commercial drug [22]. From discovery
to approval, the expensive drug development process often takes more than a decade. It
should be noted that the associated costs and approval times may vary [23]. Computational
approaches have long played a key role in drug development and discovery. However,
there are still some problems associated with traditional computing methods, including
time, computing cost and reliability [24,25]. Molecular dynamics (MD) simulation is used
in drug discovery to evaluate protein–ligand interactions and binding stability. One of
its major disadvantages is that it can be extremely laborious and time-consuming [26].
Currently, large-scale high-throughput testing methods and randomized strategies are
widely used in medicinal chemistry [27]. These methods examine many possible molecules
to identify molecules with the required properties. However, these techniques can be
expensive and cumbersome and may often produce inaccurate results [28]. Similarity-
based approaches, e.g., ligand-based virtual screening (LBVS), are indeed characterized
by significant “selectivity” in identifying various active ingredients. Its disadvantage in
“real” applications is its tendency towards false-positive detections [29]. The reliance of
drug discovery on trial-and-error testing results in inaccurate prediction of potential new
bioactive substances. Hence, the limited traditional pharmaceutical testing techniques
have proven to be effective in the past [30]. To accelerate the discovery process, industrial
research and development (R&D) continually evaluates new technologies across the various
research disciplines. The ever-increasing costs and delays in the entire process pave the
way for investments in highly complex technologies, improved production methods and
innovative research methods for tangible successes [31]. Various AI-based algorithms
such as reinforcement learning, scalable, rule-based, and supervised and unsupervised
techniques could help to solve these problems [32,33].

3. Basics of AI and Machine Learning (ML)
3.1. Artificial Intelligence

AI is dedicated to the computational comprehension of intelligence and the de-
velopment of entities that are capable of demonstrating these actions [15]. These enti-
ties/machines can also carry out activities that need human intellect. The process involves
gathering data, creating rules for applying it, coming to general or precise conclusions,
and then engaging in self-correction [34]. The key benefit of an AI-based strategy is that it
learns from instances and can create a model, even when we have a poor understanding of
the underlying mechanism. Healthcare uses AI in the detection and treatment of several
ailments. Some of the examples include IBM Watson for oncology, PathAI for pathology
diagnosis, Tempus for cancer treatment, and Insilico Medicine for drug discovery [35]. The
pharmaceutical community has experienced a tremendous rise in data digitalization in
recent years. However, with the advent of digitalization, it has become more difficult to
gather, evaluate, and apply this knowledge to complicated clinical issues [15]. This encour-
ages the adoption of AI since it can automatically process massive volumes of data [16].
Thus, AI consists of several cutting-edge devices and networks that may imitate human
intellect [36,37].

Computer modelling based on AI and ML offers excellent opportunities for target
identification, peptide synthesis, toxicity and property assessment; physicochemical studies
of drugs, and monitoring of drugs in terms of their efficacy and their repositioning [38].
The description of some AI applications in the pharmaceutical industry is presented in
Figure 2.
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3.2. Machine Learning

ML is about training computers to make sense of data and make decisions based
on patterns and examples. This may be supervised learning, reinforcement learning, or
unsupervised learning [39]. Any data may be employed to develop prediction models
using ML. To build a model, the dataset must first be cleaned, outliers should be eliminated,
and missing values must be imputed. Data selection, feature extraction, key attribute and
algorithm selections, model development, and model evaluation are crucial steps [40,41].

3.3. Supervised Machine Learning

Employing labelled datasets to train algorithms for data categorization or accurate
result forecasting is known as supervised ML. Once input is provided, the model uses
a reinforcement learning (RL) technique to update the weights to ensure the model fits
correctly. Numerous industries and organizations use supervised learning to address a
wide range of practical issues. The two types of supervised learning are classification and
regression [42].

3.4. Unsupervised Machine Learning

When there is an input variable but no output variable then unsupervised learning is
utilized. Its primary objective is to comprehend the distribution of data to obtain a better
understanding. It can be further divided into association and clustering [42].

3.5. Reinforcement Learning

RL is an intriguing subdomain of ML that has captured substantial interest within the
academic and commercial realms. In contrast to supervised and unsupervised learning,
RL is a method of continuous learning that preserves autonomy. RL can react swiftly to
changing settings; it is employed in trading, gaming, and robotics [43]. In certain situations,
supervised learning outperforms RL in classification tasks; nonetheless, RL can constantly
learn with little to no human involvement, which is desirable [44,45].
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3.6. Deep Learning

A subtype of ML called deep learning (DL) involves the system learning on its own
from unlabelled and unstructured data. Igor Aizenberg et al. used the phrase “deep
learning” to describe an artificial neural network (ANN) in the late 20th century [46].
ANNs with numerous layers of processing are used in DL [39]. DL works particularly well
with difficult jobs with enormous amounts of high-dimensional data. However, it involves
more computations than conventional ML and is usually called an “AI black box” as the
user cannot see many of the processing levels. Hence, there are additional difficulties and
dangers in understanding the model. Large Language Models (LLMs) are DL models that
are trained on big datasets to produce human-like language. LLMs include chatbots based
on pre-trained generative transformer (GPT) architecture such as ChatGPT and GPT-4 [47].

DL and ML algorithms are examples of AI which has emerged as a potential solution
to issues and challenges in the process of drug discovery [35]. Additionally, there are
several time-consuming and difficult phases involved in the discovery and development of
drugs that can be handled with ease using AI [48] (Figures 3 and 4).
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4. AI in Drug Target Identification

Drug development is a long, expensive, and risky process that requires more than
10 years and USD 2 billion to bring a new drug to market [49]. Fewer than 500 effective
drug targets had been discovered by 2022, which is a negligible portion of the estimated
druggable targets in humans [50–52]. Target identification is one of the most important
processes to determine the biological cause of a disease and provide effective therapies [53].
It is the process of selecting appropriate biological molecules or cellular pathways that can
be altered by drugs to achieve therapeutic benefits. The availability of biomedical data has
increased in recent years, ranging from basic research into the causes of disease to clinical
studies. However, this large amount of information poses challenges for data analysis
in terms of scalability, data integration, data quality, noise, computational complexity,
interpretability, and validation. AI can manage and analyse such complex networks of
biological data. Recently, a promising method for target identification has been developed
that combines multi-omics data with AI algorithms [54]. Puna et al. combined various
bioinformatics and DL-based models trained using disease-specific text and multi-omics
data to prioritize treatable genes and identify potential therapeutic targets in amyotrophic
lateral sclerosis (ALS), yielding 18 potential therapeutic targets for ALS. Leveraging more
than 20 AI and bioinformatics models, PandaOmics assesses targets by considering their
associations with specific diseases, along with information on druggability, developmental
stage, and tissue specificity. By combining omics AI scores, text-based AI scores, finance
scores, and key opinion leaders (KOL) ratings, PandaOmics could forecast the target genes
linked to a particular disease through the use of sophisticated DL models and AI tech-
niques [55]. Validation of proposed AI therapeutic targets for ALS in an ALS-mimicking
drosophila model revealed eight unreported targets whose elimination significantly re-
verses ocular neurodegeneration. Zhang et al. also developed a ML-based technique to
recognize KANK1 as a novel ALS-related gene in the same therapeutic area and confirmed
the neurotoxic consequences of KANK1 mutations replicated by CRISPR-Cas9 in human
neurons [56]. DeepDTnet was developed by Zeng et al. to aid in the in silico discovery of
molecular targets for already approved drugs. It is based on 15 different types of chemi-
cals, genomic, phenotypic, and cellular networks. In a mouse model of multiple sclerosis,
one of the discovered drugs targeting human ROR-γt demonstrated specific therapeutic
benefit [57].

AI has received a lot of attention, and ML-based algorithms, especially AI techniques,
have produced remarkable results in the pharmaceutical industry [58]. The modern DL de-
signs such as generative adversarial networks (GANs), recurrent neural networks (RNNs),
and transfer learning approaches are attracting more attention and are used in many more
healthcare applications than older ML techniques [59]. AI-powered Large Modules (LMs)
help to speed up target identification and simplify searches. In addition to using a multitask
learning neural network with shared character and word layers (MTM-CW), automatic
biomedical named entity recognition (BioNER) is a useful method for identifying chemicals,
diseases, and genes that are embedded in free-text documents [60,61]. AI-driven LMs offer
potential advantages, including the capability to analyse data and assist in the identification
and prioritization of targets [60].

Furthermore, Fabris et al.—using genetic or protein traits such as gene ontology terms,
protein–protein interactions, and biological pathways—developed a DL approach with
a new modular architecture to identify human genes associated with several age-related
diseases [62] (Figure 5).

Synthetic data are data that have been intentionally created to resemble real-world
patterns and characteristics. AI algorithms can be used to generate synthetic data to
replicate different biological circumstances, allowing scientists to explore and test a wider
range of possible outcomes [63,64]. Additionally, the predictions of AI systems may be
verified using synthetic data that provide higher assurance for the target discovery process.
There are two groups of AI algorithms; i.e., ML-based bioanalysis, and network-based
bioanalysis algorithms. These are commonly used for predictive cancer target identification
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and drug development. However, even after the use of ML algorithm, there are still three
significant obstacles to target identification and drug development for cancer [65]. The
difficulties are the lack of reliable data for validation, integration of disparate information.
and DL models that are difficult to understand [66–68]. Although there has been significant
improvement in this field, a lot more progress is required.
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5. AI for Insightful MD Data Analysis

Molecular dynamics (MD) are extensively employed in the field of drug discovery,
playing a crucial role in understanding molecular interactions and predicting drug be-
haviour. Its research applications include lipid membrane permeability, protein–ligand
binding, protein–protein interactions, and partition coefficients. The advantage of MD is
the ability to determine thermodynamic characteristics such as the free energy of binding
in atomistic detail [69]. Based on a general model of physics that governs interatomic
interactions, MD predict how each atom in a protein or other molecular system will move
over time [70]. The fundamental concept of MD is to determine the force that all other
atoms in a biomolecular system exert on each atom by knowing the position of all. To
determine the forces in an MD simulation, a model called a molecular mechanical force
field is used, which is often adjusted to the results of some experimental observations and
the results of quantum mechanical calculations. Additionally, these simulations can predict
how biomolecules respond to changes such as mutation, phosphorylation, protonation,
or the addition or removal of a ligand at the atomic level [71]. Traditional MD tools such
as GROMACS 2021, Amber 20, NAMD 2.14, and GROMOS 56a7 are well established and
used to study interactions between disease targets and drugs [72–75]. With increased
computing power and advanced software, MD is an effective method for studying systems
of biomolecules and ligands; however, it has to deal with enormous amounts of data and
extremely complex simulated systems [76]. The massive amounts of data generated by MD
can be processed quickly and efficiently using DL techniques. To increase the efficiency
and speed of analysing MD data, DL can transform the high-dimensional structure space
into a low-dimensional feature space. Surface extraction and free energy kinetics, force
fields, coarse-grained molecular dynamics, thermodynamics, and other applications are
just a few of the many applications of DL in molecular simulations. ML models are im-
portant tools in the field of MD. With its exceptional ability to predict chemical qualities
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such as binding affinity and solubility, RF models are a useful tool for managing intricate,
high-dimensional data. MD trajectories are analysed using RNNs, which capture temporal
relationships and provide insights into dynamic processes. Because they are good at eval-
uating chemical structures, graph neural networks (GNNs) are a powerful tool for tasks
such as drug-target binding and protein–protein interaction prediction. Meanwhile, the
creation of new molecular structures is facilitated by GANs, which accelerates progress
in materials research and drug development. These ML models including GANs, GNNs,
RNNs, and RFs have transformed the field of molecular dynamics and offer invaluable
resources for comprehending and investigating molecular behaviour [77]. Plante et al. used
a DL technique to process large MD trajectories and classify GPCR ligands into full, partial,
or reverse agonists with good accuracy. The red, green, and blue (RGB) pixels represent the
X, Y, and Z coordinates of the protein atoms in the MD trajectory. The confusion matrix was
used to train the neural network to predict the classification class labels of GPCR ligands.
This work provided an accurate and efficient method to distinguish ligand classes and
dynamic pattern differences between two GPCR targets by converting the associated MD
trajectory information into image pixel representations to train a deep learning model [78].
Marchetti et al. employed the machine learning technique to classify allosteric modulators
into activators or inhibitors based on conformational ensembles obtained from simulated
MD trajectories of the molecular chaperone Hsp90. It shows how the machine learning
technique can be expanded to explore multiple targets for allosteric diseases and can be
used to develop potential allosteric drugs [79]. To develop effective cementitious binders,
Lyngdoh et al. used ML with MD to study the interactions between calcium silicate gel
and hydrate. Interpretability was particularly important because the best model they could
obtain was an artificial neural network that yielded a probability vector. The importance of
each input feature to the final prediction was determined using the SHAP approach [80].

In molecular docking, the scoring factor or scoring function (SF), is a mathematical
function used to evaluate the binding affinity between a ligand and a receptor. Van der
Waals forces, electrostatic interactions, hydrogen bonds, and hydrophobic interactions
are only a few of the molecular interactions that are taken into account by the SF factor.
Through its guidance of lead identification, virtual screening, and ligand optimization
activities, it plays a critical part in the drug development process. When comparing scoring
criteria between ML and traditional methodologies, ML approaches have several benefits
over conventional methods. These techniques utilize sophisticated algorithms, such as
neural networks or RF, to identify intricate patterns and correlations within the data. More
accurate predictions are made possible by their ability to manage high-dimensional feature
spaces and capture non-linear correlations. Conventional methods, on the other hand,
rely on pre-established mathematical formulas that are derived from empirical or physical
principles. Conventional methods may not be able to fully capture the intricacy of molecular
interactions, despite their widespread usage and insightful contributions. In 2017, Ragoza
et al. developed a technique using CNN scoring algorithms to automatically learn the basic
binding-related properties of the PLI, given the full 3D description of the PLI as input. Their
CNN scoring functions were optimized to distinguish known binders from non-ligands,
and between valid and invalid binder positions [81]. A ML-based grading mechanism was
created by Nguyen et al. in 2018 to choose the postures produced by GOLD, GLIDE, and
Autodock Vina. Using a targeting ligand, they created a complex training dataset through
WPB. They then docked the ligands again to the proteins of the selected complexes and
used CNN to collect topological features, and implemented RF to understand biomolecular
structure. The final predictions for this strategy were determined by combining the energy
values predicted by these two machine learning algorithms [82].

By using ML to extract relevant information and understand complex interactions
between molecular properties and binding affinities, ML technologies can overcome these
constraints [83] (Table 1).
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Table 1. Summary of machine learning methods used in scoring functions (SFs).

Sr. No. Scoring Factor (SF) Feature Representation ML Model Application/Pharmaceutical
Example Reference

1 RF-Score-VS Terms from the three of RF-score versions RF VS [84]

2 SIEVE-Score Glide’s per-residue interaction energy RF VS [85]

3 Binding Affinity Molecular description,
protein–ligand interaction RF Drug binding prediction,

VS [72]

4 RF-Score Pair counts for elemental atoms RF Scoring [86]

5 SVM-SP Knowledge-driven pairwise possibilities SVM Target-specific VS [87]

6 Pharm-IF Fingerprints of
pharmacophore-based interaction SVM, RF, ANN Target-specific VS [88]

7 PADIF-SVM Fingerprints of interaction derived
from GOLD SVM, ANN Docking based-target

prediction [89]

8 SVR-KB Knowledge-based potentials for pairs SVM Scoring [90]

9 KDEEP Specialized property channel CNN Scoring [91]

10 Binding Activity,
Affinity Molecular descriptors XGBoost Drug Affinity prediction, QSAR

modelling [92]

11 RI-Score Index of stiffness unique to an element RF Scoring [93]

12 Bioactivity Molecular fingerprint SVM Drug Design [94]

13 ID-Score 50 terms linked to protein–ligand interaction SVM Scoring [95]

14 Drug Classification Chemical features, compound properties Logistic Regression Drug Categorization [96]

15 EIC-Score EIC or elemental interactive curvatures GBDT Scoring [97]

16 NNScore Information driven paired potential ANN VS [98]

17 CScore Pairs of elements are converted by two fuzzy
membership functions

Modified CMAC
network Scoring [99]

18 TNet-BP Topological fingerprints CNN Scoring [100]

19 Deep-VS Types of amino acids, charges, distance, and
atom types CNN VS [101]

Abbreviations: RF, Random Forest; VS, Virtual Scoring; SVM, Support Vector Machine; CNN, Convolutional
Neural Network; ANN, Artificial Neural Network; GBDT, Gradient Boosted Decision Tree.

6. Compound Screening with AI

The aim of drug discovery is to identify small molecules that can alter the function of
the target protein and disease phenotypic characteristics. At the same time, there is also
a need to search for small molecules with good pharmacokinetic properties and minimal
toxicity. The identification of drug candidates, their validation, pharmacokinetics, and pre-
clinical toxicity assessment are difficult, time-consuming, and expensive processes. It takes
an average of 10 to 12 years for a drug to reach the market, and between USD 800 and USD
1.8 billion is spent on each successfully discovered drug [102,103]. The application of AI in
drug screening began a revolutionary era in pharmaceutical research, significantly reducing
R&D costs by 50% while increasing efficiency and accuracy [104]. AI addresses various
challenges related to drug screening, including predicting physicochemical properties and
assessing bioactivity and toxicity.

6.1. Primary Drug Screening: Enhancing Cell Classification and Sorting

AI can help to ease the load of repetitive and challenging tasks, making the drug
development process faster. These tasks involve various activities such as sorting cells,
calculating properties of small molecules, using computers to create organic compounds,
designing new compounds, developing tests, and predicting the 3D shapes of target
molecules [105]. Accurate identification of cell type is possible using AI-based approaches,
particularly the least square vector support method (LS-SVM). With a classification accuracy
of 95.34%, this method makes a significant contribution to high-throughput automated cell
sorting techniques [4,105,106]. In addition, the interpretation of computerized electrocar-
diography (ECG), which is a fundamental step in the clinical processes of diagnosis and
treatment, has shown the promise of AI [107].
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Based on a CNN architecture, Nitta et al. developed the Intelligent Image-activated
Cell Sorting system (iIACS), which can sort cells in real time based on cell pictures. The
system combines a double membrane pump, a two-stage microfluidic chip with 3D hy-
draulic focusing, and a high-speed fluorescence microscope to enable automatic liquid
focusing, cell sorting, and real-time detection. The intercellular contacts and intracellular
localization of proteins allows sorting of blood cells and microalgae in real time. To obtain
higher-quality cell images and reduce processing time, researchers modified the iIACS-
based cell imaging approach with an image sensor-based optomechanical flow imaging
method and improved the system hardware [4].

6.2. Secondary Drug Screening
6.2.1. Predicting Physicochemical Properties

AI is ideal for secondary drug screening, where predicting physicochemical proper-
ties is crucial for drug development. Deep neural networks (DNNs) algorithms that use
chemical descriptors such as SMILES strings and potential energy measurements are used
to generate viable compounds [7,108]. To predict chemical properties, these networks are
divided into generation and prediction phases. Each stage is trained independently through
supervised learning [7]. The study highlights the importance of considering physiochemi-
cal parameters such as melting point and logP when selecting the best drug candidates.
Using data from the Environmental Protection Agency (EPA) and the Estimation Pro-
gram Interface (EPI) package, Yang et al. developed a quantitative structure–property
relationship (QSPR) method to determine six physicochemical properties of environmental
pollutants. These include the bioconcentration factor (BCF), log P, log S, melting point
(MP), boiling point (BP), and vapour pressure (log VP). The lipophilicity and solubility
of various substances were predicted using neural networks based on ALGOPS software
(version 2.1) and ADMET predictor. It has been shown that it is possible to predict the
solubility of compounds using DL techniques such as graph-based convolutional neural
networks (CVNN) and recurrent neural networks on undirected graphs [109]. Panapitiya
et al. evaluated various molecular representation techniques (such as molecular descriptors,
SMILES, molecular graphs, and 3D atomic coordinates) and deep learning techniques
(such as fully connected neural networks, RNNs, graph neural networks, and SchNet) for
solubility prediction. According to the authors’ results, which were based on the same
test dataset, the fully connected neural network outperformed other neural networks in
predicting solubility with chemical descriptors. In addition, the researchers examined the
importance of different variables in prediction and found that two-dimensional molecular
descriptors made the greatest contribution [110].

6.2.2. Predicting Bioactivity: Optimizing Compound Activity

ML techniques, including matched molecular pairs (MMPs), RF, gradient boosting
machines (GBMs), and DNNs, are used to predict chemical bioactivity. The performance
of RF and GBMs is outperformed particularly well by the combination of MMP with
DNN [101,111,112]. This method can predict multiple bioactivity characteristics including
oral exposure, intrinsic clearance, ADME, and mode of action, which helps in decision-
making in drug development [113–115]. Koutsoukas et al. used a multilayer perceptron
model based on molecular fingerprint representation of the compounds to predict various
bioactivity (pKi and pIC50) against seven targets, including two GPCRs, cannabinoid
receptor 1 and dopamine receptor D4. Additionally, the researchers found that MLP
performs better than traditional ML techniques on large datasets. However, they pointed
out that DL models require much finer tuning of hyperparameters to achieve high predictive
performance [116]. Stokes et al. proposed a direct message neural network capable of
predicting antimicrobial activity. They generated a feature vector for each molecule by first
building a molecular graph based on its SMILES and then combining bonding information
(e.g., bond type and stereochemistry) and atomic features (e.g., the number of bonds for
each atom and the atom number) used. The optimized feature vector was fed into a
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feedforward neural network, which acquired the antibacterial properties of the chemical by
repeatedly performing the message transmission process [117].

6.2.3. Toxicity Prediction: Mitigating Risk through AI

AI-based toxicity prediction plays a key role in evaluating drug safety. The DeepTox
algorithm is effective in correctly assessing the toxicity of a substance [118]. This capacity to
forecast could prevent probable side effects during drug development. The application of
open-source technologies such as TargeTox and PrOCTOR enhances researchers’ proficiency
in the identification and resolution of toxicological issues, thereby advancing the field of
toxicity prediction [119,120]. However, the literature lacks essential information, even for
basic molecular structures. This absence hinders the ability to conduct a fundamental envi-
ronmental assessment for a therapeutic molecule’s synthesis path. To address this, simple
algorithms use substance interpolation based on known toxicity and similar structures.
By leveraging AI expertise, researchers can efficiently discover target-specific compounds,
predict physicochemical properties, assess bioactivity, and predict compound toxicity.

7. Drug Design and Optimization

The aim of drug design is to obtain small molecules that could meet various criteria,
including efficacy for pharmacological purposes, an appropriate safety profile, appropriate
chemical and biological properties, and sufficient innovation to secure intellectual property
rights for commercial success, etc. [121]. The computational tools have been crucial to
drug discovery and have completely changed the way drugs are designed. There are
still several problems associated with traditional computational techniques, including
input time, computational cost, and reliability [24,25]. AI could overcome all the obstacles
associated with computational drug development, thereby increasing the usefulness of
computational techniques in drug development.

7.1. AI in Molecular Design

The process of automatically suggesting novel chemical structures that align most
effectively with a specified molecular profile is referred to as “de novo molecular de-
sign” [122]. A virtual chemical library is created for computational testing followed by
synthesis, and characterization. The variational autoencoder and GANs are two significant
technological advances in deep generative modelling [123,124]. “Molecular Autoencoder”,
studied by Gómez-Bombarelli et al., was the first to demonstrate detailed generative mod-
elling of molecules. An interesting method is the Variational Autoencoder, which connects
an encoder network with a decoder network consisting of two neural networks [33]. The
encoder network transforms the chemical structures defined in SMILES into a latent space
represented by a real-valued continuous vector. The decoder component can convert la-
tent spatial vectors into chemical structures. De novo design has also been successfully
applied through RNNs. They were originally developed in the field of natural language
processing [125]. Sequential information is fed into the RNN. The most commonly used
models for modelling and creating sequences are RNNs [126,127]. A GAN was successfully
employed by Kadurin et al. to recommend potential anticancer drugs [128]. Assmann et al.
discussed the practical difficulties in using de novo design to facilitate the identification of
new CDK9 inhibitors. The use of the molecules suggested by the molecular generator as
seeds in the similarity search of the Enamine REAL library is characterized by an improved
variation of the vs. approach. Of the 69 compounds tested, seven were active against
CDK9 [129]. Perron et al. have published another useful example of applying generative
methods to find optimum solutions to multiparameter objectives using an RNN-based
generative model [130]. Li et al. looked at the potential of RNN-based de novo design
techniques to produce new molecule inhibitors in chemical space that has been thoroughly
researched. Scientists announced their search for new inhibitors of CDK4 kinases and
the well-studied proto-oncogene protein serine/threonine kinase 1 (PIM1). After testing
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four different drugs, they identified a potent PIM1 inhibitor and two key CDK4 inhibitor
compounds [131].

7.2. Predicting Pharmacokinetics and Pharmacodynamics

The key concepts of pharmacology include pharmacokinetics and pharmacodynamics.
While pharmacodynamics focuses on how a drug works in the body and how it affects
other systems in the body, pharmacokinetics deals with the study of drug absorption,
distribution, metabolism, and elimination (ADME) [132]. The application of AI techniques
in pharmacokinetics and pharmacodynamics has created new opportunities to improve
drug development and personalized treatments. It can analyse complex datasets, identify
trends and make predictions that could improve patient outcomes, improve drug delivery
and minimize side effects [133,134]. ML and DL techniques are widely used to predict
pharmacokinetic parameters. Numerous ML techniques—including Bayesian model, RF,
SVM, ANN, and decision tree—have been used to predict the ADME of drugs. To predict
various pharmacokinetic parameters such as drug absorption, bioavailability, clearance,
volume of distribution, and half-life, DL algorithms such as Convolutional Neural Net-
works (CNN), Short-Term Memory (LSTM), and RNN are often used. A computational
method called quantitative structure–activity relationship (QSAR) uses the chemical struc-
ture of a molecule to predict its biological activity [135–137]. With improved training data,
a 47th version of admetSAR 2.0 is now available. This program also includes a module
called ADMETopt, which is used to optimize lead activity based on expected ADMET
attributes [138]. AI techniques facilitate the modelling of drug–receptor interactions and
the prediction of drug efficacy and toxicity in the field of pharmacodynamics. The use
of AI in pharmacokinetics and pharmacodynamics can significantly accelerate the drug
discovery process and improve precision medicine [134,139]. Obrezanova et al. used
conventional ML techniques and multitask convolutional neural networks to calculate
time-dependent pharmacokinetic profiles and nine in vivo pharmacokinetic parameters in
rats (oral and intravenous administration) based on in vitro measured ADME properties
and molecular chemical structures of 3000 different compounds [140]. Ye et al. used transfer
learning and multitasked learning to pre-train the model on over 30 million bioactivity data
points. The model was then used to estimate four human pharmacokinetic parameters:
oral bioavailability, plasma protein binding, Vd, and half-life, for 1104 FDA-approved
small-molecule drugs. Compared to other traditional ML techniques, their DL model
showed the highest performance (although not always by a significant margin) and gener-
alization ability, achieving a mean absolute error or MAE = 0.31 for oral bioavailability and
MAE = 0.17 for Vd [141]. Interestingly, Lou et al. created a model that predicts the bioavail-
ability of mAbs administered through subcutaneous preparation in humans. A dataset of
45 clinical mAbs—with sequence and structure-based features including isoelectric point,
total charge, aggregation propensity, solubility score, surface hydrophobicity spots, positive
charge, and negative charge (with a threshold of 70% bioavailability)—were used to build a
classification model. The study used a range of traditional Scikit-Learn ML techniques such
as Adaptive Boost, Multilayer Perceptron, RF, and SVM. Among them, the tree approach
showed the highest accuracy, reaching 78% [142].

Two areas that benefit greatly from the implementation of AI algorithms are drug de-
sign and optimization. De novo design, virtual screening, and structure-based drug design
are just a few examples of these algorithms. The application of AI to drug development and
optimization has a transformative impact on the discipline, enabling the rapid discovery of
new therapeutic candidates and the more targeted and effective exploration of chemical
space. Using ML, DL, and computer modelling methods, AI models can provide accurate
predictions about the properties, interactions, and behaviours of potential drug candidates
(Table 2).
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Table 2. Some common machine learning models are used in pharmacokinetic and pharmacodynamic
parameters prediction and toxicology prediction.

Sr. No. Application ML Model Description Reference

1 PK Modelling Hidden Markov Models Dynamic systems are represented using
Sequential model. [143]

2 PD Modelling Logistic Regression Utilized pharmacodynamics for binary categorization. [144]

3 PD Modelling Random Forest For both regression and classification, use the
ensemble approach. [145]

4 PK and PD Modelling Decision Tree Nonlinear modes of decision-making for the
classification of data. [146]

5 PK and PD Modelling Support Vector Machine
(SVM) Useful for data with non-linear connections. [147]

6 Toxicity Prediction Naive Bayes A straightforward probabilistic model is frequently
employed in toxicology to classify texts. [148]

7 PK and PD Modelling Neural Network (Deep
Learning) Sophisticated model for PK and PD forecast. [149]

8 PK and PD Modelling Gradient Boosting Ensemble method that combines weak learners. [150]

9 Toxicity Prediction Random Forest
An ensemble approach to classify problems that can

handle high-dimensional data and is resistant to
over fitting.

[26]

10 Toxicity Prediction Gradient Boosting By merging weak learners, the ensemble learning
approach improves model performance. [151]

11 PK and PD Modelling Bayesian Network Graphical probabilistic models for parameter estimation [152]

8. Assessing Drug Toxicity Using AI

The stringent safety requirements associated with drug development make it challeng-
ing to introduce new drugs to the market. Clinical trials often fail due to unexpected toxicity
and post-marketing safety issues, resulting in unnecessary morbidity and mortality. Clinical
trials test the safety and effectiveness of a drug before it is approved while pharmacovig-
ilance continually verifies a drug’s safety information during its usage in patients [153].
The establishment of pre-market drug safety has been shown to benefit significantly from
the use of AI-based approaches, particularly in the area of toxicity assessment [154]. The
vast reach of AI helps to predict the side effects, therapeutic targets, and in vivo safety of
chemicals before manufacturing. Usually, after designing of the small molecule, the assays
are employed to predict off-target toxicity, genotoxicity, organ toxicity, cytotoxicity, and
mitochondrial toxicity [155]. The analysis of new types of data, including gene expression
and cell imaging data, combined with knowledge of chemical structure, can now be used
to predict the effects of in vivo toxicity [156]. Various in silico calculation methods have
proven useful in calculating the toxicity of drug candidates. These methods, which include
target-based predictions and QSARs, evaluate multiple pharmacological properties to pre-
dict toxicity. Various drug safety effects—such as skin/eye irritation, tissue-specific toxicity,
and 50% lethal drug dose (LD50) values—were modelled using QSAR techniques [157].
In particular, the QSAR model allows for examining the relationship between multiple
predictors (e.g., molecular features) and responses (e.g., biological activities such as binding
affinity) [158]. Early QSAR approaches assessed the chemical properties of drug candidates
using multivariate linear regression [159]. Due to their excellent prediction accuracy, ro-
bustness, and readability of ensemble techniques such as RF and SVMs, they are currently
the most popular options [160]. Compared to Naive Bayes, k-Nearest Neighbour (k-NN)
and RF algorithms, SVM showed better performance in predicting activity values in the
latest QSAR modelling of histone deacetylase (HDAC) inhibitors [161]. In addition, with
the help of such QSARs, it is possible to predict activity based on objectives such as toxicity.
Recently, Minerali et al. created and compared ML algorithms to predict drug-induced
liver injury (DILI) using the company’s Assay Central software. To do this, they used data
previously collected by research teams at Pfizer and AstraZeneca, as well as data from
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the FDA. The best Bayesian model based on the DILI problem category from the DILI
Rank database produced results with an ROC of 81%, a sensitivity of 74%, a specificity
of 76%, and an accuracy of 75% [162]. Williams et al. used ML to predict DILI with the
pharmaceutical company, AstraZeneca. They were able to quantify the risk of an association
being classified as low, medium, or high with an accuracy of 63%. The model provided
an accuracy of 86%, a sensitivity of 87%, a specificity of 85%, a positive predictive value
of 92%, and a negative predictive value of 78% for binary (yes/no) DILI prediction [163].
In addition to developing in silico models for EI/EC using ML techniques and molecular
fingerprints, Verma et al. combined quantitative structure–toxicity relationship (QSTR)
models by ANN to produce 88% sensitivity and 82% specificity for EI; and 96% sensitivity
and 91% specificity for eye corrosion (EC). Manually gathering data for training from
X-Mol (http://www.x-mol.com) and ChemIDplus yielded 95% accuracy for EI and 96%
for EC [164]. Using data on the transcriptional and molecular profiles of over a thousand
drugs—35% of which have known cardiotoxicities—Mamoshina et al. employed ML to
predict various drug-induced cardiotoxicities. The dataset was selected from a wide range
of open-source knowledge and data sources (including DrugBank), with the best predictor
achieving an average of 79% for safe vs. risky drug AUC and 66% for an unknown set of
drugs. AUC (80%) indicated specific cardiotoxicity for specific drug classes and AUC (76%)
indicated heart failures with potential for anti-neoplastic drugs across all investigated drug
categories [165]. Webel et al. achieved greater than 70% cytotoxicity prediction accuracy
using a DL strategy developed from an internal dataset of more than 34,000 compounds
with less than 5% cytotoxic chemicals. When applying this technique to new compounds,
care must be taken to carefully consider the scope of the model. However, one of the
advantages of this method is the use of cytotoxicity maps that provide the visual meaning
of the substructures of different chemicals [166]. Hunta et al. developed three ML methods
based on SVM, kNNs, and neural networks to predict DDIs in non-communicable diseases
(NCDs). Using data from DrugBank, they combined the functions of transport proteins and
enzymes and compared the results of different methods using five-fold cross-validation.
This allowed them to determine which two NN layers performed best and predict NCDs
based on pharmacokinetic mechanisms with an accuracy of 83% (F-measure 85.23% and
AUC 90%) [167].

9. Role of AI in Synthetic Organic Chemistry

AI-assisted synthesis planning has a long history; it began in the field of computer-
aided retrosynthetic prediction in the 1970s [168]. AI approaches have transformed syn-
thetic organic chemistry in recent years, allowing for more streamlined and efficient pro-
cesses for molecule design and synthesis. AI techniques, including ML and DL, have been
shown to be effective in forecasting reaction results, improving reaction conditions, and
suggesting new synthetic pathways. The search and creation of novel chemical compounds
with desired qualities has been greatly sped up by these developments. Natural language
processing techniques such as sequence-to-sequence models and transformer models have
served as inspiration for this subject. The finding that the rank distribution of fragments
in biological molecules is comparable to that of English words serves as the impetus for
this area of inquiry [169]. By processing products using an encoder–decoder architecture,
rule-free techniques usually take into account their products in a text-based form such
as SMILES. This allows for the prediction of the matching synthetic precursors at a one-
step reaction distance [170]. Several teams created techniques in 2017 that leverage AI
to analyse big datasets of chemical reactions and suggest novel synthetic pathways [171].
These techniques split up synthesis planning into two distinct tasks: response prediction
and search. In the search job, the program looks for a sequence of chemical interactions
between a target molecule and a set of easily accessible starting components that will create
a retrosynthetic “path”. The network attempts to ascertain if the reactions along the path
will be viable and will deliver a fair yield of the target product based on the precedent of the
reaction prediction task [6]. Segler et al. employed DL and then game AI in 2017 to quickly

http://www.x-mol.com
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and effectively identify feasible pathways; the field then saw a surge in interest [172,173].
A database of known reactions was automatically transformed into reaction templates
by taking into account the reaction’s core and its closest neighbour atoms, in contrast to
manually encoding the rules. Through training to identify which template corresponded
with a particular product, an ANN immediately acquired retrosynthetic methods from
the data. Additionally, the network allows for an effective tree-search for feasible routes
and prioritizes them among hundreds of reaction templates. An expert panel with blinded
preferences compared the routes provided by the algorithm to those found in the literature
and concluded that both were equally desirable. Segler et al. reduced the barrier to entry
for other research organizations by demonstrating that data-driven techniques, as opposed
to manual encoding, could be used successfully [173]. More recent advances in neural net-
works were leveraged by Lin and colleagues in a 2020 study to enhance this outcome and
produce a 63.0% accuracy for their top-ranked prediction. They tried to forecast a reaction’s
feasibility in the reaction prediction stage. Training a neural network to match a chemical
to a previously observed (named) response is one method for solving this challenge [174].

10. Real-World Case Studies

Gupta et al. have effectively used AI to identify a new drug that can be used to cure
cancer. A sizable dataset of recognized anticancer drugs with related biological activity
was used to train a DL algorithm. The developed model anticipated new substances
with enhanced anticancer potential for the treatment of cancer. Another example is the
utilization of ML algorithms to identify new inhibitors of beta-secretase (BACE 1), an
enzyme implemented the progression of Alzheimer disease (AD). The brain of AD patient
contains amyloid plaques which are produced by the enzyme BACE 1. ML makes it
possible to anticipate compound binding affinities and screen through huge chemical
libraries; this is useful in the identification of BACE 1 inhibitors. Molecular descriptors
and structural characteristics of known BACE 1 inhibitors, as well as their experimentally
confirmed binding affinities, were used to train ML models. These models can then forecast
the binding affinity of new chemicals towards BACE 1 by learning from these training
data [175,176].

Many companies were under pressure to find the best drug in the shortest period
possible due to the SARS-CoV-2 viral epidemic. To achieve their objectives, some firms
have resorted to using AI in conjunction with the existing data. These are some instances of
businesses that, as a result of their efforts, have been able to successfully discover workable
solutions to battle the COVID-19 virus [177].

Some companies have been able to successfully discover workable solutions to battle
the COVID-19 virus. Rather than using 2D or 3D molecular structures, this technique
predicts the strength of the interaction between a hit and its target protein using simpler
chemical sequences. An essential protein in the SARS-CoV-2 virus, the causative agent of
COVID-19, has a high likelihood of binding to and obstructing the actions of atazanavir, an
FDA-approved antiviral medication used as an HIV treatment. In addition to remdesivir,
three more antivirals are being studied in patients. Deargen’s ability to uncover antiviral
drugs via DL techniques is a significant development in the field of pharmaceutical research.
Another biotechnology business, Benevolent AI located in London, uses AI, ML, and
medical data to expedite research on health-related topics. Thus far, six medications have
been identified such as ruxolitinib, baricitinib (Olumiant), tocilizumab (Actemra), paxlovid,
lagevrio and remdesivir. Ruxolitinib is allegedly undergoing clinical trials for COVID-19.
The company has been using a vast medical knowledge base, together with data gathered
from the scientific literature by its AI system and ML, to find potential drugs that might
obstruct the process of SARS-CoV-2 viral replication [177].

11. Challenges and Limitations of AI in Drug Discovery

Notwithstanding AI’s potential advantages in drug development, there are several
obstacles and restrictions that need to be taken into account. One of the primary issues
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is the lack of adequate data [68]. AI-based methods frequently need a lot of data for
training. The consistency, quality, and availability of adequate data can frequently affect
how accurate and dependable the outcomes are [33]. With each molecule having between
10 and 50 conformations, or more than 500 billion distinct entities, analysing 30 billion
molecules presents substantial logistical and practical hurdles. These intricacies are outside
the purview of this investigation [178]. While computers have facilitated the process of
selecting and optimizing lead compounds, completely automated drug development is
still not possible due to the lack of artificially intelligent scientific robots or their digital
counterparts. Automated AI drug creation is still an aspirational objective [179] (Figure 6).
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The similarity-based methods employed in these technologies typically do not account
for heterogeneous information defined in a relationship network. Combining feature-based
and similarity-based methods can help overcome this restriction. The fact that AI/ML-
based models need a lot of training and that the requirements vary depending on the
application is another drawback. Due to the learning qualities ingrained in the modelling
data, DL models produce “black boxes” that are challenging to interpret; however, their use
is growing in popularity. Nevertheless, their use is limited by the need for large amounts
of high-quality data that are expensive to produce and frequently kept private. The use of
inadequate quantities of high-quality data also affects the performance and dependability
of DL models.

12. Future Perspective

AI has the potential to revolutionize the pharmaceutical industry by speeding up the
process of finding and developing new drugs. The pharmaceutical business frequently
uses both ML and DL algorithms. However, ML techniques have been the subject of many
debates, especially in the fields of image analysis and omics data. The use of AI to quickly
forecast novel leads and biological targets is expected to have a major impact on cutting
down the length of time needed for drug discovery, as well as the likelihood of failures
at subsequent stages. The identification of novel therapeutic indications for drugs might
have a substantial impact on medication repurposing and reuse. In the last 10 years, DL
has made considerable progress in a variety of AI research domains, such as speech and
picture recognition and natural language processing. In data analysis, the application of
edge detection, picture classification, and filters has been shown to yield superior outcomes.
Additional investigation is necessary in the field of ML in conjunction with quantum ML
to the biochemical methods utilized in the first phases of drug development. For exam-
ple, quantum computers can shorten the training period of a limited Boltzmann machine.
The sites of ligand binding have recently been predicted using DL methods. All the DL
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methods available today, however, are built on popular convolutional/recurrent network
architecture. To further enhance the precision of ligand binding studies LBS prediction,
research that has effectively predicted and interpreted protein structure should serve as
the foundation for next-generation DL structures. AI-enabled monitoring devices make it
possible to provide remote patient care and ensure that prescriptions are followed. Con-
tinuous data collection will be facilitated by wearable devices and sensors. These data
will be incorporated into AI algorithms to provide customized treatment programmes and
enhance adherence. AI may also enhance clinical trial design, and patient recruitment
and selection. AI algorithms may also be used to identify eligible patients, save testing
expenses, and expedite therapy approval by utilizing genetic profiles, biomarkers, and
electronic health information. AI has a lot of potential applications in medicine, such as
multidimensional data analysis, prediction of drug bioactivity and interactions, precise
decision-making, disease classification, dosage ratio optimization, acceleration of drug
development, and complex problem-solving related to the creation of efficient drug de-
livery systems. Although there are many exciting possibilities presented by this future
framework, it is critical to recognize that to fully fulfil the potential of AI in pharmaceutical
product development, concerns about data quality, regulatory frameworks, and ethical
standards must be resolved. Thus, with continuing research and development, as well as
collaborations between businesses, academic institutions, and regulatory bodies, AI-based
technologies have the potential to revolutionize the pharmaceutical sector and enhance
patient outcomes in the years to come.

13. Ethical Considerations

When using these technologies in medication development, ethical considerations
must be made. Since confidential medical data are frequently used to train AI models,
patient privacy is a serious problem. Data security and safety are important considerations
that should not be disregarded. It is important to guarantee that patients’ data are gathered
and handled in a manner that upholds their rights and safeguards their privacy. The
possibility of bias in AI algorithms is another significant worry as it may result in unfair
treatment of groups of people and uneven access to healthcare. The ideas of equality and
fairness may be jeopardized. The other issue is the possibility of bias in AI algorithms,
which might result in unfair treatment of groups of people and uneven access to healthcare.
This might lead to a compromise in the ideas of justice and equality. Regulatory bodies have
been entrusted with developing stringent standard protocols, guidelines, and assessment
methods to successfully incorporate AI into drug creation. These regulations ought to
address a variety of topics, including ethical dilemmas as well as concerns about patient
safety and animal welfare. Every effort must be made to minimize, enhance, and replace
animal models to uphold ethical principles. An important aspect of drug research is animal
testing. In addressing the ethical and legal ramifications of AI in drug discovery, the FDA’s
release of a discussion paper titled “Use of AI and ML in Drug and Biologics Development”
is a significant step. An overview of the use of AI to drug discovery, non-clinical research,
and clinical trials is given in this article; practices for applying ML and AI are also provided.
In general, a great deal of investigation and techniques are required to address the ethical
use of AI in the pharmaceutical sector. AI may be used properly and ethically by the
pharmaceutical business to address these issues.

14. Conclusions

Recent developments in ML and DL techniques have surely helped in the area of drug
discovery and development. Numerous AI tools and techniques have been created to help
with different stages of the drug development process, including lead optimization, clinical
trials, drug repurposing, protein–ligand binding, 3D structure prediction, disease target
gene prediction, drug screening, toxicity and bioactivity prediction, and lead optimization.
The goal of AI development and its advanced tools is always to make life easier for
pharmaceutical businesses. The use of the most recent AI-based technologies will make
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automation more relevant because it will reduce time to market while also improving
product quality, boosting overall production process safety, and ensuring higher resource
utilization while maintaining cost-effectiveness. There are still particular challenges in
putting these technologies to use in reality. Although there are not any AI-based drugs
on the market now, it is anticipated that AI will eventually become an indispensable and
helpful tool for the pharmaceutical sector.
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