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Abstract: Understanding the intricate role of dopamine D1–D5 receptors is pivotal in addressing
the challenges posed by the aging global population, as well as by social stress and advancing
therapeutic interventions. Central to diverse brain functions such as movement, cognition, motivation,
and reward, dopamine receptors are ubiquitously distributed across various brain nuclei. This
comprehensive review explores the nuanced functions of each dopamine receptor, D1, D2, D3,
D4, and D5, in distinct brain regions, elucidating the alterations witnessed in several neurological
and psychiatric disorders. From the substantia nigra and ventral tegmental area, crucial for motor
control and reward processing, to the limbic system influencing emotional responses, motivation,
and cognitive functions, each brain nucleus reveals a specific involvement of dopamine receptors.
In addition, genetic variations in dopamine receptors affect the risk of developing schizophrenia
and parkinsonism. The review further investigates the physiological significance and pathogenic
impacts of dopamine receptors in critical areas like the prefrontal cortex, hypothalamus, and striatum.
By unraveling the complexities of dopamine receptor biology, especially those focused on different
brain nuclei, this review provides a foundation for understanding their varied roles in health and
disease, which is essential for the development of targeted therapeutic strategies aimed at mitigating
the impact of aging and mental health on neurological well-being.

Keywords: dopamine D1 receptor; D2 receptor; D3 receptor; D4 receptor; D5 receptor; striatum;
cortex; subthalamic nucleus; amygdala; hippocampus; substantia nigra; ventral tegmental area

1. Introduction

The aging global population presents a profound challenge to healthcare systems
worldwide, necessitating a deeper understanding of the molecular intricacies governing
neurodegenerative processes. Among the key players in the intricate network of neuronal
signaling are dopamine receptors, integral components orchestrating a symphony of physi-
ological responses. Dopamine, a neurotransmitter renowned for its central role in motor
control, reward mechanisms, and cognitive functions, engages a diverse family of receptors,
each with distinctive functions and implications for human health. Dysregulation and
genetic variations in dopamine receptors affect the risk of dopaminergic pathogenesis,
including mental and movement disorders.

Since there have been few reviews that have presented the function of dopamine re-
ceptors based on different brain nuclei, this review focuses on the distribution of dopamine
D1–D5 receptors, based on each brain nucleus, their physiological significance, and their rele-
vance to disease. Therefore, this review aims to comprehensively explore the multifaceted roles
of dopamine D1, D2, D3, D4, and D5 receptors, delving into their intricate functions within the
central nervous system, particularly in the different nuclei of the brain, and the implications
in disease. Beyond their well-established contributions to motor coordination, emerging
evidence implicates these receptors in a spectrum of neurodegenerative diseases, including
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motor and cognitive dysfunctions, as well as psychiatric disorders, including Parkinson’s
disease, dystonia, schizophrenia, and attention-deficit/hyperactivity disorder (ADHD).

As we stand at the intersection of an aging population and unprecedented strides in
therapeutic development, elucidating the nuanced involvement of dopamine receptors
in health and disease becomes paramount. Thus, through an in-depth examination of
the current literature, we seek to provide a comprehensive overview of the physiological
impacts of nuclei-dependent dopamine D1–D5 receptors, shedding light on their potential
as therapeutic targets, and unraveling the complexities that underscore their pivotal role in
neurological well-being.

2. Types, Characteristics, and Regulation of Dopamine Receptors

Dopamine receptors, integral components of the central nervous system, form a
diverse class of G protein-coupled receptors that mediate the actions of dopamine. Cat-
egorized into D1-like (including D1 and D5) [1–5] and D2-like (encompassing D2, D3,
and D4) receptor families [6–10], these receptors exhibit distinct structural and functional
characteristics. D1-like receptors, such as D1 and D5, predominantly elicit excitatory effects
by activating adenylate cyclase and increasing intracellular cyclic AMP (cAMP) levels [11].
Conversely, D2-like receptors, including D2, D3, and D4, typically exert inhibitory effects
by inhibiting adenylate cyclase and decreasing cAMP levels [12]. The distribution of these
receptors is heterogeneous throughout the brain, with specific subtypes being concentrated
in different regions, thus contributing to their diverse functional roles (Table 1).

Table 1. The major functions, localization, and physiological significance of dopamine D1, D2, D3,
D4, and D5 receptors in the brain.

Subtypes Location Responses Ref.

D1-Like
Receptors

D1 (D1A and D1B)
Receptor

Predominantly in the striatum,
nucleus accumbens, substantia
nigra, olfactory bulb, and cortex

Stimulates adenylate cyclase,
increasing intracellular cAMP
levels

[1–3,5,6,13–19]

D5 Receptor

Broadly distributed in the brain,
including in the hippocampus,
thalamus, striatum, nucleus
accumbens, and amygdala

Stimulates adenylate cyclase,
increasing
intracellular cAMP levels

[1,4,5,20–23]

D2-Like
Receptors

D2 (D2S and D2L)
Receptor

Predominantly in the striatum,
nucleus accumbens, and olfactory
bulb; the hippocampus, amygdala,
hypothalamus, and cortex
at a lower level

Inhibits adenylate cyclase,
decreasing cAMP levels [6–10,24–34]

D3 Receptor
Found in the nucleus accumbens,
insular cortex, amygdala,
and hippocampus

Inhibits adenylate cyclase,
decreasing cAMP levels [35–51]

D4 Receptor
Located in the prefrontal cortex,
hippocampus, amygdala,
and striatum

Inhibits adenylate cyclase,
decreasing cAMP levels [52–58]

D1 receptors are predominantly abundant in the striatum, nucleus accumbens, the
substantia nigra pars reticulata, the olfactory bulb, and cortex [1–3,5,6,13,14]. In contrast,
D2 receptors, with the variants D2 short type (D2S) and D2 long type (D2L), are distributed
in various brain regions [6–10,59,60], including the striatum, nucleus accumbens, and ol-
factory tubercle at a high density, and in the hippocampus, amygdala, hypothalamus, and
cortical regions to a lower extent [31–34]. Dopamine D2L receptors are primarily found
postsynaptically, but are also localized in the presynaptic terminal [33], which are abun-
dantly expressed in areas of the brain associated with motor control, such as the striatum
and substantia nigra [8,61,62]. Postsynaptic D2L receptors play a key role in inhibiting
cAMP production when dopamine binds. This inhibition is associated with a reduction
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in neuronal excitability. In contrast, D2S receptors are found both presynaptically on the
neuron releasing dopamine, and postsynaptically. The presynaptic D2S receptor acts as an
autoreceptor [33,63–65]. When dopamine binds to D2S receptors on presynaptic neurons, it
inhibits further dopamine release, acting as a feedback mechanism [33,63,65]. These autore-
ceptors are found on the soma and dendrites of mesencephalic dopaminergic neurons in
the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA), as well as on
their axon terminals in projection areas, including striatum and nucleus accumbens [31,34].
Interestingly, D2S receptors are predominantly localized at the plasma membrane, whereas
D2L receptors are also observed in the perinuclear region around the Golgi apparatus, and
only D2L receptors have the ability to bind type 3 fatty acid-binding proteins (FABP3) [66].
Dopamine D3 receptors are prominent in the nucleus accumbens, insular cortex, amygdala,
and hippocampus [37,38,67]. In contrast, D4 receptors are found in the prefrontal cortex,
hippocampus, amygdala, and striatum [52–54]. D5 receptors are mainly found in the
hippocampus, thalamus, striatum, nucleus accumbens, and amygdala [1,4,5,67].

The endocytic mechanism strictly regulates the number of dopamine D1–D5 receptors
on the cell membrane in order to regulate dopaminergic signal transduction. Endocytosis
can reduce the number of available receptors on the cell membrane via desensitization,
thus decreasing the sensitivity of the cell to dopamine stimulation [68,69]. Endocytosis
can also facilitate the recycling of receptors back to the cell membrane through resen-
sitization, thus restoring the responsiveness of the cell to dopamine stimulation [68,69].
Endocytosis can furthermore modulate the signaling output of dopamine receptors by
altering their interactions with other proteins, such as G proteins, in different endocytic
compartments [68–70]. D1-like and D2-like dopamine receptors have different endocytic
behaviors and responses to dopamine or drugs. For example, D1-like (D1 and D5) receptors
are more resistant to endocytosis than D2-like (D2, D3, and D4) receptors, and they require
higher concentrations of dopamine or longer stimulation times to be internalized [68,69].
D2-like receptors are also more sensitive to the effects of β-arrestins, which are proteins
that bind to activated G protein-coupled receptors and promote their endocytosis and
desensitization [68–70]. These data suggest that endocytosis is an important regulator of
dopamine receptor signaling and function, and can have implications pertaining to various
physiological and pathological processes.

3. Genetic Variants in Dopamine Receptors and Their Impacts on Neuropsychiatric and
Movement Disorders

Genetic variants of dopamine receptors, especially single nucleotide polymorphisms
(SNPs), have been extensively studied in terms of their association with various neu-
ropsychiatric and neurodegenerative disorders, such as schizophrenia, bipolar disorder,
addiction, Alzheimer’s disease, and Parkinson’s disease [71,72]. The effects of these vari-
ants may depend on the receptor subtype, the brain region, the disease phenotype, and
the interaction with other genes and environmental factors. According to the D1 receptor,
an SNP in the DRD1 gene (rs4532) has been linked to cognitive impairment and reduced
prefrontal cortex activity in schizophrenia patients [67]. Another SNP (rs686) has been
associated with an increased risk of heroin dependence [73,74]. In contrast, several SNPs in
the D2 receptor named the DRD2 gene have been implicated in modulating the response to
antipsychotic drugs, such as clozapine and risperidone [75]. A common variant (Taq1A)
has been related to reduced D2 receptor density in the striatum, and increased susceptibility
to addiction and Parkinson’s disease pathogenesis [71].

A functional SNP in the D3 receptor, the DRD3 gene (Ser9Gly), has been shown to
influence the affinity of the D3 receptor for dopamine and the efficacy of antipsychotic
treatment [76]. This variant has also been associated with Parkinson’s disease, especially in
patients with cognitive impairment or psychosis [67]. Furthermore, genetic mutations of
dopamine D2 and D3 receptors are associated with the pathogenesis of particular antipsy-
chotics (AP)-induced parkinsonism, and dopamine D1, D2, and D3 receptor mutations
affect the AP-induced tardive dyskinesia in patients with schizophrenia, respectively [72].
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In the D4 receptor, a variable number tandem repeat (VNTR) polymorphism in the
DRD4 gene, which affects the length of the third intracellular loop of the receptor, has been
linked to various behavioral and personality traits, such as novelty seeking, impulsivity,
and attention-deficit hyperactivity disorder [77]. This polymorphism may also modulate
the response to methylphenidate, a dopamine reuptake inhibitor [78]. Concerning the
D5 receptor, an SNP in the DRD5 gene has been reported to influence the expression of
the D5 receptor in the brain and the susceptibility to schizophrenia [79]. Another SNP
(rs1800762) has been associated with cognitive performance and working memory in
healthy subjects and schizophrenia patients [71].

These findings suggest that genetic variants of dopamine D1, D2, D3, D4, and D5 recep-
tors significantly affect the function and regulation of dopaminergic neurotransmission, and
may contribute to the pathophysiology and treatment of various neurological and psychiatric
disorders. Consequently, the functional significance of dopamine receptors spans motor
control, reward, mood, attention, and cognitive processes. Therefore, based on the dopamine
receptor subtypes and their distribution summarized in this paragraph, the following context
from Section 5 will demonstrate the physiological functions of dopamine receptors and their
relevance to neurodegenerative diseases categorized by major neuronal nuclei, as well as
the pathophysiological significance of dopamine receptors in conditions characterized by
dopaminergic dysregulation, such as Parkinson’s disease, schizophrenia, and addiction.

4. Dopamine Receptor Imaging and Disease Implications in Humans

Dopamine receptor imaging is a technique that uses positron emission tomography
(PET) or single-photon emission computed tomography (SPECT) to measure the density,
distribution, and occupancy of dopamine receptors in the living human brain. Dopamine
receptor imaging can provide valuable information on the function and dysfunction of the
dopamine system in various neurological and psychiatric disorders, such as Parkinson’s
disease, schizophrenia, addiction, and cognitive impairment. Dopamine receptor imaging
can also be used to assess the pharmacological effects and optimal dosing of drugs that
target dopamine receptors, such as antagonists or partial agonists. Several radiotracers
have been developed and validated for dopamine receptor imaging.

[11C]SCH23390 and [18F]fallypride are radioligands that bind to D1 receptors, which
are mainly expressed in the striatum and the prefrontal cortex, and which are involved in
motor and cognitive functions. [11C]SCH23390 is a selective D1 receptor antagonist [18,19],
while [18F]fallypride is a non-selective D2/D3 receptor antagonist that can also bind to
D1 receptors with a lower affinity [80,81]. [11C]SCH23390 can be used to measure the
D1 receptor density and occupancy in different brain regions, and to investigate the role
of D1 receptors in various neurological and psychiatric disorders, such as schizophrenia,
Parkinson’s disease, and aging [18,19], which revealed the aging impact on D1 expression
and the relation to motor decline in human [19].

Furthermore, [11C]raclopride and [18F]fallypride are non-selective radioligands that
bind to both D2 and D3 receptors, and are commonly used to measure the receptor density
and occupancy in the striatum and other brain regions. [11C]raclopride is a D2/D3 receptor
antagonist with more affinity for D2 receptors [82], while [18F]fallypride is a D2/D3 receptor
antagonist with similar affinity for both receptors [81], which visualizes the modified
D2/D3 receptor density in a mouse model of Huntington’s disease [80]. These radioligands
can be used to study the dopamine system in various neuropsychiatric disorders, such as
schizophrenia, Parkinson’s disease, addiction, and cognitive impairment.

In contrast, [11C]PHNO is a radioligand that binds to D3 receptors [50,83]. [11C]PHNO
is a selective D3 receptor agonist, and it can be used to measure the D3 receptor density and
occupancy in different brain regions, showing the primary distribution in the hypothalamus,
substantia nigra, globus pallidus, thalamus, and ventral striatum [50,83], are involved in
reward, motivation, and emotion processes, and can be utilized to study the role of D3
receptors in various neuropsychiatric disorders, such as addiction, schizophrenia, and
depression [51]. Based on these human clinical findings, the distribution and function of
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dopamine receptors in each brain nucleus and their involvement in certain diseases will be
discussed in the following sections.

5. Physiological Functions of Striatum Dopamine Receptors and
Pathogenic Implications
5.1. Impact of Dopamine Receptors in the Dorsal Striatum (Caudate Nucleus and Putamen)

The basal ganglia, another basal nuclei, is an essential neuronal circuit for motor
movement, emotion, learning, and cognition. The major components of the basal ganglia
include the striatum, consisting of both the dorsal striatum (caudate nucleus and putamen)
and the ventral striatum (nucleus accumbens and olfactory tubercle), the globus pallidus,
the substantia nigra, and the subthalamic nucleus. The dorsal striatum consists of the
putamen, which controls motor functions, and the caudate nucleus, which controls mental
functions [84–86]. The caudate-putamen is a crucial component of the basal ganglia and
involves various essential functions, including motor control, reward processing, and cogni-
tive functions [86–90]. It primarily comprises two subtypes of neurons: the γ-aminobutyric
acid (GABAergic) medium-sized spiny neurons (MSNs) in 95% and other interneurons
in rodents [85]. Within this dynamic neural nucleus, both D1- and D2-like dopamine
receptor subtypes orchestrate indispensable functions, with alterations in their equilibrium
implicated in neurodegenerative and neuropsychiatric pathologies, such as Parkinson’s
disease, Huntington’s disease, schizophrenia, and addiction [2,36,91–93]. Here, we eluci-
date the physiological significance of D1 and D2 receptors in the striatum, unraveling their
distinctive roles in different receptor subtypes.

First, dopamine D1 receptors find predominant expression on the surface of direct
pathway medium spiny neurons (dMSNs) [94–96]. Their physiological importance spans a
spectrum, encompassing the facilitation of movement, reward and reinforcement, cognitive
functions, and neuroplasticity. The activation of D1 receptors heightens the excitability
of dMSNs, instigating and facilitating the execution of motor functions. These receptors
are also integral for the perception of rewarding stimuli, reinforcing behaviors associated
with positive outcomes. Striatal D1 receptors contribute to cognitive functions, including
working memory, cognitive flexibility, and executive functions [16,94,97,98]. Notably, their
stimulation fosters synaptic plasticity, influencing learning and memory processes within
the striatum (Table 2).

Table 2. The distribution and major functions of dopamine D1–D5 receptors in the dorsal striatum
and their implications for disorders.

Subtypes Expression Function Related Diseases Ref.

D1 receptors
Direct pathway
medium spiny neurons
(dMSNs)

Facilitation of movement,
reward and reinforcement,
cognitive functions,
neuroplasticity

Motor disorders, including
Parkinson’s disease,
Huntington’s disease,
schizophrenia, addictions

[5,13,36,84,85,93,95,
96,99–102]

D2 receptors
Indirect pathway
medium spiny neurons
(iMSNs)

Inhibition of movement,
modulation of reward,
neurotransmitter release,
motor learning

Motor disorders, including
Parkinson’s disease,
Huntington’s disease,
schizophrenia, addictions

[9,36,84,85,91,93,95,
96,99–106]

D3 receptors
Cholinergic
interneurons and
iMSNs

Emotional responses,
motivation,
cognitive functions

Addiction,
schizophrenia,
mood disorders

[36,38,46,83–85,99–
101,107]

D4 receptors
GABAergic
interneurons and
dMSNs

Executive functions,
emotional processing,
response to novelty

Attention-deficit hyperactivity
disorder (ADHD),
certain psychiatric conditions

[36,53,54,84,85,99,
101,104]

D5 receptors
Cholinergic and
parvalbumin-positive
interneurons, dMSNs

Modulation of motor
activity and
cognitive processes

Schizophrenia,
cognitive dysfunction [5,9,23,84,85,99,101]
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In contrast, dopamine D2 receptors prominently inhabit the surface of indirect pathway
medium spiny neurons (iMSNs) [95,96]. Their physiological role spans the inhibition of
movement, the modulation of reward and neurotransmitter release, and the facilitation
of motor learning. The activation of D2 receptors inhibits the activity of iMSNs, thereby
curtailing the initiation and execution of movement. D2 receptor activation is pivotal in
aversion processing and the modulation of responses to negative stimuli, thus contributing
a counterbalance to reward-related behaviors. D2 receptors, residing on presynaptic
terminals, intricately regulate dopamine release, thereby modulating the overall dopamine
concentration in the striatum [26,27,90,108]. Furthermore, D2 receptors play a significant
role in motor skill learning and adaptive processes (Table 2).

Dopamine D2 receptors are not only expressed by GABAergic MSNs in the striatum,
but also by cholinergic interneurons (CINs), which constitute a small but important pop-
ulation of striatal neurons that release acetylcholine and modulate the activity of MSNs
and other striatal cell types [109–112]. Dopamine D2 receptors in CINs have been shown to
regulate the excitability and firing patterns of these neurons, as well as their synaptic inter-
actions with dopaminergic and glutamatergic inputs [110,111]. For instance, the activation
of D2 receptors in CINs can reduce their autonomous activity and induce a pause in their
firing, which may facilitate the detection and processing of salient stimuli and behavioral
responses [111]. Conversely, the blockade of D2 receptors in CINs can increase their firing
rate and impair their ability to pause. Moreover, D2 receptors in CINs can modulate the
release of acetylcholine in the striatum, which can in turn affect the function of other
dopamine receptors, such as D1 and D5 receptors, on MSNs and CINs [111]. Therefore, D2
receptors in CINs may play a crucial role in the fine-tuning of striatal output and dopamine
signaling, and may be involved in several aspects of disease. For example, the dysregu-
lation of D2 receptors in CINs may contribute to the pathophysiology of schizophrenia,
Parkinson’s disease, and addiction, as these disorders are associated with altered dopamine
transmission and impulsive choice behavior [110–112].

Maintaining an intricate balance between D1 and D2 pathway activities is imperative
for proper motor control and cognitive functions [52,67,84,101,107,113–117]. Perturbations
in this delicate equilibrium can lead to motor dysfunction, cognitive impairment, and
alterations in reward processing. Imbalances in D1 and D2 signaling are notably associated
with a spectrum of neurological and neuropsychiatric disorders, including Parkinson’s
disease, schizophrenia, and addiction. These data indicate that the nuanced interplay of
D1 and D2 receptors in the striatum regulates motor control, cognitive processes, and the
pathophysiology of diverse neurological and neuropsychiatric disorders (Table 2).

Other dopamine receptors, namely D3, D4, and D5 subtypes, exhibit distinct expres-
sion patterns and exert intricate influences on brain function [23,38,46,53,54]. D3 receptors,
primarily situated in the limbic areas of the striatum, orchestrate emotional responses,
motivation, and cognitive functions upon activation. The dysregulation of D3 receptors is
strongly linked to addiction, schizophrenia, and mood disorders. In the prefrontal cortex
and striatum, D4 receptors play a pivotal role in executive functions, emotional processing,
and responses to novelty, with aberrant function being associated with ADHD and specific
psychiatric conditions. D5 receptors, widely distributed throughout the brain, contribute
significantly to the modulation of both motor activity and cognitive processes. Altered
D5 receptor function is implicated in conditions such as schizophrenia and cognitive dys-
function (Table 2). Collectively, these data underscore the pathogenic impact of dopamine
receptor subtypes in the striatum on neurological and neuropsychiatric disorders. Imbal-
ances in or the dysregulation of these receptors emphasize the need for targeted therapeutic
strategies to restore proper dopaminergic signaling for effective clinical interventions.

5.2. Impact of Dopamine Receptors in the Ventral Striatum (Nucleus Accumbens and
Olfactory Tubercle)

The nucleus accumbens and the olfactory tubercle are part of the ventral striatum in
the brain [118]. The ventral striatum is involved in processing sensory information, such
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as olfactory and reward-related information [118–120]. The nucleus accumbens, a part of
the structure called the striatum, is influenced by neurotransmitters such as dopamine and
serotonin. It plays a significant role in behaviors related to pleasure, motivation, decision
making, and addiction. On the other hand, the olfactory tubercle is a part of the structure
called the olfactory cortex, and receives input from the olfactory epithelium. Apart from
olfaction, the olfactory tubercle can integrate sensory information from other senses, such
as hearing and vision. This is believed to influence social behavior and emotion.

In the nucleus accumbens, all D1 to D5 receptors are expressed, with D1 and
D2 receptors being the most prevalent [1,6,14,36,52,107,117,121,122]. The D1 receptors
are mainly localized in the direct pathway of medium spiny neurons, while D2 receptors
are primarily found in the indirect pathway of medium spiny neurons. The activation
of D1 receptors is believed to be involved in reward, motivation, and learning. Con-
versely, the activation of D2 receptors is associated with reward, pleasure, and addiction.
D3 receptors are predominantly located in the shell of the nucleus accumbens, and are
implicated in fear, anxiety, and depression. D4 receptors are mainly found in the core of
the nucleus accumbens, and are thought to be involved in psychiatric disorders such as
ADHD and schizophrenia. D5 receptors, localized in the shell of the nucleus accumbens
and the olfactory tubercle, are believed to play a role in memory and cognition (Table 3).

Table 3. The distribution and major functions of dopamine D1–D5 receptors in the ventral striatum
(nucleus accumbens and olfactory tubercle) and their implication for disorders.

Subtypes Expression Function Related Diseases Ref.

D1 receptors Predominantly in
the dMSNs

Rewards, motivation, and
learning; olfaction
and learning

Implicated in addiction,
ADHD, schizophrenia,
and depression

[1,6,14,36,52,85,99,100,
106,107,117,121,122]

D2 receptors Predominantly in
the iMSNs

Rewards, pleasures, and
addictions; olfaction, social
behavior, and emotion

Linked to Parkinson’s
disease, addiction,
schizophrenia

[1,6,14,36,52,85,99,100,
106,107,117,121,122]

D3 receptors Nucleus accumbens shell;
large aspiny neuron

Fear, anxiety, and
depression; olfaction
and rewards

Associated with addiction,
depression, and
schizophrenia

[83,85,99,100,107,121]

D4 receptors Nucleus accumbens core;
medium aspiny neuron

Attention and motivation;
olfaction and attention

Linked with ADHD
and schizophrenia [53,54,85,99,100,121]

D5 receptors Nucleus accumbens
shell; dMSNs

Memory and cognition;
olfaction and memory

Implicated in learning,
memory, and
cognitive disorders

[23,85,99,100,121]

In contrast, all D1 to D5 receptors are expressed in the olfactory tubercle, with D2
receptors being the most abundant [1,6,14,36,106,121,122]. D2 receptors are primarily
localized in the indirect pathway of medium spiny neurons. The activation of D2 receptors
is believed to be involved in olfaction, social behavior, and emotion. D1 receptors are mainly
found in the direct pathway of medium spiny neurons; D3 receptors are predominantly
in large aspiny neurons; D4 receptors are mainly found in medium aspiny neurons; and
D5 receptors are primarily localized in the direct pathway of medium spiny neurons. The
activation of D1 receptors is considered to be involved in olfaction and learning. The
activation of D3 receptors is thought to be associated with olfaction and reward. The
activation of D4 receptors is believed to be related to olfaction and attention. The activation
of D5 receptors is considered to be involved in olfaction and memory (Table 3). Dopamine
D2 receptors in the ventral striatum are not only expressed by GABAergic MSNs, but also
by CINs.

Despite the heterogeneous distribution of D1- and D2-like dopamine receptors
across the brain, it is noteworthy that these receptors can be expressed on the same type
of neurons. Recent findings regarding the modulation of dopamine receptor signaling
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in striatal neurons reveal pivotal molecular insights, particularly alterations linked to
addiction and dyskinesia [15,123,124]. Furthermore, studies comparing the affinities of
drugs targeting dopamine receptor subtypes D1, D2, and D3 underscore the potential
therapeutic avenues for treating schizophrenia, bipolar disorder, and depression [125].
Notably, investigations into the activation of the D1–D2 receptor complex demonstrate
promising outcomes in curbing cocaine-seeking behaviors in animal models, indicating
novel signaling pathways involving Gq/phospholipase C (PLC)/protein kinase C (PKC)
signaling [126]. In addition to dopamine D1 receptors, the modulation of D2 receptor-
dependent Ca2+/calmodulin-dependent protein kinase II (CaMKII) and the extracellular
signal-regulated kinases (EKR) signaling pathway can alleviate cocaine-induced condi-
tioned place preference (CPP) [127–129].

In addition, both MSNs and CINs express dopamine D2 and D3 receptors in the
nucleus accumbens [130–132]. D2 and D3 receptors have different affinities for dopamine,
with D3 receptors having a higher affinity than D2 receptors. Therefore, D3 receptors may be
more sensitive to low dopamine levels, while D2 receptors may be more responsive to high
dopamine levels. Moreover, D2 and D3 receptors can form heterodimers with each other or
with other dopamine receptors [130,131,133,134], such as D1 and D3 receptors [133–135].
The co-expression and heterodimerization of D2 receptors and D3 receptors in the nucleus
accumbens may distinctly and specifically contribute to the regulation of reward-related
behaviors and the development of addiction and other neuropsychiatric disorders [133,134].
For instance, the D2 receptor and D3 receptor in MSNs may differentially modulate the
activity and plasticity of the direct and indirect pathways, which have opposite effects
on motor output and reward processing. D2 receptors and D3 receptors in CINs may
differentially regulate the release of acetylcholine in the nucleus accumbens, which can, in
turn, affect the function of other dopamine receptors on MSNs and CINs. The dysregulation
of D2 and D3 receptor signaling in the nucleus accumbens may lead to the dysfunction
and degeneration of nucleus accumbens neurons and circuits, impairing reward-related
learning and decision making [130–134].

Together, these advances underscore the potential of targeted receptor modulation in
addressing addiction and neuropsychiatric conditions, offering novel insights and potential
therapeutic approaches which target the ventral striatum dopamine receptors.

6. Impact of Dopamine Receptors in the Prefrontal Cortex

The prefrontal cortex represents a pivotal brain region which orchestrates a spectrum of
cognitive processes, including executive functions, decision making, emotional regulation,
and working memory [136]. Its intricate interplay with the basal ganglia forms the crux of
sophisticated neurobehavioral operations, marked by a complex network of parallel loops
that underpin diverse physiological functions. Central to this interaction, the prefrontal
cortex establishes glutamatergic connections to the striatum, the principal input nucleus of
the basal ganglia. Herein, the striatum adeptly integrates a convergence of cortical inputs
with dopaminergic innervation stemming from the substantia nigra pars compacta and
the ventral tegmental area. Following this integration, the striatum dispatches inhibitory
projections to the output structures of the basal ganglia, namely the globus pallidus and
the substantia nigra pars reticulata. These output structures govern thalamic activity,
modulating the excitatory output that, in a reciprocal loop, is projected back to the prefrontal
cortex. This intricate circuitry forms a comprehensive loop involving cortical-striatal-
thalamic-cortical pathways, constituting the basis of higher-order cognitive and motor
functions. Dopamine receptors in the prefrontal cortex, particularly the D1 and D2 receptor
subtypes, play significant roles in these processes.

In detail, dopamine D1 receptors are primarily expressed on the excitatory pyramidal
neurons in the prefrontal cortex [121,137,138]. The activation of D1 receptors is associated
with improved working memory, cognitive flexibility, and attention. It enhances the
strength of excitatory synapses and facilitates the neural circuits responsible for executive



Receptors 2024, 3 163

functions. The dysfunction of D1 receptors in the prefrontal cortex has been implicated in
cognitive disorders such as ADHD and schizophrenia (Table 4).

Table 4. The distribution and major functions of dopamine D1–D5 receptors in the prefrontal cortex
and their implication for disorders.

Subtypes Physiological Functions Related Diseases Ref.

D1 receptors

Working memory maintenance,
cognitive flexibility, executive
functions, modulation of
emotional responses

Implicated in cognitive
deficits, schizophrenia

[38,67,85,88,99,100,118–
120,125,139]

D2 receptors

Modulation of executive functions,
inhibition of impulsive behavior,
regulation of reward-related
behaviors, influences on attention
and motivation

Associated with ADHD, addiction,
cognitive impairments

[38,67,85,88,99,100,118–
120,125,139]

D3 receptors

Modulation of emotional responses,
involvement in motivation and
reward, potential role in addiction
and dependence

Implicated in mood
disorders, addiction

[38,67,85,88,99,100,118–
120,125]

D4 receptors

Contribution to executive functions,
role in emotional processing,
response to novelty, implications
in attention disorders

Linked to ADHD,
psychiatric impairments

[67,85,88,99,100,118–
120,125]

D5 receptors
Modulation of cognitive processes,
potential involvement
in schizophrenia

Associated with cognitive
impairments, schizophrenia [5,23,84,121]

On the other hand, dopamine D2 receptors in the prefrontal cortex are expressed
on both excitatory pyramidal neurons and inhibitory interneurons [8,26,29,140–142].
The activation of D2 receptors is generally associated with inhibitory neurotransmis-
sion. D2 receptors modulate the balance of excitation and inhibition in the prefrontal
cortex, influencing working memory and decision-making processes. Importantly, in the
striatum, where D2 receptors are mainly expressed by GABAergic MSNs and CINs, D2
receptor activation preferentially induces G protein signaling, which modulates the ac-
tivity and plasticity of MSNs, and affects motor and reward-related behaviors [143–146].
However, in the prefrontal cortex, where D2 receptors are mainly expressed by gluta-
matergic pyramidal neurons, D2 receptor activation preferentially induces β-arrestin
signaling, which modulates the trafficking and stability of D2 receptors, and affects
cognitive and emotional functions [144,147,148]. These variations in receptor signaling
may underlie differences in physiological functions and contribute to distinct disease
conditions. Indeed, the dysregulation of D2 receptor signaling in these brain regions
may be involved in the pathophysiology of various neuropsychiatric disorders, such as
schizophrenia [149] (Table 4), while the dysregulation of striatal D2 receptors contributes
to addiction [145,146] (Table 2).

The D3 receptors, known for their modulation of emotional responses and involve-
ment in motivation and reward circuits, have been implicated in addiction and depen-
dence [38,42,43,46,49]. Their dysregulation is closely associated with mood disorders and
addictive behaviors, illuminating their significant role in these conditions. Conversely,
the D4 receptors contribute substantially to executive functions, emotional processing,
and responses to novelty [53,54,150–152]. Their implications in attention disorders, espe-
cially attention-deficit hyperactivity disorder (ADHD), and certain psychiatric impairments
underscore their role in cognitive and behavioral functions. Additionally, D5 receptors,
which modulate cognitive processes and have been tentatively linked to schizophrenia, are
associated with cognitive impairments and the development of schizophrenia (Table 4).
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These data suggest that dopamine receptors in the prefrontal cortex play a crucial
role in regulating cognitive functions, and imbalances or dysfunctions in these receptors
can contribute to the pathogenesis of cognitive disorders. Understanding the intricate
role of dopamine in the prefrontal cortex is essential for developing targeted therapeutic
interventions for cognitive-related conditions.

7. Impact of Dopamine Receptors in the Subthalamic Nucleus

The subthalamic nucleus is a critical part of the basal ganglia circuitry, which is in-
volved in sensory and motor control [153–155]. While the presence of dopamine receptors,
particularly D1–D5, has been identified, their specific roles and implications in disorders
within this specific region are not yet fully elucidated. Parkinson’s disease, characterized
by dopaminergic neuron degeneration in the substantia nigra, impacts the basal ganglia cir-
cuitry, including the subthalamic nucleus, which has implications for motor symptoms and
related dysfunctions [13,102,113,117,156–158]. Dopamine receptors in the subthalamic nu-
cleus also play a crucial role in modulating the release of hormones from the hypothalamus,
thereby influencing the endocrine system. Dopamine receptors in the hypothalamus have
a physiological significance in hormone regulation, temperature regulation, and appetite
and weight regulation.

Dopamine D1 receptors in the subthalamic nucleus modulate thalamocortical activity,
impacting motor functions, the regulation of neuronal activity, working memory, and
cognitive flexibility. Dysregulation in D1 receptors is linked to movement disorders such
as Parkinson’s disease, dyskinesia, schizophrenia, and addiction. D2 receptors regulate
thalamic output, reward processing, and motor control, and their dysfunction is associated
with schizophrenia, Parkinson’s disease, addiction, and depression. D3 receptors mediate
thalamic inhibition, motivation, and emotional regulation, and are implicated in schizophre-
nia, addiction, depression, and anxiety. D4 receptors influence thalamic gating, novelty
seeking, and impulsivity, and their dysfunction is implicated in schizophrenia, ADHD, and
addiction. D5 receptors enhance thalamocortical transmission, learning, and memory, and
their implication extends to schizophrenia, Parkinson’s disease, and Alzheimer’s disease
(Table 5).

Table 5. The distribution and major functions of dopamine D1–D5 receptors in the subthalamic
nucleus and their implication for disorders.

Subtypes Physiological Functions Related Diseases Ref.

D1 receptors

Modulation of thalamocortical
activity; motor functions, regulation
of neuronal activity, working memory,
and cognitive flexibility

Linked to movement disorders such
as Parkinson’s disease, dyskinesia,
schizophrenia, and addiction

[13,14,102,117,122,156,158]

D2 receptors Regulates thalamic output; reward
processing and motor control

Associated with schizophrenia,
Parkinson’s disease,
addiction, depression

[14,102,113,122,157,159,160]

D3 receptors Mediates thalamic inhibition,
motivation, and emotional regulation

Implications in schizophrenia,
addiction, depression, anxiety [42,83,100,107,161,162]

D4 receptors Influences thalamic gating, novelty
seeking, and impulsivity

Implications in schizophrenia,
ADHD, addiction [67,150,155,163]

D5 receptors Enhances thalamocortical
transmission, learning, and memory

Implication in schizophrenia,
Parkinson’s disease,
Alzheimer’s disease

[20,67,155,156,163]

Furthermore, dopamine receptors in the hypothalamus are also involved in regulat-
ing hormone release, including the inhibition of prolactin secretion—a hormone which
is crucial for lactation and reproductive functions [31]. Both D1 and D2 receptors may
participate in the modulation of hormone release. Dopamine in the hypothalamus also
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contributes to the regulation of body temperature, influencing thermoregulatory responses.
Additionally, dopamine signaling in the hypothalamus is implicated in regulating appetite
and body weight, and disruptions in this system may contribute to conditions like obe-
sity. The dysfunction of dopamine receptors in the hypothalamus is linked to the loss of
biological homeostasis, potentially leading to disorders of hormone secretion and repro-
ductive system-related conditions. Altered dopamine signaling may also contribute to
temperature dysregulation and issues such as hyperthermia or hypothermia. Dysfunction
in the dopaminergic system in the hypothalamus has been implicated in disorders related
to appetite and weight, including obesity or eating disorders. These data suggest that
dopamine receptors in the hypothalamus are crucial for endocrine regulation, metabolism,
and related physiological functions.

Therefore, dopamine receptors in the limbic system contribute significantly to motor
regulation and hormone secretion. The dysregulation of these receptors is linked to various
neuropsychiatric disorders, emphasizing their importance as potential targets for therapeu-
tic interventions. Understanding the nuanced roles of dopamine receptors in these brain
regions is crucial for developing targeted treatments for conditions affecting emotional and
cognitive functions.

8. Impact of Dopamine Receptors in the Limbic System
8.1. Impact of Dopamine Receptors in the Amygdala

Dopamine receptors in the limbic system, encompassing structures like the amygdala
and hippocampus, are integral for emotional processing, memory formation, and reward-
related behaviors [3,14,102,107,117,121,122,158,164,165]. The limbic system is a complex
network of brain structures that play a crucial role in regulating emotions, memory, and
certain autonomic functions. It includes several interconnected regions located in the
cerebral cortex and subcortical areas. Pivotal structures within the limbic system include
the hippocampus, amygdala, hypothalamus, thalamus, and cingulate gyrus. The limbic
system interacts with other brain regions to modulate emotional responses, store and
retrieve memories, and regulate physiological processes associated with the stress response.
Dysfunction in the limbic system is implicated in various psychiatric and neurological
disorders, including mood disorders, anxiety disorders, and memory-related conditions.

The amygdala, with its intricate connections and roles in emotional regulation and fear
conditioning, is impacted by dopamine signaling through various receptor subtypes. In
the amygdala, both D1 and D2 receptor subtypes are expressed [67,164,166]. The activation
of D1 receptors is linked to the modulation of emotional responses, fear learning, and
the consolidation of emotional memories. On the other hand, D2 receptor activation in
the amygdala is associated with the regulation of anxiety and stress responses [28,38,166].
Dysregulation in dopamine receptor expression or function within the amygdala has been
associated with various mood disorders, anxiety disorders, and conditions, involving
emotional dysregulation (Table 6).

In contrast, dopamine D3 receptors in the amygdala are implicated in the modulation
of emotional responses, motivation, and reward processes, potentially contributing to
addiction and dependence. They are suggested to have associations with mood disor-
ders, addictive behaviors, and anxiety disorders. Meanwhile, D4 receptors contribute to
emotional processing and play a role in responding to novelty, impacting attention and
cognitive tasks. They have been linked to attention-deficit hyperactivity disorder (ADHD),
schizophrenia, and depression. Furthermore, D5 receptors modulate emotional responses
and are involved in cognitive processes, thus potentially influencing schizophrenia. These
receptors have been associated with Alzheimer’s disease, depression, and drug abuse
(Table 6).
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Table 6. Major functions of dopamine D1–D5 receptors in the amygdala and their implication
for disorders.

Subtypes Physiological Functions Related Diseases Ref.

D1 receptors

Modulation of emotional responses,
fear conditioning, synaptic plasticity
Facilitates neuronal plasticity, which
is necessary for fear conditioning and
fear elimination

Dysfunctions linked to mood
disorders, anxiety, and
fear-related pathologies

[3,14,57,117,121,122,158,164,
166,167]

D2 receptors

Regulation of emotional responses
and reinforcement learning
Suppresses neuronal plasticity, which
is necessary for fear conditioning and
fear elimination

Altered expression associated with
mood disorders, addictive
behaviors, anxiety

[14,28,38,57,122,166,167]

D3 receptors
Modulation of emotional responses,
motivation, and reward, potential
role in addiction and dependence

Potential involvement in mood
disorders, addictive behaviors,
anxiety disorders

[38,41,57,67,83,107,168]

D4 receptors

Contribution to emotional processing,
role in response to novelty,
implications in attention and
cognitive tasks

ADHD, schizophrenia, depression [55,57,67,169]

D5 receptors
Modulation of emotional responses,
involvement in cognitive processes,
potential role in schizophrenia

Alzheimer’s disease, depression,
drug abuse [23,57,121,164,167]

8.2. Impact of Dopamine Receptors in the Hippocampus

The hippocampus, a critical region for learning and memory, also expresses both
D1- and D2-like receptors. Dopamine receptors, particularly the D1 and D2 subtypes,
play crucial roles in synaptic plasticity, memory formation, and cognitive functions within
the hippocampus [3,5,13,14,21,52,56,102,116,117,162]. Dysregulation or alterations in the
expression of these receptors have been associated with various cognitive disorders, mem-
ory impairments, and neurodegenerative diseases. D1 receptor activation is involved in
long-term potentiation (LTP), a cellular process crucial for memory formation. D2 recep-
tors modulate synaptic plasticity and are involved in memory consolidation. Changes in
dopamine receptor function in the hippocampus are associated with cognitive impairments
seen in disorders such as Alzheimer’s disease and schizophrenia (Table 7).

In contrast, dopamine D3 receptors in the hippocampus are involved in the modulation
of synaptic transmission, and are suggested to play potential roles in hippocampal function.
Their dysregulation has been associated with conditions such as schizophrenia, depression,
and drug abuse. On the other hand, D4 receptors play a crucial role in modulating neuro-
transmitter release and receptor sensitivity, which are linked to neuronal development and
plasticity. Disruptions in these receptors are implicated in attention-deficit hyperactivity
disorder (ADHD), schizophrenia, and depression. Additionally, D5 receptors are respon-
sible for activating the signaling pathways crucial for neuronal plasticity and learning.
Dysfunctions in these receptors have been associated with Alzheimer’s disease, depression,
and drug abuse (Table 7).

In detail, the hippocampus receives dopaminergic innervation from the follow-
ing two main sources: the ventral tegmental area (VTA) and the locus coeruleus
(LC) [170–172]. The VTA provides direct dopaminergic projections to the hippocampus,
while the LC provides indirect dopaminergic projections via noradrenergic neurons that
co-release dopamine. However, the density and distribution of dopaminergic innerva-
tion in the hippocampus are relatively low and heterogeneous when compared to other
brain regions, such as the striatum and the prefrontal cortex. Moreover, the dopamin-
ergic innervation shows a dorsoventral gradient, with higher levels in the ventral
hippocampus than in the dorsal hippocampus [170–172]. The low level of dopamine
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innervation in the hippocampus may influence the relative roles of the dopamine
receptors therein, which include D1, D2, D3, D4, and D5 receptors. These receptors are
differentially expressed in the hippocampal subregions and cell types, and mediate the
diverse effects impacting synaptic transmission, plasticity, and network activity.

For instance, D1 and D5 receptors are mainly located on the dendritic spines of
pyramidal neurons and modulate glutamatergic excitatory inputs, while D2 and D3 recep-
tors are mainly located on the axon terminals of GABAergic interneurons and modulate
inhibitory inputs [170–172]. D4 receptors are more sparsely expressed, and they have
complex effects on both excitatory and inhibitory transmission. The balance and interaction
of these receptors may determine the optimal level of dopamine signaling for hippocam-
pal function. The dysregulation of dopamine signaling in the hippocampus may lead
to the dysfunction and degeneration of hippocampal neurons and circuits, and may im-
pair hippocampus-dependent memory processes. Several studies have reported reduced
levels of dopamine and dopamine receptors in the hippocampus of Alzheimer’s disease
patients and animal models, as well as altered dopamine-dependent synaptic plasticity
and memory performance [93,173–175]. Moreover, some studies have suggested that the
modulation of dopamine receptors may have therapeutic potential for Alzheimer’s dis-
ease, as it may enhance hippocampal function and attenuate Alzheimer’s disease-related
symptoms [93,173–175]. These phenomena may contribute to the pathophysiology of
Alzheimer’s disease, a neurodegenerative disorder characterized by progressive cognitive
decline and memory loss.

Table 7. Major functions of dopamine D1–D5 receptors in the hippocampus and their implication
for disorders.

Subtypes Physiological Functions Related Diseases Ref.

D1 receptors
Modulation of synaptic plasticity,
long-term potentiation (LTP),
memory formation

Alzheimer’s disease,
depression, drug abuse [3,5,13,14,34,67,102,116,117,176]

D2 receptors Regulation of synaptic transmission,
modulation of neuronal excitability

Alzheimer’s disease,
depression, drug abuse [14,34,67,116,176]

D3 receptors
Modulation of synaptic
transmission, potential roles in
hippocampal function

Schizophrenia,
depression, drug abuse [34,45,67,162,177]

D4 receptors

Modulates neurotransmitter release
and receptor sensitivity related to
neuronal development
and plasticity

ADHD, schizophrenia, depression [34,52,56,67,169]

D5 receptors
Activates signaling pathways
required for neuronal plasticity
and learning

Alzheimer’s disease, depression,
drug abuse [20,21,34,67,176]

9. Impact of Dopamine Receptors in the Midbrain
9.1. Impact of Dopamine Receptors in the Substantia Nigra

The physiological significance of dopamine receptors in the substantia nigra (SN)
and ventral tegmental area (VTA) is integral to the regulation of movement, reward, and
motivation. Both regions are critical components of the dopaminergic system in the brain.
The dysregulation of dopamine receptors in these areas is linked to various disorders. In
Parkinson’s disease, dopamine-producing neurons are degenerated in the SN, leading
to motor impairments [91,101,178–183]. Dysfunctions in the VTA and associated reward
pathways are implicated in addiction and mood disorders [184–187].

The substantia nigra, particularly its dopamine-abundant areas, plays a crucial role
in motor control, reward mechanisms, and behavioral responses [15,67]. In the intricate
orchestration of neurotransmission within the mesencephalic substantia nigra, dopamine
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D1-like and D2-like receptors play pivotal roles, particularly in the modulation of GABA
release to the globus pallidus via the striatum. Dopamine receptors, especially the D1 and
D2 subtypes, are integral in regulating motor function and reward processing within this
brain region. Dysregulation or alterations in the expression of these receptors are strongly
associated with movement disorders, including Parkinson’s disease, and could potentially
contribute to other neuropsychiatric conditions.

In the SN, particularly the pars compacta, dopamine-producing neurons play a central
role in controlling voluntary movement. In Parkinson’s disease and dopa-responsive dysto-
nia, particularly tyrosine hydroxylase, the rate-limiting enzyme for dopamine biosynthesis,
is reduced; therefore, the strict regulation of dopamine receptors is crucial [182,188]. The
activation of D1 receptors in the nigrostriatal pathway, particularly on the surface of the
dMSNs, facilitates the initiation and execution of movement. These receptors enhance the
excitability of GABAergic dMSNs to enhance GABA release to the internal segment of
globus pallidus (GPi), resulting in the promotion of motor function [189–193].

Simultaneously, D2 receptors, predominantly expressed in the indirect pathway
medium spiny neurons (iMSNs), exert inhibitory control over GABA release to the external
segment of globus pallidus (GPe), which modulates the GPi through the subthalamic
nucleus [189–193]. The interplay between the D1 and D2 receptor-mediated modulation of
GABAergic transmission intricately regulates the output of the substantia nigra, influencing
downstream motor circuits. The dysregulation or degeneration of dopamine-producing
neurons in the pars compacta, leading to alterations in D1 and D2 receptor activation and
GABA release, is a hallmark of Parkinson’s disease. This results in motor symptoms such
as tremors, rigidity, and bradykinesia (Table 8).

Table 8. Major functions of dopamine D1–D5 receptors in the substantia nigra (SN) and their
implication for disorders.

Subtypes Physiological Functions Related Diseases Ref.

D1 receptors
Positive modulation of motor
coordination, influencing
cognitive functions

Dysfunctions linked to movement
disorders like Parkinson’s disease,
motor impairments, and potentially
addictive behaviors

[15,22,84,93,101,125,189,191–194]

D2 receptors
Inhibition of excessive movement,
control of reward-related behaviors
involvement in motor skill learning

Altered expression associated with
movement disorders, such as
Parkinson’s disease, and some
neuropsychiatric conditions

[22,91,93,101,125,140,194,195]

D3 receptors Modulation of emotional responses
Regulation of cognitive functions

Potential implications in
movement disorders [38,42,49,83,101,125]

D4 receptors Contribution to executive functions
Role in response to novelty

Parkinson’s disease,
motor impairments [53,54,67,84,101]

D5 receptors Modulation of motor activity
Regulation of cognitive functions

Parkinson’s disease,
motor impairments [4,20,22,23,101]

Dopamine D3 receptors in SN play a role in modulating emotional responses and
regulating cognitive functions, potentially having implications for movement disorders.
On the other hand, D4 receptors contribute to executive functions and are involved in
responding to novelty. Dysfunctions in these receptors are associated with Parkinson’s
disease and motor impairments. Additionally, D5 receptors are responsible for modulating
motor activity and regulating cognitive functions. Aberrations in these receptors have been
linked to Parkinson’s disease and motor impairments (Table 8).

Parkinsonism is a typical phenotype of substantia nigra dysfunction. Parkinson’s
disease is characterized by a significant reduction in the levels of tyrosine hydroxylase, the
rate-limiting enzyme in dopamine biosynthesis [196–200]. This reduction leads to a dimin-
ished capacity for dopamine synthesis, necessitating the precise regulation of dopamine
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receptors [197,198,200]. Reduced dopamine production in parkinsonism results in the
reduction of D1 receptor activation. This leads to a decrease in the excitability of dMSNs
and a subsequent reduction in GABA release to GPi. The impaired excitatory input to the
GPi contributes to motor symptoms like tremors, rigidity, and bradykinesia [201–203]. In
contrast, D2 receptors exert inhibitory control over GABA release to GPe. The modulation
of GABAergic transmission by D2 receptors is crucial for the delicate balance between
the direct and indirect pathways [10,204]. In parkinsonism, alterations in D2 receptor
activation disrupt this balance, contributing to the overall motor dysfunction observed
in the disease. The intricate interplay between the D1 and D2 receptor-mediated modu-
lation of GABAergic transmission intricately regulates the output of the substantia nigra,
influencing downstream motor circuits. Furthermore, the compensatory enhancement of
TH phosphorylation and dopamine D1 receptor expression alleviates motor dysfunction
in order to mitigate the severity of hypokinesia [205]. These data imply that the dysreg-
ulation or degeneration of dopamine-producing neurons in the pars compacta leads to
alterations in D1 and D2 receptor activation and GABA release, which is a hallmark of
Parkinson’s disease.

9.2. Impact of Dopamine Receptors in the Ventral Tegmental Area

On the other hand, VTA is a crucial brain region, containing dopaminergic neurons
that project to various areas of the brain, including the nucleus accumbens and prefrontal
cortex [185,206–209]. The physiological significance of dopamine receptors in the VTA is
associated with regulating reward, motivation, reinforcement, and cognitive functions.
D1 receptors in the VTA play a key role in the reward pathway. The activation of these
receptors is involved in the experience of pleasure and the reinforcement of behaviors
associated with positive outcomes. They contribute to the motivation one feels to seek
rewards. The dysregulation of D1 receptor signaling in the VTA is implicated in reward
processing and motivation disorders. This dysfunction is associated with conditions like
addiction, where there is an aberrant reinforcement of drug-seeking behavior (Table 9).

Table 9. Major functions of dopamine D1–D5 receptors in the ventral tegmental area (VTA) and their
implication for disorders.

Subtypes Physiological Functions Related Diseases Ref.

D1 receptors

Regulation of reward-related
behaviors, control of motivation and
reinforcement, contribution to
emotional responses

Dysfunctions may contribute to
addictive behaviors, mood disorders,
and cognitive impairments

[1,6,13,102,116,125,210–212]

D2 receptors

Modulation of aversive responses,
regulation of neurotransmitter
release, contribution to motor
learning and adaptation

Altered expression linked to
addiction, schizophrenia, and
potentially motor-related disorders

[1,6,116,125,210,211]

D3 receptors
Influence on motivation and reward
processing, potential role in drug
addiction and dependence

Implications in addiction and
reward-related disorders [38,67,125,210]

D4 receptors
Involved in regulating dopamine
pathways, potential
role in motivation

Potential involvement in motivation
and reward-related
disorders, depression

[54,67,150,210,213]

D5 receptors
Modulates neurotransmission,
influences motor functions and
cognitive processes

Addiction and cognitive
impairments, depression [4,20,23,67,210]

In contrast, D2 receptors in the VTA are involved in modulating the response to
rewarding and aversive stimuli. Their activation can inhibit dopamine release in target
areas, thus contributing to the regulation of reward-related behaviors. Imbalances in
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D2 receptor function in the VTA are associated with psychiatric conditions, including
schizophrenia. Altered dopamine release and disrupted reward processing contribute
to the symptomatology of these disorders. The activation of D2 receptors in the nucleus
accumbens, which is the projection site of VTA dopaminergic neurons, is associated with
the hedonic aspects of reward-related behaviors (Table 9).

Dopamine D3 receptors in VTA exert an influence on motivation and reward pro-
cessing, potentially playing a role in drug addiction and dependence. Dysfunction in
these receptors is implicated in addiction and reward-related disorders. D4 receptors are
involved in regulating dopamine pathways, and may have a role in motivation, potentially
contributing to motivation and reward-related disorders, as well as depression. Addition-
ally, D5 receptors modulate neurotransmission, impacting motor functions and cognitive
processes. Dysfunctions in these receptors are associated with addiction and cognitive
impairments, along with depression (Table 9).

These data suggest that the physiological significance of dopamine receptors in the
SN lies in their role to regulate motor function via the intricate balance of D1 and D2
receptor-mediated pathways. The pathogenic impact involves disruptions in this balance,
leading to movement disorders like Parkinson’s disease. In contrast, the physiological
significance of dopamine receptors in the VTA lies in their central role in the brain’s reward
system. The pathogenic impact involves disruptions in reward processing, motivation, and
reinforcement, contributing to the development of neuropsychiatric disorders.

10. Dopamine Receptors as Drug Targets
10.1. Dopamine D1-like Receptors as Therapeutic Targets

This review highlighted that the dopamine receptors in various brain nuclei are
involved in diverse neuropsychiatric disorders, such as depression, schizophrenia, Parkin-
son’s disease, and drug addiction. Therefore, they have been considered as potential
therapeutic targets for the development of novel drugs. However, the complexity and
diversity of dopamine receptor signaling, and pharmacology pose significant challenges
for designing selective and effective ligands. As mentioned above, dopamine D1 recep-
tors are mainly expressed in the striatum, stimulating the direct pathway and facilitating
movement. They are also expressed in the prefrontal cortex, enhancing cognitive functions
such as working memory, attention, and decision making. Because of the wide variety
of functions and distributions, the development of clinically effective D1 receptor ago-
nists has been challenging due to the lack of selectivity, bioavailability, and safety of the
available compounds.

The exploration of D1/D5 receptor-selective partial agonists shows promise in pro-
viding sustained, predictable motor control, while reducing the risk of complications,
presenting a potential shift in the classification of dopamine agonists based on their recep-
tor selectivity [214]. High intrinsic activity D1 agonists could offer significant symptomatic
relief, even in severe stages of the disease, potentially improving the quality of life for
late-stage Parkinson’s patients [215]. In recent years, several novel non-catecholamine
D1 receptor agonists have been discovered, which demonstrate improved pharmaco-
logical properties and therapeutic potential. Non-catecholamine D1/D5 receptor ago-
nists can dissociate Gs protein signaling from β-arrestin recruitment, and may be use-
ful for treating motor impairment in Parkinson’s disease and cognitive impairment in
neuropsychiatric disorders [15,216]. For example, the dopamine D1 receptor potentia-
tor DETQ [2-(2,6-dichlorophenyl)-1-((1S,3R)-3-(hydroxymethyl)-5-(2-hydroxypropan-2-
yl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one] demonstrated significant al-
losteric effects in human D1 receptors, inducing a leftward shift in the cAMP response
to dopamine [217]. DETQ increased locomotor activity in a dose-dependent manner in a
knock-in mouse model expressing human D1 receptors [217]. In addition, PF-06649751,
also known as tavapadon, is a partial agonist of the dopamine D1/D5 receptor [218–220].
PF-06649751 has been shown to improve motor function in Parkinson’s disease [218–220].
PF-06649751 has a novel non-catechol structure, which may make it more selective and sta-
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ble than other dopamine agonists [220]. PF-06412562 is also a partial agonist of dopamine
D1 and D5 receptors, which are involved in motor functions [221–223]. PF-06412562 has
been shown to improve motor deficits in Parkinson’s disease with no serious adverse
events, severe adverse events, or adverse events, although it did not improve cognitive
function or motivation/reward processing [221]. Although clinical trials are challenging
due to inadequate therapeutic efficacy and side effects [179], dopamine D1-like receptors
remain a potential therapeutic target.

10.2. Dopamine D2-like Receptors as Therapeutic Targets

In contrast, dopamine D2 receptors are widely distributed in the brain, where they
mediate diverse functions, such as reward processing, reinforcement learning, and motor
coordination, as described above. While striatal D2 receptors were significantly decreased
in PD patients when compared to a healthy control group and patients with Alzheimer’s
disease, combined densities of striatal D1 and D3 receptors showed better correlations
with clinical manifestations of Parkinson’s disease, suggesting potential implications for
diagnosis, treatment, and prognosis, especially in elderly patients with low D2 receptors
expression [224]. The majority of antipsychotic drugs target D2 receptors, as they block the
excessive dopamine transmission that is associated with psychotic symptoms. However,
these drugs also cause adverse effects, such as extrapyramidal symptoms, weight gain,
and metabolic syndrome, due to their lack of specificity and their blockade of D2 receptors
in other brain regions. Therefore, there is a need for more selective and efficacious D2
receptor modulators that can restore the optimal balance of dopamine signaling in different
brain circuits.

Biased D2 receptor agonists can preferentially activate Gi protein or β-arrestin path-
ways, and may exert different effects on reward and aversion [34]. Moreover, allosteric
modulators can modulate the affinity and efficacy of orthosteric ligands, and may provide
more fine-tuned control over dopamine receptor signaling [225]. One approach is to de-
velop D2 receptor partial agonists, which have lower intrinsic activity than full agonists,
and can act as antagonists in the presence of high dopamine levels or agonists in the pres-
ence of low dopamine levels. Examples of D2 receptor partial agonists are aripiprazole and
brexpiprazole, which are approved for the treatment of schizophrenia, bipolar disorder, and
major depressive disorder [226,227]. Another approach is to develop D2 receptor allosteric
modulators, which bind to a distinct site from the orthosteric site and enhance or inhibit
the binding and efficacy of the endogenous ligand or other drugs. For instance, PAOPA is a
positive allosteric modulator of D2 receptors, which increases the affinity and potency of
dopamine and D2 receptor agonists, and reverses the motor and cognitive impairments
induced by D2 receptor antagonists [228,229]. In addition, a novel modulator of dopamine
D2 receptors for the treatment of drug dependence exerts its therapeutic effect by sup-
pressing the interaction between D2L receptors and FABP3 [127]. These novel compounds
represent promising candidates for future drug development, and may pave the way for
more personalized and precise treatments for dopamine receptor-related disorders.

11. Conclusions

In conclusion, this review article provided an overview of the brain distribution and
physiological functions of dopamine D1–D5 receptors, emphasizing their involvement in
disorders arising from dysfunction, with a particular focus on representative brain nuclei.
Predominantly, by spotlighting the striatum, encompassing the caudate nucleus, putamen,
nucleus accumbens, and olfactory tubercle, as well as projection networks including the
prefrontal cortex, subthalamic nucleus, amygdala, hippocampus, substantia nigra, and ven-
tral tegmental area, this review discussed nuclei-specific expression patterns of dopamine
D1–D5 receptors, their physiological functions, and potential disorders associated with
their dysfunction and mutations. The biological functions of dopamine receptors extend
beyond motor function, encompassing cognitive memory, motivation, and drug addiction.
Understanding the biology of dopamine receptors not only advances the fundamental
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knowledge of the central nervous system, but also provides promising clues for therapeutic
interventions. With the global aging society, exploring dopamine receptors as potential
therapeutic targets has become crucial. Progress in therapeutic development, coupled with
a nuanced understanding of these receptors, opens pathways to innovative strategies for
treating conditions like Parkinson’s disease and schizophrenia, as well as Alzheimer’s
disease and drug dependency. Continued research unraveling the molecular complexity
of dopamine receptors holds promise for the discovery of new therapies, and ultimately
contributes to enhancing neurological health in an aging society.
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