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Abstract: This paper applies a two-tier model based on fuel hedging (model 1) and the testing of
the impact of commodity risk on airline capacity forecasting, which is based on a system dynamics
framework (model 2). Model 1 provides a comprehensive examination of the worldwide airline
industry, including an analysis of the statistical impact of oil price fluctuations on the sector and
the corresponding hedging strategies employed by airlines. This study examines a sample of North
American and European airlines over a 10-year timeframe to assess the degree to which these airlines
have engaged in kerosene hedging for future periods and the potential impact of such hedging on
their corporate value and performance. In model 2, the author integrates a capacity-forecasting
model within the system dynamics framework, drawing upon the theory of capacity forecasting. The
study examines the impact of commodity risk by analysing the influence of fluctuations in the jet
fuel spot price on the average airfare and its subsequent effects on other interdependent capacity
variables. The hypotheses presented in this study were formulated based on a comprehensive
review of the relevant literature and a causal feedback loop diagram. The diagram effectively depicts
the dynamic interrelationships between capacity forecasting and risk variables. Furthermore, the
diagram capturing causal feedback loops was transformed into a stock-flow diagram. This diagram
was then utilised to evaluate the hypotheses that were derived using a dataset that pertains to the
domestic airline market in the United States. The verification of the qualitative and quantitative
models demonstrates the proven impact of commodity risk on capacity forecasting.
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1. Introduction

The context of the airline industry is defined by a very cyclical pattern and is very
much exposed to exogenous shocks that can have a severe impact on the performance of
the airline. Over the last fifty years, there has been a persistent and substantial increase in
demand for airline services. However, the industry has only managed to generate a small
profit margin. Undoubtedly, the rate of expansion was considerably faster during the 1950s
and 1960s, when aviation was still in its early stages, compared to the present, when it has
attained a level of maturity. The profit margins of airlines have consistently fallen below
the average margins of companies in various other industries.

Furthermore, there have been instances where airlines have incurred substantial
losses in certain years. The airline industry is significantly impacted by the volatility
of jet fuel prices, which is considered a crucial exogenous factor. This is due to the fact
that jet fuel constitutes a substantial portion of an airline’s operating expenses and is
highly vulnerable to price fluctuations [1]. Therefore, the factors behind the significant
fluctuations in price are analogous to those of any publicly traded commodity, whereby
supply, demand, and political factors have a substantial influence. Airlines possess various
options to mitigate their exposure to price volatility, as it may not always be feasible to
transfer the supplementary expenses to customers owing to the resulting time-related
discrepancy between ticket ordering and fuel purchasing for the corresponding flight [2].
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This paper incorporates the modelling of a capacity-forecasting model through the
system dynamics framework, which is tested for its impact of commodity risk by investi-
gating the effect of changes in the jet fuel spot price on the average airfare and their further
impact on the other interrelated capacity variables. However, due to the complexity and
the quality of available data, model 2 was simplified to solely focus on the assessment
of the impact of commodity risk on the average airfare and its effect on the other main
influencing dynamics regarding capacity forecasting. Therefore, some input variables were
considered fixed and are provided through a dataset from the Bureau of Transportation
Statistics [3].

The literature often questions fuel hedging’s economic sense for airlines or if hedging
instruments (derivatives) even positively affect their financial performance at all. There is
only one thing that is clear: fuel costs remain a huge chunk of an airline’s overall expenses,
and sharp and disruptive swings in prices have a dramatic effect on its financial health.

Since jet fuel is one of the most significant cost factors for an airline, fuel prices may
decide whether an airline is successful or not. Rapid or unforeseen changes in fuel prices
can be of high risk to airlines if not handled well. Airlines usually hedge 30–60% of their
fuel expenses for the next 6 months with the aim of stabilising fuel expenses [4]. The
implementation of hedging strategies in the airline industry exhibits variability across
different carriers, with a predominant approach being the adoption of short-term contracts
typically having a one-year duration. The escalation of oil prices presents a significant
challenge for airlines, as it proves difficult to transfer the additional expenses to passengers
due to intense competition and the pre-purchase of tickets, which do not accurately reflect
the current fuel prices at the time of travel. The financial prospects of airlines engaged in
fuel hedging exhibit significant variability that is primarily contingent upon the specific
year of hedging [5,6]. Although a permanent fuel hedging policy will not change the
long-term profits, it is assumed that fuel hedging reduces volatility in profits, which results
in higher share prices [4] and, consequently, higher firm value. Cao and Conlon [7], who
explicitly indicated that jet fuel prices are highly volatile and outside airlines’ control, found
that incentivizing them to reduce earnings volatility through financial hedging also echoes
this view. Due to limited direct hedging options, airlines often resort to cross-hedging of jet
fuel requirements.

2. Literature Review
2.1. Hedging

Airlines conduct hedging transactions with commodities whose price movements are
highly correlated with the price of oil based on WTI or Brent. According to some publica-
tions, heating oil has proven to be particularly suitable for hedging against fluctuations in
oil prices.

Airlines normally make an agreement with a refiner on the monthly delivery of a
certain number of oil barrels, and the price is usually settled at the end of the month and
based on the average price that month. Transportation costs based on the location of the jet
fuel delivery site are also included in the billing. Through a swap agreement with a financial
institution, an airline can fix the average monthly floating kerosene price for the upcoming
month. If the floating price is higher than the agreed fixed price, the financial institution
would need to pay the price difference to the airlines. It works the other way around when
the floating price is lower than the agreed fixed price. In his works, Schofield [8] explained
that airlines often use oil gas to substitute future contracts in order to hedge against jet
fuel price risks. Because of jet fuel’s higher quality, an additional premium for quality and
transportation charges is factored into the total charges.

Due to this, a jet fuel future contract based on gas oil would look like this:

Jet fuel = Gas oil future price at delivery + fixed jet fuel differential
+Transport cos t to delivery location
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In their study “The Systematic Risk Determinants of the US Airline Industry”, Lee
and Jang [9] examined which specific airline metrics indicate and contribute to the airline’s
systematic and specific risk.

Systematic and firm-specific risks can be avoided through diversification of the stock
portfolio [10]. Systematic risks are, in essence, market risk, while an unsystematic risk
is firm-specific. The risk factor beta is influenced by financial leverage, firm size, and
profitability. A cost structure (e.g., cost per available seat mile) that is more efficient than
that of competitors can also influence the risk factor beta.

Ri = Rf + (Rm − Rf)βi

Ri = β0 + βiRm + Ei

β is derived from a historical dataset and relates the expected return of the single
security to the return of a market portfolio (index). β is influenced by the internal and
external factors that affect the financial performance of a company and how its overall
position in the market—taking into consideration the exogenous events that can affect it
(e.g., economic downturn and political crises)—can affect its stock performance.

Lee and Jang [9] identified several factors that can influence the risk factor β. These
include the liquidity of a company, its debt leverage, its operating efficiency, its profitability,
its firm size, and its growth perspective.

Lee and Jang [9] also examined the type of influence a firm’s size can have on an
airline’s systematic risk. They eventually determined that a firm’s size does have a signif-
icantly positive link to the proportion of its systematic risks. This means that the bigger
the airline, the more it is exposed to airline-specific systematic risks. Managing an airline’s
leverage (reducing debt rate) and improving profitability are measures that can be taken to
reduce operational cost, wherein fuel is a large chunk of it [9].

Table 1 presents a synopsis of selected studies related to hedging in the airline indus-
try in both American and European markets, which is needed in order to showcase the
evolution of research in this field and highlight the soundness of their methodologies and
empirical results.

Brandao, Cerqueira, and Nova [11] studied how the usage of derivate hedging against
interest rate risks and the usage of derivative hedging against foreign exchange rate risk
could affect company value (TobinsQ). For their regression analysis, the authors applied
control variables that can influence firm value (leverage, size, dividends paid, investment
growth rate, liquidity, profitability, multinational diversification, industry diversification,
time effect, and industry effect).

The findings of this research enticed yet another team to provide more detailed
insight into the airline industry’s exposure to energy market risks and how they could
mitigate these risks through the use of derivative instruments. In their study, Gerner and
Ronns [12] tried to determine the circumstances that can prompt airline managers to employ
hedging strategies. They noted that airlines with higher credit ratings have more choices of
derivative instruments because they can more likely find counterparties that will engage
in derivative contracts with them. They also found out that airlines are more engaged in
hedging activities in times of high fuel demand to prevent their overall costs from soaring.
This is further echoed in the study by Treanor et al. [13], who investigated both the effects
of financial and operational hedging in reducing risk exposure. Their findings revealed
that both financial and operational hedging are effective at reducing airlines exposure to
fuel prices.
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Table 1. Synopsis of selected studies on hedging.

Year Authors Methodology Key Findings

2002 Carter, Rogers, and
Simkins

Time series
regression analysis

Airline stock value negatively correlated to rising
jet fuel prices over time. Fuel hedging has a
positive and statistically significant impact on
airline business value.

2004 Cobbs and Wolf Analytical model Optimal hedging strategy for airlines using
different derivatives based on price cycles.

2006 Morrell and Swan Hedging may not significantly impact airline
profitability or stock price in the long term.

2007 Lee and Jang Regression analysis

Firm-specific risk can be reduced through
diversification and efficient cost structures.
Airline size is positively linked to airline-specific
systematic risk.

2008 Maher and Weiss Regression analysis

Hedge score positively impacts cash flow and
equity returns, especially post crisis. Fuel
hedging does not fully protect airlines against
adverse circumstances (e.g., 9/11).

2012 Cerny and Pelikan Empirical analysis The optimal hedge ratio can change during risk
management strategy due to correlation shifts.

2013 Gerner and Ronns Panel data analysis
Airlines with higher credit ratings have more
hedging choices and engage in hedging during
high fuel demand.

2014 Balu and Morad Time series analysis Developed a model to predict crude oil price
volatility using historical data.

2015 Lim and Turner Variance
minimisation

The optimal hedge ratio for a portfolio can be
determined by minimising variance in returns.

2016 Dafir and Gajjala Literature review Identified three types of risks in commodity
trading relevant to the spot market.

2017 Jiang et al. Time series analysis Oil market recovery after shocks follows
established patterns.

2021 Samunderu and
Murahwa Sensitivity analysis GARCH model sensitivity in measuring risk in oil

price distribution.

Carter, Rogers, and Simkins [14] conducted a study investigating the correlation be-
tween fuel derivatives and airlines’ company value. They employed time series regression
analyses to assess how changes in oil prices affect returns on airlines’ stock. The study used
return on stock as the dependent variable, with the weighted return of the market portfolio
and the percentage change in jet fuel price as independent variables. The findings revealed
that an airline’s stock value is negatively correlated with rising jet fuel prices over time, but
this effect becomes small and insignificant in the short term. The authors further explored
the relationship between hedging jet fuel and an airline’s company value, considering the
hedging ratio and applying dummies to identify airlines engaged in fuel hedging. Control
variables such as dividend, leverage, profitability, and investment were also considered.
The study observed that hedging jet fuel had a positive and statistically significant effect
on an airline’s business value, while changes in the hedging ratio did not significantly
impact the firm’s value. Additionally, hedging kerosene had a positive and statistically
significant influence on the overall company value of an airline, whereas changes in the
hedging degree (proportion of hedged kerosene) had no statistically significant impact on
the firm’s value.

In the literature, several airlines are found to employ a dynamic hedging strategy,
taking advantage of price cycles to determine the most beneficial instruments and ratios at
different times. Cobbs and Wolf [15] recommended using swap derivatives when prices
are at their lowest in the price cycle, as future prices are likely to increase. Collars are
suggested when prices are at their average (in the middle) to navigate through potential
price increases or decreases, while caps are used as hedging instruments at the highest
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point of the price cycle to mitigate the effects of price increases. These practices reflect
airlines’ efforts to optimise their hedging strategies and manage fuel price risks effectively.

Cobbs and Wolf [15] determined that there is an optimal hedging ratio that can balance
the change in jet fuel spot price with a sufficient ratio (H) of future contracts.

∆Jet Fuel Price − H ∗ ∆Future Contracts

The hedge ratio H is the regression coefficient between the aircraft fuel and the raw
material used to hedge the price of the aircraft fuel (e.g., crude oil or heating oil). The
coefficient H will determine the number of future contracts, and the price of aviation fuel
will be optimally hedged.

H = Ṗ*σ[spot]/σ[future]

The hedge ratio (H) is determined by the correlation between the spot jet fuel price
and the price of the future contract (Ṗ) and the standard deviation of the spot price (σ)
divided by the standard deviation of the futures price (σ).

By using the formula to determine the hedging ratio, the regression coefficient of
aviation gasoline can also be determined with raw materials that are used for price hedging
(e.g., how strongly crude oil or heating oil is correlated with aviation gasoline as a measure
of the price correlation). The authors compared the price development of aviation gasoline
with the price development of crude oil and heating oil over a period of one year and found
a correlation of 1.06 between aviation gasoline and crude oil and 1.15 between aviation
gasoline and heating oil. If the correlation between the same commodities was compared
over a period of 2 years, values of 0.98 and 1.07, respectively, were found [15].

Recently, in their study, Li et al. [16], analysed jet fuel hedging strategies by construct-
ing the Copula-GARCH model to determine the hedging futures products and the hedging
ratio. There are two types of hedging strategies that companies can adopt: one is the
minimum variance hedging strategy based on risk avoidance purposes, and the other is the
maximum utility hedging strategy based on revenue objectives. Their empirical results [16]
showed that the correlation between heating oil futures and aviation fuel spot is stronger,
and the hedging performance is obviously better than crude oil futures, which can better
avoid the risk of jet fuel price fluctuation.

Turner and Lim [17] dealt with the question of determining the optimal hedging ratio
for a portfolio.

They suggested that the optimal hedge ratio can be determined by minimising variance
in returns.

Rt = ∆St − h∆Ft

The variables are defined by Turner and Lim [17] as follows:
Rt = Returns;
∆St = Change in the spot price;
∆Ft = Change in future price;
h = Number of future contracts.
The following formula is presented to minimise the variance of Rt:

dVar(Rt)
dh

= 2hVar(∆Ft)− 2Cov(∆St, ∆Ft) = 0

This produces the minimum variance hedge ratio h*:

h∗ =
Cov(∆St, ∆Ft)

Var(∆Ft)

Calculating the correlation coefficient derived from the covariance and the standard
deviation obtains the following:

ρ =
Cov(∆St, ∆Ft)

SD(∆St)SD(∆Ft)
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The optimal hedging ratio h* can also be derived:

h∗ = ρ
SD(∆St)
SD(∆Ft)

Tan [18] presents different theories that address the issues of finding the optimal
hedging ratio for an airline. Traditional theories propose a ratio of 1 for hedging. This
means that the commodity should be hedged by 100% if the airline’s management is certain
that hedging is indeed a suitable instrument for adding value to the company. The hedge
ratio should always be adjusted to the fluctuations in the price of raw materials (such as
crude oil) versus aviation fuel (correlation) so that the idea of risk minimisation and the
increase in profits can continue to be optimally realised. According to portfolio theory,
several commodities should also be used for hedging if necessary if this helps to further
minimise the risk.

Cerny and Pelikan [19] indicated that the optimal hedge ratio could change during
the cycle of a risk management strategy because the correlation in prices between the
commodity that is hedged and the underlying substitute commodity can change as well.

Naumann, Suhl, and Friedemann [20] advocated the possibility of coordinating the
optimal hedging strategy with the fleet planning (procurement of new aircraft and in
relation to the existing fleet) to gain the highest profit. The authors thus recommended the
integration of operational risk management (fleet planning) with financial risk management
(hedging strategy).

In their study, Maher and Weiss [21] investigated the impact of operational and finan-
cial hedging, represented as the “hedge score”, on adverse circumstances faced by airlines,
specifically focusing on the aftermath of the 11 September terrorist attacks. Their findings
revealed that airlines with higher hedge scores experienced better performance in terms of
cash flow from operations and equity returns immediately after the attacks. However, this
positive effect was limited to a relatively short period, suggesting that hedging can provide
some protection against specific events but may not effectively counter overall industry
challenges like economic downturns. The study identified various operational and financial
factors contributing to the hedge score, with fleet diversification, occupancy rate, aircraft
leasing, and cash reserves showing significant correlations. Notably, fuel hedging was
not found to be significantly effective in protecting airlines’ performance during adverse
circumstances, though it could still be valuable for managing energy market volatility. The
last financial hedge variable is leverage, which is negatively and statistically insignificantly
correlated with the hedge score [21].

The economic viability of fuel hedging for airlines and the potential impact of hedging
instruments such as derivatives on their financial performance are frequently questioned
in the literature. Fuel costs continue to constitute a significant portion of an airline’s total
expenses, and unexpected and significant fluctuations in prices can have a profound impact
on its financial well-being [6].

The primary rationale behind airlines’ practice of fuel price hedging is to mitigate the
adverse impacts of fuel price volatility by stabilising and mitigating potential spikes in
fuel prices. Consequently, this leads to a decrease in potential hazards since it is perceived
as an extra expense. According to Morell and Swan’s [4] computations, an airline’s total
expenses are already impacted by 15% when the price of oil reaches USD 25 per barrel.
Oil futures are commonly employed by airlines as a hedging mechanism, allowing them
to mitigate risk associated with fuel price fluctuations. Typically, airlines maintain a
significant portion of their total fuel expenditures, ranging from one-third to two-thirds,
through the use of this instrument. Due to the inability of airlines to adjust their cost base
in response to fluctuations in demand and revenue, their profitability tends to be unstable.
Consequently, airlines often resort to fixing certain variable costs in order to mitigate the
effects of this volatility.

However, the effectiveness of hedging as a means to generate profit or increase the
stock price of an airline over an extended period of time is weakly established by prior
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research findings. According to economic theory, the size of airlines is insufficient to exert
any significant influence on the oil market through their hedging activities. Additionally,
the market is characterised by a high level of depth and participation from numerous
professional and speculative traders. Hence, it is unlikely for an airline to pursue prof-
itability through its hedging endeavours; otherwise, the airline would assume the role
of a speculative trader. The primary purpose of hedging for airlines is to mitigate the
volatility in expenses and thereby achieve greater stability in earnings. The capital assets
pricing model highlights a crucial aspect of economics, namely that increased market
uncertainties may lead to greater investment returns for investors. However, financial
instruments such as futures contracts and swaps can serve to mitigate market risk, thereby
causing these instruments to receive the premium. Consequently, the efficacy of financial
instruments in mitigating market risk appears to be limited, and investors may persist in
paying inflated prices due to a lack of comprehension regarding the underlying mechanics
of said instruments.

Dafir and Gajjala [1] identified three types of risks relevant to commodity trading in the
spot market. Price risk arises from the volatility of spot prices in long-term contracts, leading
to uncertainty about future prices. Counterparty risk refers to uncertainties related to one
party’s ability to fulfil contractual obligations. Operational risk encompasses transportation,
legal, and documentation risks. As global commodity trade increases, specialised goods
like Brent or WTI have emerged, and payment systems have become more sophisticated,
leading to the use of financial derivatives in the market.

Regarding fuel expenses, airlines employ three strategies. They try to mitigate fuel
cost impact by making operational changes, using more fuel-efficient routes and aircraft,
and passing on increased costs to consumers through higher airfare rates [22]. Airlines also
use financial instruments or derivatives to manage price fluctuations. According to the
capital asset pricing model (CAPM), fuel hedging may have minimal impact on an airline’s
overall value since it does not significantly affect long-term stock prices. However, some
argue that CAPM may not fully capture real-world factors like asymmetric information,
economies of scale, and taxation, which also influence prices.

During periods of economic growth, it is typically anticipated that there will be an
increase in oil prices due to heightened demand. Conversely, during economic downturns,
there is typically a decrease in demand for oil, resulting in a corresponding drop in prices.
This phenomenon is known as the demand-driven economic cycle. Fuel hedging can serve
as a viable strategy to safeguard against oil supply crises, which are often characterised by
elevated oil prices. This was exemplified by the geopolitical tensions in the Middle East
that resulted in the risk of conflict and instability in politics. In the present scenario, charac-
terised by an economic cycle that is supply-driven and marked by an anticipated increase
in fuel prices, leading to a corresponding reduction in airline revenues, the adoption of fuel
hedging can be considered a selective measure to mitigate the adverse impact on airline
profitability and minimise price volatility.

In addition to the aforementioned arguments, the existing literature suggests that the
utilisation of hedging strategies is not beneficial to the mitigation of cost and volatility.
Rather, it is believed that such strategies are employed to accelerate the transfer of cash flow
to earlier periods in the income statement through the sale of oil futures contracts for an
earlier date, consequently compensating for declining profits. Furthermore, it has become
an approach utilised by airline executives to demonstrate their proficiency in mitigating
financial risks. The disclosure of a hedging strategy by an airline company typically leads
to an increase in its stock value, while the absence of such disclosure could encourage
investors to doubt the company’s commitment to sustaining or improving its financial
gains [4].

The measurement of risk is commonly associated with fluctuations in prices, which
may occur in diverse forms such as relative, absolute, or log price changes. Jorion [23]
emphasised that eliminating all risks entirely is impossible, and the focus should be on
taking intelligent risks. Airlines face various internal and external risks, necessitating
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proactive decisions and strategic responses from management. Shareholders consider
companies’ risk profiles crucial in their investment decisions, influencing their expectations
and willingness to invest. Due to the cyclicality of the airline industry, fixed capacity,
and high debt/lease financing, operating profits are volatile, creating challenges and
opportunities [24]. Airlines manage risks through practices such as fuel and financial
hedging and insurance. Risk mitigation strategies are developed based on risk assessments
to reduce potential risks, but their applicability depends on the organisation’s ability to
influence the source of the risk [25].

2.2. Forecasting

The forecasting approach involves predicting future events based on past data, as
noted by Bowerman et al. [26]. This methodology can be highly beneficial for facilitating
efficient and effective corporate planning, as highlighted by Makridakis et al. [27].

In the context of forecasting, a differentiation between qualitative and quantitative
techniques is given due consideration, much like in the case of risk analysis. Makridakis
et al. [27] suggested that the selection of a process is dependent upon the availability of
quantitative information. In cases where there is a lack of quantitative data, a qualitative
methodology may be employed. The process of qualitative forecasting typically involves
the formulation of a prediction that is informed by a group of professionals who are
tasked with addressing a specific inquiry pertaining to the forecast. The Delphi method is
commonly recognised as the above-mentioned process. The methodology of curve fitting,
which involves aligning the projection with a pre-existing scenario, is also widely utilised.
The product lifecycle is a suitable illustration, as numerous recently launched products
undergo this particular sequence.

In the context of analysis, a distinction exists between extrapolative and causative
methodologies. The extrapolative method can be founded on either a selective approach,
which involves the observation of values at a single point in time, or a serial approach,
which involves the analysis of a sequence of events occurring within a defined time period.
In the context of time series analysis, the values containing a given dataset are examined
with the aim of detecting any noticeable trends within the data. This phenomenon is
believed to exhibit a consistent repetition in the future [28], (p. 210). The academic
literature primarily differentiates among four distinct patterns. In accordance with the
study conducted by Bowerman et al. [26], the constituent elements of a time series are
denoted as trend, cycle, seasonal variations, and irregular fluctuations. Conversely, the
causative methodology pertains to the correlation between dynamic market structures
through the utilisation of instruments such as multiple regression analysis.

In their contribution, Balu and Morad [29] examined the price volatility of crude oil
(for the Brent Blend, Dubai Fateh, and WTI Indices) and developed a model for predicting
the future volatility of crude oil prices. By analysing the historical data for all three indices,
the authors concluded that neither the weather price series nor yield series is normally
distributed and that positive and negative price shocks are responsible for this abnormal
distribution. They also observed heteroscedasticity for all series.

Different time series models can be applied in forecasting financial and commodity
markets. Balu and Morrad [29] suggested three possible methods to use: (1) the naïve
model, (2) exponential smoothing models, and (3) the autoregressive models ARIMA and
GARCH [1].

Models like the GARCH model often fail to predict oil price developments and its
extreme volatility. The GARCH technique, however, is a more sensitive way to measure
risk in a distribution [30]. Jiang et al. [31] established that the oil market’s recovery after an
endogenous or exogenous shock follows the same pattern, indicating that the global oil
market is a mature market in which price adjustments follow established patterns.

Airline capacity management represents a crucial challenge for business operations, as
it serves as a major determinant of profit cyclicality. Figure 1 presents an illustrated model
that clarifies the dynamics that influence airline flight schedules, which constitute capacity
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management, without considering the factors that may influence other stakeholders in the
aviation value chain. Barnhart et al. [32] posited that the airline flight schedule is subject
to various dynamics, including demand, pricing, and schedule design and performance,
which are complementary to one another. In order to enhance comprehension of the
interrelated dynamics of influence, it may be beneficial to undertake a specific analysis [33].
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The complexity of capacity forecasting arises from a multitude of internal and ex-
ternal factors that serve as stimulation. The airline is susceptible to various risks due to
uncontrollable external factors, ultimately leading to financial loss.

3. Methodology

This study adopts a two-tier empirical model analysis to evaluate the rationale of fuel
hedging (model 1) and system dynamic forecasting (model 2).

The hedging analysis was derived from two sources: the airline share prices were
from the Thomson Reuters Datastream, and the WTI oil prices were from the Federal
Reserve Bank of St. Louis, and the growth rate of the world economy was depicted from
the World Bank.

The present research involved the development of a dynamic model for airline fore-
casting, which takes into account the various factors that influence demand assessment,
airfare pricing, and flight schedules. However, due to the complexity and the quality of
available data, the model was simplified to solely focus on the assessment of the impact of
commodity risk reflecting the logic of Carter et al. [34] on the average airfare and its effect
on the other main influencing dynamics regarding capacity forecasting. Therefore, some
input variables were considered fixed and are provided through a dataset from the Bureau
of Transportation Statistics [3].

3.1. Empirical Model 1—Fuel Hedging

As the first step, the hedging strategy of the examined airlines and their reported
profits and losses from these activities are presented. Firstly, several regression analyses
were carried out, covering a sample of airlines over a period from 2008–2017 as panel data.
This is to answer the hypothesis that fuel hedging affects the value of the airline (tested
on TobinsQ and the share price of the airline). By applying several dummy variables,
the extended hypothesis was tested as to whether and how the corporate structure and
geographical location of the airline contribute to a different corporate valuation caused by
fuel hedging activities.

To determine how airlines are exposed to changes in oil prices and global economic
trends, several regression analyses were conducted for several airlines to measure the
impact of annual oil price changes (WTI) and adjusted to U.S. consumer prices and annual
global economic growth on the development of airlines’ annual share prices (Table 2).
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Table 2. Regression analysis for all companies.

Company Beta_X1 p-Value_X1 Beta_X2 p-Value_X2 R-Squared

Lufthansa 1.394 0.046 ** 0.253 0.654 0.092

Southwest 0.72 0.679 0.177 0.907 −0.052

Air France −0.653 0.841 −6.733 0.022 ** 0.108

Ryanair −0.084 0.915 0.004 0.995 −0.11

Delta Air Lines 1.86 0.467 −8.814 0.015 ** 0.463

United Airlines 4.53 0.09** −9.941 0.008 ** 0.56

Air Canada 1.696 0.134 −2.273 0.105 0.282

Cathay Pacific 0.736 0.072 −6.733 0.000 *** 0.379

Finnair 0.864 0.015** 0.145 0.610 0.15

Qantas 0.186 0.484 −0.109 0.318 −0.013

SAS 15.297 0.289 −5.939 0.685 −0.039

Singapore
Airlines 0.264 0.581 1.306 0.003 *** 0.209

WestJet 0.038 0.972 1.064 0.331 −0.058
Note: ** Significant at 95% confidence level (p-value < 0.05). *** Highly significant at 95% confidence level
(p-value < 0.01).

The airline’s stock price is the dependent variable (Y), while the annual world economic
growth rate (X1) and the annual oil price changes (WTI) adjusted to U.S. consumer prices
(X2) are the two independent variables. The reason for the integration of the economic
growth rate into this simple regression analysis is to determine whether there is some
multicollinearity that limits the effects of the energy (oil) price development on the shares
of the airlines and, in turn, on the performance of the company. In addition, a simple linear
regression analysis was performed for each airline if for only one independent variable a
significant effect on the airline’s share performance (Y) was detected (Table 2).

Y = Airline’s stock;
X1 = Annual world economic growth rate;
X2 = Annual oil price development.
The regression analysis results for all companies are as follows in Table 2:
Based on the analysis, the airlines could be categorised into three groups regarding

the response to oil price changes and global economic growth (Table 3).
Understanding these distinct groups, presented in Table 3, helps to highlight the

varied sensitivities of airlines to external economic factors and provides valuable insights
for investors and stakeholders in the aviation industry. It is crucial to recognise that each
airline’s unique characteristics and strategies contribute to its individual response to market
dynamics, including oil price fluctuations and global economic trends.

Lufthansa: (Observation period: 1991–2017; N = 27)
As the largest European airline, the Lufthansa Group carried 130 million passengers

in 2017 and comprises a fleet of 728 aircraft. With 130,000 employees, the mother company
achieved a turnover of more than EUR 35 billion. The company also divides its business
units into network airlines (Lufthansa, Swiss, and Austrian Airlines), point-to-point Airlines
(Eurowings, Brussels, and Sunexpress) and aviation service (logistics, catering, maintenance,
repair, and overhaul). The hubs used for network airlines are Frankfurt and Munich (for
Lufthansa) as well as Zurich (for Swiss Airlines) and Vienna (Austrian Airlines) [35].

Y = 1.394X1 + 0.253X2 + 8.833



Commodities 2023, 2 290

Table 3. Airlines Categories.

Group Airlines Description

Group 1
Delta Air Lines, United
Airlines, Cathay Pacific,
Singapore Airlines.

These airlines are significantly affected by changes in oil prices. Delta
Air Lines and United Airlines experienced a negative impact, with
their stock prices declining as oil prices rose. In contrast, Cathay
Pacific and Singapore Airlines have a positive correlation, witnessing
stock price increases with higher oil prices.

Group 2 Air France, Finnair.

Airlines in this group are moderately influenced by oil price changes.
Air France shows a significant negative correlation between its stock
performance and oil price changes. For Finnair, the relationship is less
pronounced but still significant.

Group 3
Lufthansa, Southwest,
Ryanair, Air Canada,
Qantas, SAS, WestJet.

These airlines show no significant correlation between their stock
performance and changes in oil prices. Additionally, their stock
performance has an insignificant correlation with global economic
growth. The impact of oil price changes and global economic growth
on these airlines’ stock prices is relatively limited compared to those
in group 1 and group 2.

In total, 9.2% of Lufthansa’s share price performance Y can be attributed to the devel-
opment of oil prices and global economic growth (R2). The F-test for the overall model is
not significant at 0.120 (Table 4). This means that the hypothesis that the two independent
variables have no influence on the dependent variable cannot be rejected. The p-value
for the single independent variable X2 is not significant (0.654), but the p-value for the
economic growth rate X1 is significant, which is at a confidence level of 95% (0.046) (Table 4).
No collinearity can be measured between the two independent variables X1 and X2.

Table 4. Lufthansa regression analysis with both variables.

World GDP 1.394
(0.662) ** R2 0.092

Oil price 0.253
(0.558) F-Statistic 2.322

constant 8.833
(2.596) *** Significance 0.12

Note: ** Significant at 95% confidence level (p-value < 0.05). *** Highly significant at 95% confidence level
(p-value < 0.01). Source: Author.

Considering the result of the previous analysis that shows that the annual world GDP
growth does have a significant influence on Lufthansa’s stock, a single linear regression
was performed with the annual world GDP growth variable (X1) as the only independent
variable (Table 5).

Y = 1.394X1 + 9.564

Table 5. Lufthansa regression analysis with world GDP growth.

World GDP 1.394
(0.651) ** R2 0.121

Oil price F-Statistic 4.584 **

constant 9.564
(2.005) *** Significance 0.042

Note: ** Significant at 95% confidence level (p-value < 0.05). *** Highly significant at 95% confidence level
(p-value < 0.01). Source: Author.

Overall, 12.1% (R2) of Lufthansa’s share performance Y can be attributed to the annual
world economic growth (X1). This influence is statistically significant (p-value = 0.042)
(Table 5).

Southwest: (Observation period: 1980–2017; N = 38)
Southwest Airlines is headquartered in Dallas, Texas, and, after initially concentrating

only on the state of Texas, it has now focused on the entire United States as a whole.
Southwest is the largest airline in the U.S. in terms of domestic air traffic, and it offers
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point-to-point connections. The company has 58,000 employees and carries more than 120
million passengers annually, with an annual turnover of over USD 21 million (2017) and a
fleet size of 750 aircraft (Boeing 737 type) [36].

Y = 0.72X1 + 0.177X2 + 8.546

Overall, −5.2% of the share price development of Southwest’s Y can be attributed to
oil price development and the world economic growth (R2) (Table 6). The F-test for the
overall model is clearly not significant at 0.916 (Table 6); i.e., the hypothesis that the two
independent variables have no influence on the dependent variable cannot be rejected.
The p-value for the two individual independent variables X1 and X2 is not significant at a
confidence level of 95% (0.679 and 0.907, respectively). No collinearity can be measured
between the two independent variables X1 and X2.

Table 6. Southwest regression analysis with both variables.

World GDP 0.72
(0.177) R2 −0.052

Oil price 0.177
(1.50) F-Statistic 0.089

constant 8.546
(7.741) Significance 0.916

Source: Author.

Air France: (Observation period: 1985–2017; N = 33)
Air France is the former state-owned company of the legacy carrier of France (founded

in 1933) and uses Paris-Charles de Gaulle and Paris-Orly as its hubs. Together with the
Dutch legacy carrier KLM, it has merged into what is now the Air France-KLM group.
With more than 25,000 employees, Air France transports over 100 million passengers a year
(airfrance.com, 2019, accessed on 20 May 2020).

Y = −0.653X1 − 6.733X2 + 48.163

A total of 10.8% of Air France’s share performance Y can be attributed to the develop-
ment of oil prices and global economic growth (R2). The F-test for the overall model is not
significant at 0.068 (narrow); i.e., the hypothesis that the two independent variables have
no influence on the dependent variable cannot be rejected (Table 7). The p-value for the
single independent variable X2 is significant (0.022) at a 95% confidence level, while for the
economic growth rate X1, the p-value at a 95% confidence level (0.841) is not significant.
No collinearity can be measured between the two independent variables X1 and X2.

Table 7. Air France regression analysis with both variables.

World GDP −0.653
(3.236) R2 0.108

Oil price −6.733
(2.788) ** F-Statistic 2.937 **

constant 48.163
(13.246) *** Significance 0.068

Note: ** Significant at 95% confidence level (p-value < 0.05). *** Highly significant at 95% confidence level
(p-value < 0.01). Source: Author.

After having the result of the previous analysis that shows that the annual oil price
development has a significant influence on Air France’s share, a single linear regression
analysis—wherein the annual oil price development X2 is the only independent variable—
was carried out.

Y = −6.696X2 + 46.120
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Overall, 13.6% (R2) of Air France’s share price development Y can be attributed to the
annual oil price development X2. This influence is statistically significant (p-value = 0.020)
(Table 8).

Table 8. Air France regression analysis with oil price development.

World GDP R2 0.136

Oil price −6.696
(2.729) ** F-Statistic 6.020 **

constant 46.120
(8.413) *** Significance 0.02

Note: ** Significant at 95% confidence level (p-value < 0.05). *** Highly significant at 95% confidence level
(p-value < 0.01). Source: Author.

Ryanair: (Observation period: 1997–2017; N = 21)
Ryanair is an Irish-based airline that operates pioneer-to-point flights within Europe.

With its 13,000 employees, it carries over 130 million passengers, making Ryanair the largest
airline in Europe in terms of intra-European traffic. They achieved a turnover of over EUR
7 billion last year [37] and operate with a fleet size of 430 aircraft (type Boeing 737) [37].

Y = −0.084X1 + 0.004X2 + 4.978

In total, −11% of the Ryanair share performance Y can be attributed to the development
of oil prices and global economic growth (R2). The F-test for the overall model is clearly
not significant at 0.993; i.e., the hypothesis that the two independent variables have no
influence on the dependent variable cannot be rejected (Table 9). The p-value for the two
individual independent variables X1 and X2 is clearly not significant at a confidence level
of 95% (0.915 and 0.995, respectively). No collinearity can be measured between the two
independent variables X1 and X2.

Table 9. Ryanair regression analysis with both variables.

World GDP −0.084
(0.735) R2 −0.11

Oil price 0.004
(0.652) F-Statistic 0.007

constant 4.978
(3.307) Significance 0.993

Source: Author.

Delta Airlines: (Observation period: 2007–2017; N = 11)
Delta Airlines is an American airline founded in 1928 and has its headquarters in

Atlanta, Georgia, where the company also has its largest hub, the Atlanta Hartsfield-
Jackson Airport. With 800,000 employees and a fleet of over 800 aircraft, this airline carries
180 million passengers annually (Delta.com, 2019, accessed on 20 May 2020).

Y = 1.86X1 − 8.814X2 + 55.201

Overall, 46.3% of the Delta Airlines share performance Y can be attributed to the
development of oil prices and global economic growth (R2). The F-test for the overall
model is significant at 0.034; i.e., the hypothesis that there is no influence of the two
independent variables on the dependent variable can be rejected (Table 10). The p-value for
the single independent variable X2 is significant (0.015) at a 95% confidence level. And as
for the economic growth rate X1, the p-value is not significant at a 95% confidence level
(0.467). No collinearity can be measured between the two independent variables X1 and X2.

Delta.com
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Table 10. Delta Airlines regression analysis with both variables.

World GDP 1.86
(2.438) R2 0.463

Oil price −8.814
(2.841) ** F-Statistic 5.313 **

constant 55.201
(14.180) *** Significance 0.034

Note: ** Significant at 95% confidence level (p-value < 0.05). *** Highly significant at 95% confidence level
(p-value < 0.01). Source: Author.

After the result of the previous analysis that shows that the annual oil price devel-
opment has a significant influence on the Delta Airlines share (Table 10), a single linear
regression analysis—wherein the annual oil price development X2 is the only independent
variable—was carried out (Table 11).

Y = −8.979X2 + 60.661

Table 11. Delta Airlines regression analysis with oil price development.

World GDP R2 0.488

Oil price −8.979
(2.766) ** F-Statistic 10.534 **

constant 60.661
(11.954) *** Significance 0.01

Note: ** Significant at 95% confidence level (p-value < 0.05). *** Highly significant at 95% confidence level
(p-value < 0.01). Source: Author.

In total, 48.8% (R2) of the Delta Airlines share performance Y can be attributed to the
annual oil price developments X2. This influence is statistically significant (p-value = 0.010)
(Table 11).

United Airlines: (Observation period: 2006–2017; N = 12)
United Airlines is an American carrier operating from its Chicago, Denver, Houston,

Los Angeles, Newark, San Francisco, and Washington D.C. hubs. Together with their
regional carrier, United Express, they transported 158 million passengers in 2018 [38].

Y = 4.530X1 − 9.941X2 + 64.097

In total, 56.0% of the United Airlines share performance Y can be attributed to the
development of oil prices and global economic growth (R2). The F-test for the overall model
is significant at 0.010; i.e., the hypothesis that there is no influence of the two independent
variables on the dependent variable can be rejected at a 95% confidence level (Table 12).
The p-value for the single independent variable X2 is also very significant (0.008), and as for
the economic growth rate X1, the p-value is not significant at a 95% confidence level (0.090).

Table 12. United Airlines regression analysis with both variables.

World GDP 4.530
(2.386) ** R2 0.56

Oil price −9.941
(2.923) *** F-Statistic 8.004 **

constant 64.097
(14.514) *** Significance 0.01

Note: ** Significant at 95% confidence level (p-value < 0.05). *** Highly significant at 95% confidence level
(p-value < 0.01). Source: Author.

No collinearity can be measured between the two independent variables X1 and X2.
After the result of the previous analysis that shows that the annual oil price devel-

opment has a significant influence on United Airlines’ share (Table 12), a single linear
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regression analysis—wherein the annual oil price development X1 is the only independent
variable—was carried out (Table 13).

Y = −10.724X2 + 77.778

Table 13. United Airlines regression analysis with oil price development.

World GDP R2 0.446

Oil price −10.724
(3.275) ** F-Statistic 9.838 **

Constant 77.778
(14.146) *** Significance 0.011

Note: ** Significant at 95% confidence level (p-value < 0.05). *** Highly significant at 95% confidence
level (p-value < 0.01). Source: Author.

Overall, 44.6% (R2) of the United Airlines share performance Y can be attributed to the
annual oil price developments X2. This influence is statistically significant (p-value = 0.011)
(Table 13).

Air Canada: (Observation period: 2006–2017; N = 12)
Air Canada is the flag carrier of Canada, and with their 30,000 employees, they

transported 51 million in 2018. In addition to its main hub for international flights in
Toronto, Air Canada operates from Montreal, Vancouver, Calgary, and other smaller hubs
(Aircanada.com, 2019, accessed on 25 April 2020).

Y = 1.696X1 − 2.273X2 + 13.071

Overall, 28.2% of Air Canada’s share price development Y can be attributed to the
development of oil prices and global economic growth (R2). The F-test for the overall
model is not significant at 0.091 (narrow) (Table 14); i.e., the hypothesis that there is no
influence of the two independent variables on the dependent variable cannot be rejected at
a 95% confidence level. The p-values for the two independent variables, X1 and X2, are not
significant at a 95% confidence level (0.134 and 0.105, respectively).

Table 14. Air Canada regression analysis with both variables.

World GDP 1.696
(1.031) R2 0.282

Oil price −2.273
(1.263) F-Statistic 3.163 **

Constant 13.071
(6.270) ** Significance 0.091

Note: ** Significant at 95% confidence level (p-value < 0.05). Source: Author.

No collinearity can be measured between the two independent variables X1 and X2.
Cathay Pacific: (Observation period: 1986–2017; N = 32)
Cathay Pacific is Hong Kong’s international airline, founded in 1946. It is regis-

tered and based in Hong Kong since 1948. With a fleet of 201 aircraft and approximately
20,000 employees, Cathay Pacific operates global flights to and from this special administra-
tive region of China, making the airliner its flag carrier. It has also helped the Hong Kong In-
ternational Airport become one of the most important hubs in the world (Cathaypacific.com,
2019, accessed on 25 April 2020).

Y = 0.736X1 + 1.446X2 + 6.074

A total of 37.9% of Cathay Pacific’s share performance Y can be attributed to oil price
developments and global economic growth (R2). The F-test for the overall model is very
significant at 0.000 (Table 15); i.e., the hypothesis that there is no influence of the two
independent variables on the dependent variable can be rejected at a 95% confidence level.

Cathaypacific.com
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The p-value for the single independent variable X2 is also very significant (0.000). And as
for the economic growth rate X1, the p-value is not significant at a 95% confidence level
(almost significant at 0.072).

Table 15. Cathay Pacific regression analysis with both variables.

World GDP 0.736
(0.394) ** R2 0.379

Oil price 1.446
0.337) *** F-Statistic 10.452 ***

Constant 6.074
(1.605) *** Significance 0

Note: ** Significant at 95% confidence level (p-value < 0.05). *** Highly significant at 95% confidence level
(p-value < 0.01). Source: Author.

No collinearity can be measured between the two independent variables X1 and X2.
After the result of the previous analysis that shows that the annual oil price devel-

opment has a significant influence on the Cathay Pacific share (Table 15), a single linear
regression analysis was carried out, where the annual oil price development X2 variable is
the only independent variable (Table 16).

Y = 1.401X2 + 8.366

Table 16. Cathay Pacific regression analysis with oil price development.

World GDP R2 0.327

Oil price 1.401
(0.349) *** F-Statistic 16.086 ***

Constant 8.366
(1.077) *** Significance 0

Note: *** Highly significant at 95% confidence level (p-value < 0.01). Source: Author.

In total, 32.7% (R2) of the Cathay Pacific share performance Y can be attributed
to the annual oil price developments X2. This influence is statistically very significant
(p-value = 0.000) (Table 16).

Finnair: (Observation period: 1989–2017; N = 29)
Finnair was founded in 1923 and is majority-owned by Finland. It also operates as a

network airline from its hub in Helsinki. Finnair employs 5900 people and operates a fleet
of over 60 aircraft (Finnair.com, 2019, accessed on 25 April 2020).

Y = 0.864X1 + 0.145X2 + 2.022

Overall, 15.0% of Finnair’s stock price performance Y can be attributed to the devel-
opment of oil prices and global economic growth (R2). The F-test for the overall model is
significant at 0.046, which means that the hypothesis that there is no influence of the two
independent variables on the dependent variable can be rejected (Table 17). The p-value
for the single independent variable X2 is not significant (0.610), and as for the economic
growth rate X1, the p-value is significant at a 95% confidence level (0.015). No collinearity
can be measured between the two independent variables X1 and X2.

Table 17. Finnair regression analysis with both variables.

World GDP 0.864
(0.333) ** R2 0.15

Oil price 0.145
(0.280) F-Statistic 3.479 **

constant 2.022
(1.311) Significance 0.046

Note: ** Significant at 95% confidence level (p-value < 0.05). Source: Author.

Finnair.com
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After having the result of the previous analysis that shows that the annual growth
in world GDP has a significant impact on Finnair’s share price (Table 17), a single linear
regression analysis—wherein the annual oil price development variable X1 being the only
independent variable—was carried out (Table 18).

Y = 0.861X1 + 2.441

Table 18. Finnair regression analysis with world GDP growth.

World GDP 0.861
(0.328) ** R2 0.174

Oil price F-Statistic 6.878 **

constant 2.441
(1.017) ** Significance 0.014

Note: ** Significant at 95% confidence level (p-value < 0.05). Source: Author.

In total, 17.4% (R2) of Finnair’s share performance Y can be attributed to the annual
world GDP growth X1. This influence is statistically significant (p-value = 0.014) (Table 18).

Qantas: (Observation period: 1995–2017; N = 23)
Founded in 1920, Qantas is Australia’s largest airline with over 30,000 employees

(Qantas.com. 2019, accessed on 25 April 2020).

Y = 0.186X1 − 0.109X2 + 2.766

A total of −1.3% of the Qantas stock performance Y is attributed to oil price develop-
ments and global economic growth (R2). The F-test for the overall model is not significant at
0.437 (Table 19); i.e., the hypothesis that the two independent variables have no influence on
the dependent variable cannot be rejected. The p-value for the single independent variable
X2 is not significant, and the p-value for X1 is also not significant even at a confidence level
of 95% (0.318 and 0.484, respectively). No collinearity can be measured between the two
independent variables X1 and X2.

Table 19. Qantas regression analysis with both variables.

World GDP 0.186
(0.182) R2 −0.013

Oil price −0.109
(0.135) F-Statistic 0.862

constant 2.766
(0.789) *** Significance 0.437

Note: *** Highly significant at 95% confidence level (p-value < 0.01). Source: Author.

SAS: (Observation period: 2001–2017; N = 17)
SAS is the largest Scandinavian network carrier, flying 135 aircraft under its banner. It

was formed in 1946 from a merger of the Swedish, Norwegian, and Danish state airlines.
SAS focuses its business model primarily on Scandinavian businesses and frequent flyers
(SAS website, 2019).

Y = 15.297X1 − 5.939X2 + 63.147

In total, −3.9% of the SAS share price development Y can be attributed to the develop-
ment of oil prices and global economic growth (R2). The F-test for the overall model is not
significant at 0.514 (Table 20); i.e., the hypothesis that the two independent variables have
no influence on the dependent variable cannot be rejected. The p-value for the two individ-
ual independent variables X1 and X2 is not significant at a confidence level of 95% (0.289
and 0.685, respectively). No collinearity can be measured between the two independent
variables X1 and X2.
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Table 20. SAS regression analysis with both variables.

World GDP 15.297
(13.875) R2 −0.039

Oil price −5.939
(14.341) F-Statistic 0.698

constant 63.147
(68.542) Significance 0.514

Source: Author.

Singapore Airlines: (Observation period: 1985–2017; N = 33)
Singapore Airlines is the flag carrier of Singapore and serves as a network carrier

to all relevant global hubs from its base in Changi International Airport. With a fleet of
107 aircraft and nearly 15,000 employees, Singapore Airlines has flown over 19 million
passengers and has generated sales of USD 11.5 million in 2018 [39].

Y = 0.264X1 + 1.306X2 + 5.327

A total of 20.9% of the Singapore Airlines share price performance can be attributed to
the development of oil prices and global economic growth (R2). The F-test for the overall
model is significant at 0.011 (Table 21); i.e., the hypothesis that there is no influence of the
two independent variables on the dependent variable can be rejected at a 95% confidence
level. The p-value for the single independent variable X2 is also significant (0.003). As for the
economic growth rate X1, the p-value is not significant at a confidence level of 95% (0.581).

Table 21. Singapore Airlines regression analysis with both variables.

World GDP 0.264
(0.473) R2 0.209

Oil price 1.306
(0.406) *** F-Statistic 5.227 **

constant 5.327
(1.937) ** Significance 0.011

Note: ** Significant at 95% confidence level (p-value < 0.05). *** Highly significant at 95% confidence level
(p-value < 0.01). Source: Author.

No collinearity can be measured between the two independent variables X1 and X2.
After the result of the previous analysis that shows that the annual oil price devel-

opment has a significant influence on Singapore Airline’s share (Table 21), a single linear
regression analysis—wherein the annual oil price development variable X2 is the only
independent variable—was carried out (Table 22).

Y = 1.291X2 + 6.153

Table 22. Singapore Airlines regression analysis with oil price development.

World GDP R2 0.227

Oil price 1.291
(0.401) *** F-Statistic 10.373 ***

constant 6.153
(1.235) Significance 0.003

Note: *** Highly significant at 95% confidence level (p-value < 0.01). Source: See [21,24].

Overall, 22.7% (R2) of the Singapore Airlines share performance Y can be attributed to
annual oil price development X2. This influence is statistically very significant (p-value = 0.003)
(Table 22).

WestJet: (Observation period: 1999–2017; N = 19)
WestJet is a Canada-based, low-cost carrier established in 1996 with a fleet of three

aircraft. Today, WestJet has grown to a fleet of more than 150 aircraft serving more
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than 100 destinations in North and Central America and the Caribbean, and with more
than 13,000 employees, it transports 22 million passengers annually (Westjet.com, 2019,
accessed on 25 April 2020).

Y = 0.038X1 + 1.064X2 + 11.823

In total, −5.8% of WestJet’s share price performance can be attributed to oil price
developments and global economic growth (R2). The F-test for the overall model is not
significant at 0.613 (Table 23); i.e., the hypothesis that the two independent variables have no
influence on the dependent variable cannot be rejected. The p-value for the two individual
independent variables X1 and X2 is not significant at a confidence level of 95% (0.972
and 0.331, respectively). No collinearity can be measured between the two independent
variables X1 and X2.

Table 23. WestJet regression analysis with both variables.

World GDP 0.038
(1.082) R2 −0.058

Oil price 1.064
(1.061) F-Statistic 0.505

constant 11.823
(5.269) ** Significance 0.613

Note: ** Significant at 95% confidence level (p-value < 0.05). Source: Author.

3.1.1. Interpretation of Findings

The results for the regression analysis of how airline stocks are influenced by oil
price movement and overall economic growth are very uneven. The potentially expected
outcome that airline stocks are, at least, as a rule, negatively affected by rising oil prices is
not reflected in the results at all. The explanatory power of the regression models is often
not very convincing, and more importantly for many airlines, the regression model and the
influence of the two single independent variables on airline stock is often not significant
at all. However, it is worthwhile to have a closer look at the results and to try to analyse
certain patterns in the uneven results.

The regression analysis of how the airline’s stocks are influenced by the two indepen-
dent variables (annual oil price (WTI) changes adjusted to U.S. consumer prices and annual
world economic growth rate) is only statistically significant for Delta Airlines, United
Airlines, Cathay Pacific, Finnair, and Singapore Airlines (0.034, 0.010, 0.000, 0.046, and 0.011,
respectively, on a 95% confidence level). Relatively close to being statistically significant are
the results for Lufthansa, Air France, and Air Canada (0.120, 0.068, and 0.091, respectively,
on a 95% confidence level). Analysing the single influence of oil price development on
airlines stock (simple linear regression), the results are only statistically significant for Delta
Airlines, United Airlines, Cathay Pacific, Singapore Airlines, and Air France. Surprisingly,
the directions in which airline stocks are influenced by oil price movements are completely
different in all these results. The two major U.S. airlines stocks of Delta and United are
strongly negatively affected by higher crude oil prices.

Delta Airlines stock reacts by −8.979 if the oil price goes up by one digit (significant
with 0.010 on a 95% confidence level). United Airlines stock goes down by −10.724 if oil
goes up by one digit (significant with 0.011 on a 95% confidence level). However, this result
becomes completely different when analysing the two East Asian carriers Cathay Pacific
and Singapore Airlines. Cathay Pacific stock is, in this regression, positively correlated to
oil price development by 1.401 if the oil price goes up by one (statistically very significant
with 0.000 on a 95% confidence level). The same applies to Singapore Airlines. Their stock
goes up by 1.291 if the oil price goes up by one (statistically very significant with 0.003
on a 95% confidence level). As a European carrier, Air France stock is also statistically
and significantly affected by the oil price movement. Its stock goes down by −6.696 for
every single digit of oil price that moves up (statistically significant with 0.020 on a 95%

Westjet.com
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confidence level). These results raise the question regarding to what extent the performance
of an airline is influenced by changes in the oil price. It seems difficult to establish a link
between airline performance and oil price developments. One possible answer would be
that there are many more influencing factors than oil prices, which have an impact on airline
stocks. For this reason, regression analysis was always carried out with overall economic
development (annual world economic growth) as a second variable. The results of how
these variable influences airline stocks were not clearer than those of oil price developments,
and no regression analysis found collinearity between these two independent variables.
It is noteworthy that the regression analysis for the low-cost carriers (Ryanair, Southwest,
and to a lesser extent WestJet) was too insignificant for both independent variables. A
possible explanation (or hypothesis) for this finding could be that the business model
of low-cost carriers is relatively independent of external factors and that the drivers for
business performance could usually lie within the business model. In the case of Ryanair,
one possible explanation could be that they were the first and most aggressive low-cost
carrier on the European market and were able to expand rapidly without being significantly
influenced by endogenous factors. Moreover, due to their cost and price structure, low-cost
carriers may also be able to gain market share. All these factors could explain the different
results, often related to the airline’s business model or territory (airline based in East Asia,
legacy carrier based in the U.S., low-cost carrier, etc.).

3.1.2. Testing the Hypotheses

In the following section, an OLS regression is presented for the entire airline sample,
which determines how TobinsQ is influenced by the hedging ratio of the two previous years
and by the application of several control variables that WERE tested for multicollinearity
and contribute to a higher validity of the model (i.e., higher R2) (Table 24).

Table 24. Result panel data regression on TobinsQ.

All Airlines Europe America Low−Cost Legacy Constant Selective
Model Panel Data Panel Data Panel Data Panel Data Panel Data Panel Data Panel Data

R2 0.644 0.803 0.5102 0.7774 0.7779 0.8222 0.3897

F-Statistik 12.19 *** 35.35 *** 6.55 *** 34.23 *** 28.97 *** 52.58 *** 8.3 ***

hedge1-lag1 0.0373
(−0.092)

−0.5381 (0.170)
***

0.1225
(−0.131)

0.0382
(−0.078)

−0.1193
(−0.075)

0.0417
(−0.096)

0.0449
(−0.136)

hedge2-lag2 0.2168 (0.104) ** 0.3937 (0.168) ** 0.2057
(−0.118) ** 0.04426 (0.098) *** 0.1427

(−0.094)
0.3488
(0.125) ***

0.0036
(−0.084)

OpMarg 4.3491 (0.0766) ** 6.0541 (0.701) *** 3.9798 (1.517) ** 5.0856 (0.541) *** 5.1576
(0.430) ***

1.1233
(−0.645) ***

Opln −0.0001 (0.000) *** 0.0001 (0.000) ** 0.0000 (0.000) ***

NetIn 0.0000
(0) ** 0.0000 (0.000) *** −0.0001

(0) ** 0.0000 (0.000) ***

RePa 0.0000 (0.0000) ** 0.0000
(0.000) ***

Fleet 0.0001
0

CashRa 0.3811 (0.110) *** 0.3369 (0.114) *** 0.2113 (0.098) **

EquityRa −0.5148 (0.118) *** 0.4826 (0.143) *** −0.8166 (0.096) *** 0.3942 (0.123) ***

Constant 1.3867 (0.132) *** 1.0236 (0.079) *** 1.2861 (0.102) *** 0.6945 (0.077) *** 1.2749 (0.073) *** 0.8271
(0.094) *** 1.1555 (0.057) ***

Note: ** Significant at 95% confidence level (p-value < 0.05). *** Highly significant at 95% confidence level
(p-value < 0.01). Source: Author.

Table 25 presents the regression models included in the panel data regression analysis
(Table 24). It attempts to explain their relevance and potential impact on the market
valuation of different airlines.

Tested for no multicollinearity for the control variables, the regression explains nearly
65% of the variance of TobinsQ (R2 = 0.644) (Table 24). Observing the effect of the two
hedging variables on TobinsQ, which only affects the hedging for the second year (hedge2),
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there is a significant (95% confidence level) positive effect on TobinsQ, and the coefficient
for hedge2 is 0.216 (Table 24).

Table 25. Model description.

Model Description

OpMarg Operating margin of the airlines.
OpLn Natural logarithm of the airline’s total operating revenue.

hedge1-lag1
This variable is the lagged value of the hedging ratio (hedge1) from the
first previous year. In econometrics, lagged variables are used to account
for the effect of past values on current outcomes.

hedge2-lag2

Similar to hedge1-lag1, this variable is the lagged value of the hedging
ratio (hedge2) from the second previous year. Using lagged variables can
help capture the effect of hedging strategies from earlier periods on the
current market value (TobinsQ) of the airline.

NetLn Similar to OpLn, this is the natural logarithm of the airline’s net income,
which represents its total earnings after deducting all expenses.

CashRA

Cash return on assets (CashRA) is a financial ratio that measures how
efficiently a company generates operating cash flow from its total assets. It
indicates the ability of the company to generate cash from its core business
operations relative to its total asset base.

EquityRa
Equity return on assets (EquityRa) is a financial ratio that measures the
return on assets funded by shareholders’ equity. It indicates how effectively
the company utilises its assets to generate returns for its shareholders.

Constant:
This term represents the intercept or constant term in the regression
equation. It accounts for the portion of TobinsQ that is not explained by the
independent variables included in the model.

When using Europe (Lufthansa, Ryanair, and Easyjet) as a dummy variable, both
hedging variables become significant, and the model registers a high R2, but the result
should somehow be interpreted suspiciously, as hedge1 has relatively high multicollinear-
ity (32.02). Therefore, the results should be considered invalid. Only testing for North
American airlines (Southwest, Westjet, Air Canada, United Airlines, and Delta Air Lines),
no significant influence of the hedging ratio on TobinsQ could be proven.

If only low-cost carriers (Ryanair, Easyjet, Westjet, and Southwest) are considered, the
result for hedge2 is highly significant (99% confidence level) and positive for TobinsQ with
a coefficient of 0.44. The explanatory power of the regression is also relatively high with an
R2 of 0.77 (Table 24).

In the study of legacy carriers only (Lufthansa, Air Canada, United Airlines, and Delta
Airlines), no significant correlation of the two hedging ratios on TobinsQ could be found.

Another dummy variable was introduced for airlines that are relatively constantly
hedged (Lufthansa, Southwest, Ryanair, and Easyjet). In this analysis, hedge2 has a
significant (95% confidence level) positive impact on TobinsQ with a coefficient of 0.348.

Airlines with a more selective hedging strategy (Westjet, Air Canada, United Airlines,
and Delta Airlines) have no significant influence on TobinsQ.

Taxation on fixed effects and the regression for the entire airline sample hedge2 is slightly
significant (p value = 0.069) and positively correlated with TobinsQ (coefficient = 0.278). The
variable hedge1 is clearly not significant.

In the regression for European airlines with fixed effects, the variable hedge2 has a
highly significant (99% confidence level) positive effect on TobinsQ with a coefficient of
1.054. The significance of the model is relatively weak with an R2 of 0.115.

With fixed effects, hedge2 also has significant positive effects on TobinsQ for American
airlines with a coefficient of 0.131. The significance of regression analysis is very weak with
an R2 of 0.0184. Checking for low-cost as the dummy variable, the outcome for hedge2 is
again highly significant with a positive coefficient of 0.366. R2 of 0.748 suggests the high
validity of the explanation. No significant influence of hedge1 or hedge2 on TobinsQ is
found for legacy carriers, including fixed effects. Applying constantly hedged as a dummy



Commodities 2023, 2 301

variable for fixed-effects regression analysis, the variable hedge2 again yields a significant
and positive effect on TobinsQ (coefficient = 0.363). R2 has a high explanatory power at
0.8156 (Table 24).

The hedging ratios have no significant effect on TobinsQ when checking for selectively
hedged airlines with fixed effects.

In summary, it can be said that hedging over a longer period (two years in advance, as
the variable hedge2 shows) increases the market value of an airline in relation to its book
value (measured according to TobinsQ), or at least, potential investors believe it to be so.

These results were even more significant and clear when the analysis was carried out
for low-cost carriers and airlines with a constant hedging strategy. The interpretation of this
result could be that airlines that pursue a longer-term and constant hedging strategy are
rewarded by higher market expectations (higher TobinsQ). This means that the instrument
of fuel hedging is used as a permanent risk management strategy and not as a means of
counteracting flowing market trends or future oil price expectations.

3.2. Model 2: Dynamic Capacity Forecasting

The literature review addresses the dynamics of capacity forecasting that have an
influence, involving demand, airfares, and flight schedules. The capacity-forecasting
procedure is deconstructed into a dynamic causal feedback loop system, which prioritises
the interconnections among the distinct internal and external influencing factors by deriving
the hypotheses. Nevertheless, owing to the extent of this study, not all factors that have an
influence are encompassed within the framework. Therefore, there exists a possibility for
additional exploration with regard to the expansion of the model by incorporating more
relevant variables.

Explaining the methodology along the individual steps, it can be stated that the
first step considers the identification of the real problem along with critical variables and
concepts. Furthermore, it is important to characterise the problem dynamically, as it is
essential for the actual model development. The dynamic hypothesis is derived from the
second step by investigating the origin of the problem and building linkages between
variables in a causal loop diagram, which will be later transformed into a flow diagram.
The third step elucidates the definition of the system dynamics model by translating the
flow diagram into the stock, rate, and auxiliary equations. Additionally, parameters and
behavioural relationships are estimated. The development of the causal loop diagram
as well as the flow diagram along with parameter estimations takes place in a computer-
simulated model through specific software. Regarding the fourth step of the process, the
comparison of the simulated behaviour of the model and the actual behaviour of the system
takes place as to validate the model. The fifth and last step considers the interpretation of
results as well as evaluating and developing suitable strategies for improvement.

The diagram illustrated in Figure 1 presents a simplified causal feedback loop system
associated with the forecasting of airline capacity. The interplay among individual influ-
encing dynamics is depicted using directional arrows (Figure 2). The arrowhead refers to
the variable that is being stimulated, while the direction of the relationship signifies the
degree to which the parameter is being stimulated. The nature of this association can be
described as a causal relationship. A positive polarity denotes that a rise in the output
variable results in a corresponding increase in the stimulated variable. With respect to
the negative polarity of a relationship, a reduction in the output variable will result in a
decrease in the stimulated variable. Furthermore, the interconnectedness of the influencing
factors ultimately results in a closed feedback loop.
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Figure 2. Simplified Causal Feedback Loop Diagram regarding Airline Capacity Forecasting. Source: Author.

In Figure 2, three closed feedback loops can be identified. Considering the first closed
feedback loop, which is marked as R1+ within the loop, it describes the inter-causal relation-
ship of demand and frequency of approached routes. As both cause–effect relationships
show a positive polarity, the closed feedback loop is characterised as reinforcing, which
indicates growth. The second closed feedback loop in Figure 2 is labelled as R2+ and
incorporates the cause–effect relationships of demand and airfare. Both relationships are
assessed with a negative polarity. Nevertheless, the polarity of the whole loop is deter-
mined by adding the individual relationships. Therefore, in the case of R2+, the closed
feedback loop is considered positive, as the addition of two negative relationships results
in a positive loop, and thus, R2+ is considered a reinforcing loop. The third closed feedback
loop, which is marked as B1-, considers the cause–effect relationship of the main input
factors regarding capacity forecasting in Figure 2.

Through the addition of the individual polarities, an overall negative polarity is
achieved, which results in a balancing feedback loop. A balancing feedback loop aims to
maintain the system stability. There are further cause–effect relationships that stimulate the
influencing dynamics. However, these are not considered in the model individually due to
the scope and the focus of this study. Nevertheless, these are still involved in the analysis,
as they are included in the given dataset.

Given the causal feedback loop diagram in Figure 3, it can already be stated that there
is a positive cause–effect relationship of fuel prices, variable costs, total costs, and hence
airfare. As fuel price volatility (commodity risk) accounts as the to-be-tested risk factor, the
following hypotheses result:

H1a. Commodity risks moderately have a positive effect on costs, hence influencing airfares.

H1b. Commodity risks moderately have a negative effect on costs, hence influencing airfares.

H1c. A strong correlation between risks and airfares has an impact on capacity forecasting.
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The aforementioned hypotheses were subjected to testing through the employment of
the stock and flow diagram, which was derived from the causal feedback loop diagram
seen below (Figure 4).
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Figure 4. Stock-Flow Diagram of Airline Capacity Forecasting. Source: Author.

The variables related to market size and service level impact are represented by the
growth rate variable, which affects the demand rate in combination with the airfare impact.
The rate of demand is used as the input for the stock of monthly air passenger demand (D)
over the duration of the model’s operation. The evaluation is conducted via the subsequent
mathematical formula.

Rate of demandt = Dt−1 + (Growth ratet + Airfare impactt) ∗ Dt (1)

Equation (1) integrates a specified set of values associated with the monthly mean
growth rate of air passenger demand into the growth rate, whereas the airfare impact
derives its input parameters from the average airfare of the stock. Moreover, it entails an
adjustment of the airfare at a specific point in time, denoted as t.

Airfare impactt = Airfaret − Airfaret−1 (2)

Equation (2) represents the average airfare as a variable in the model, which is in-
fluenced by the input value for time t1 obtained from the dataset. The calculation of
average airfare values is determined by the flow impact rate. The impact rate refers to
the proportion of the fluctuation in jet fuel expenditures that is transferred to airfare and,
subsequently, to the consumer. The assumption is that other cost factors do not experience
comparable volatility; therefore, just the fluctuation in jet fuel expenses is considered to be
transferred to the passenger.
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The impact rate, which involves cost variations, is influenced by several factors,
including the per-gallon spot price of jet fuel (P), the average consumption of jet fuel per
flight, and the average seating capacity of an aircraft. Figure 4 displays a connecting arrow
that links the airline jet fuel costs and the passing-through rate. This arrow suggests the
presence of two horizontal lines, which signify a delay in the impact. Incorporating a
time lag into the model is imperative, as the prompt transmission of increased costs is not
feasible due to the possibility of cost escalation at a later stage than the actual determination
of airfare. The equation that describes the mathematical assessment of the change in jet
fuel costs (∆ Jet fuel costs) is as follows:

∆ Jet fuel costs per seat =
( Pt − Pt−1) ∗ Average jet fuel consumption per flight

Average number of seats
(3)

Average jet fuel consumption per flight =
Average jet fuel consumption per month

Average number of flights per month
(4)

The fluctuation in the average airfare depends on the flow impact rate during a given
time period t, which is determined by the ratio of the average airfare at that time and
the variation in jet fuel prices at a prior time point, t-x, as well as the percentage of pass-
through rate. The assessment of the change in jet fuel costs occurs at time t-x due to the
consequential effects of delay.

The calculation procedure of the impact rate can be derived from the following mathe-
matical Equation (5):

Impact ratet = Average airfaret ∗ ∆Jet fuel costs per seatt−x ∗ Pass through rate (5)

The calculation of the variable representing the mean monthly frequency of flights
involves the correlation between the yearly demand for air travel and the average num-
ber of passengers per flight. This value is obtained from the dataset and is expressed
mathematically as Equation (6).

Average number of flights per month =
Monthly air passenger demand

(Average number of passengers in a flight)
(6)

A correlation analysis was conducted to determine the statistical significance of the
main input variables associated with the relationship between the monthly average jet fuel
spot price per gallon (jet fuel spot price p.g. (M)) and the costs of jet fuel per gallon (jet fuel
costs p.g.) as well as the quarterly average jet fuel spot price per gallon (jet fuel spot price
p.g. (Q)) and the average airfare.

The evaluation involves the utilisation of the covariance, coefficient of correlation, and
coefficient of determination to determine the magnitude of the association between two
variables. Equation (7) presents the formula for evaluating the covariance of a given sample
of data.

Sxy =
∑N

i=1(xi − x) ∗ (yi − y)
n − 1

(7)

The covariance for a data sample describes mathematically the differences between
each independent variable x and each dependent variable y and their mean within
the dataset.

The coefficient of correlation is a measure of the strength of the relationship be-
tween two variables. It is calculated by dividing the covariance by the standard deviation
of the variables. The mathematical representation of the phenomenon is presented in
Equation (8), followed by the mathematical derivation of the standard deviation as ex-
pressed in Equation (9).

r =
Sxy

SxSy
(8)
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sx =
√

s2x (9)

The aforementioned method is commonly referred to as Pearson’s correlation coeffi-
cient, which assesses the association between variables by establishing upper and lower
boundaries. Equation (10) establishes the determination of limits for the variable r, which
represents the coefficient of correlation:

−1 ≤ r ≤ 1 (10)

The magnitude of the relationship is constrained between −1 and 1 due to the possi-
bility of it being either positive or negative in character. The strength of a relationship is
evaluated based on its proximity to the value of 1, indicating a strong relationship, or to
the value of 0, indicating a weak relationship. Due to the significant disparity between the
upper and lower bounds, the coefficient of correlation is considered imprecise. The coeffi-
cient of determination is computed to determine the proportions of the relationship that are
explained and unexplained. This provides insight into the degree to which changes in the
independent variable account for adjustments in the dependent variable. The quantification
of this phenomenon involves the calculation of the square of the correlation coefficient,
indicated as r. Moreover, the mathematical expressions for the determination coefficient of
a given dataset can be derived using Equation (11).

R2 = r2 (11)

The key input parameters represent the jet fuel spot price p.g. (M) and the jet fuel
costs as well as the jet fuel spot price p.g. (Q) and the quarterly mean values of the average
airfare. The aforementioned delay impact will be incorporated into the correlation analysis.
The variable “d” denotes a period of duration measured in months and accounts for a shift
in the spot price of jet fuel over time. Thus, the shift can be determined by the correlation
coefficient between the mean airfare value at time t and the spot price of jet fuel p.g. (Q) at
time t-3. In addition, it is noteworthy that a delay is pertinent not only to the mean airfare
but also to the expenses incurred in jet fuel. The results are depicted in Table 26.

Table 26. Results regression with fixed effects on TobinsQ.

All Airlines Europe America Low−Cost Legacy Constant Selective
Model Fixed Effects Fixed Effects Fixed Effects Fixed Effects Fixed Effects Fixed Effects Fixed Effects

R2 0.3942 0.1151 0.0184 0.7494 0.2365 0.8103 0.0185

F-Statistik 8954.49 *** 2612.68 *** 33,49 *** 11,626.74 *** 39,480.28 *** 166.83 *** 7284.66 ***

hedge1-lag1 0.0646
(−0.127)

0.2853
(−0.209)

0.0562
(−0.106)

−0.1208
(−0.246)

−0.0167
(−0.105)

0.1094
(−0.266)

−0.0464
(−0.18)

hedge2-lag2 0.2788
(−0.130) ** 1.0547 (0.059) *** 0.1319 (0.036) ** 0.3666

(0.055) ***
0.0420

(−0.124) 0.3640 (0.074) ** 0.0182
(−0.159)

OpMarg 3.4223 (1.230) ** 5.3719
(0.190) *** 5.1708 (0.348) ***

Opln 0.0000
0

0.0000
0

NetIn 0.0000 (0.0000) ** 0.0000 (0.000) 0.0000 (0.000) ***

CashRa −0.3824
(−0.174) **

EquityRa −0.8833 (0.198) *** −0.4293
(−0.367)

Constant 1.3677 (0.164) *** 0.8432 (0.170) ** 1.3116 (0.079) *** 0.7520 (0.087) *** 1.1455 (0.065) *** 0.7937 (0.131) *** 1.2364 (0.052) ***

Note: ** Significant at 95% confidence level (p-value < 0.05). *** Highly significant at 95% confidence level
(p-value < 0.01). Source: Author.

The correlation between the jet fuel spot price p.g. (M) and the jet fuel costs p.g.
at d = 0 is highly significant, with 94% of the variance in jet fuel costs p.g. being attributable
to the variance in the jet fuel spot price p.g. (M). Figure 5 offers a visual representation
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in support of the outcome. Thus, it can be assumed that there exists a partial correlation
between the jet fuel costs per gallon and the fluctuations in the jet fuel spot price per
gallon (M), as both exhibit a similar degree of volatility. Thus, it can be seen that the initial
assertion of hypothesis1a is true, while hypothesis1b is rejected.
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Figure 5. Jet fuel price p.g. (M) vs. Jet fuel costs p.g. at d = 0. Source: Author.

The current study conducted a correlation analysis between the spot price per gallon
of jet fuel (Q) and the average airfare (Figure 6). The analysis determined that the most
reliable relationship was observed at d = 6, indicating that the impact of the jet fuel spot
price at time t on the average airfare was delayed by six months. However, the strength of
this relationship is considered to be weak owing to the significant number of outliers and
their considerable deviation from the regression line, as depicted in Figure 6. Nevertheless,
the hypotheses H1a and H2 are thus rejected.
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Table 27 presents the effects of the fluctuation in jet fuel spot price on the mean airfare,
along with the essential initial parameters for the model’s execution. The model simulation
incorporates a delayed impact of 9 months based on the findings of the correlation analysis.
Due to the dataset, which provides monthly data starting from 2003 to 2016, the model
runs in total through 168 months.

Table 27. Starting Variables for the Testing Procedure of the Stock-Flow Diagram.

Variable Value

Average airfare at t = 1 (in US-$) 315.77

Monthly air passenger demand at t = 1
(people) 49,757,124.00

Average number of seats on a plane 180

Pass-through rate (in %) 5
Source: Author.

The examination of the relationship between the jet fuel spot price p.g. (Q) and the
average quarterly airfare suggests that there is no significant correlation (Table 28). This
observation is substantiated by the coefficient of determination, which elucidates that
merely 47% of the fluctuations in the average airfare can be attributed to changes in the
jet fuel spot price p.g. (Q). This finding underscores the notion that the average quarterly
airfare is influenced by a multitude of factors beyond the jet fuel spot price p.g. (Q),
indicating a more complex interrelation of variables impacting airfare trends.

Table 28. The Correlation of the independent variable jet fuel spot price p.g. and the dependent
variables jet fuel costs and average airfare.

Sample Standard
Deviation

Sample
Covariance

Sample
Coefficient of Correlation

Coefficient of
Determination

Jet fuel spot price p.g. (M) d = 0 0.784797674

Jet fuel spot price p.g. (Q) d = 0 0.777465358

Jet fuel costs d = 0 0.76770914 0.5847151 0.97048739 0.94184579

Average airfare d = 0 28.99645346 13.216396 0.5862558 0.34369578

Jet fuel spot price p.g. (M) d = 3 0.799174

Jet fuel spot price p.g. (Q) d = 3 0.791104142

Jet fuel costs d = 3 0.76770914 0.575504637 0.93801713 0.879876136

Average airfare d = 3 28.99645346 15.39925295 0.671306901 0.450652955

Jet fuel spot price p.g. (M) d = 6 0.811981982

Jet fuel spot price p.g. (Q) d = 6 0.804338405

Jet fuel costs d = 6 0.76770914 0.521698348 0.836905375 0.700410607

Average airfare d = 6 28.99645346 16.05882491 0.688541426 0.474089296

Jet fuel spot price p.g. (M) d = 9 0.82620344

Jet fuel spot price p.g. (Q) d = 9 0.816916666

Jet fuel costs d = 9 0.76770914 0.474804289 0.748567422 0.560353186

Average airfare d = 9 28.99645346 15.96518357 0.673986624 0.454257969

Source: Author.

Regarding the quantitative evaluation procedure utilising the error rate approach,
the subsequent outcomes were computed for the mean monthly airfare, the monthly air
passenger demand, and the monthly flight count. These are provided in Table 29.
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Table 29. Quantitative Comparison of actual and simulated Values.

Variable Actual Value (A) Simulated Value (S) Error Rate

Monthly average airfare 343.7889286 339.770814 0.011687737

Monthly air passenger demand 54.239.240 54.087.453 0.002798481

Monthly number of flights 747.616.46 747.708.13 0.00012261

Source: Author.

Interpretation of Findings

The rejection of hypothesis H1b has already been considered above, as the result of the
correlation analysis of the jet fuel costs p.g. and the jet fuel spot price p.g. (M) shows a strong
positive correlation, along with 94% of the jet fuel costs p.g. being explained by the jet fuel spot
price p.g. (M). The initial segment of hypothesis H1a has been accepted by correlation analysis.
Additionally, based on the outcomes of the stock-flow diagram’s model simulation, it can be
entirely accepted. With regards to hypothesis H1c, it was observed that there is no significant
correlation between the jet fuel spot price p.g. (Q) and the average quarterly airfare. This is
evident from the coefficient of determination, which indicates that only 47% of the average
airfare’s fluctuations can be attributed to the jet fuel spot price p.g. (Q). However, the influence
of fluctuations in jet fuel expenses on the mean airfare, as determined by the jet fuel spot
price, was validated using the stock-flow diagram. Therefore, the reliability of considering the
impact of risk on capacity forecasting is acknowledged. The absence of a notable association
between the mean airfare and the spot price of jet fuel could be attributed to the limitations of
the dataset employed, which exclusively encompasses quarterly average airfares within the
domestic United States market. Consequently, varying outcomes concerning correlation could
arise from conducting an analysis utilising an alternative dataset. However, with respect to
the investigative methodology and the employed dataset, it is not possible to entirely accept
hypothesis H1c.

4. Conclusions

This paper has made an attempt to elucidate capacity risk management and how
airlines use fuel hedging as a buffer against risks of volatility. By employing a two-tier
model, it allows the reader to examine how the commodity price of jet fuel influences
airline decisions. The framework of system dynamics reveals the interdependent relation-
ships among a diverse range of variables associated with the forecasting of capacity and
commodity risk.

The hypotheses were formulated based on a causal feedback loop diagram, which was
derived from the concept of system dynamics. Thus, the interrelationships were evaluated
by means of connecting arrows and both positive and negative dependencies.

Moreover, the foundational model was expanded through the utilisation of the stock-
flow diagram methodology, which enhances the understanding of the interrelationships
among capacity prediction factors and commodity risk. The interdependencies in question
were expounded upon using mathematical equations and evaluated using a dataset related
to the domestic United States airline industry.

The main added value of this paper lies in its comprehensive analysis of the factors
influencing airline stocks and capacity forecasting. By examining the impact of oil price
movements and economic growth on airline stocks, the study highlights the uneven and
sometimes unexpected relationships between these variables. The identification of statisti-
cally significant correlations between stock prices and independent variables for certain
airlines offers valuable insights for investors and industry stakeholders.

Furthermore, the study delves into the role of hedging strategies on airline market
value (TobinsQ) and identifies that longer-term and constant hedging approaches may
lead to higher market expectations. This finding has practical implications for airlines’ risk
management strategies and provides valuable guidance for industry decision makers.
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The dynamic capacity-forecasting model introduced in this paper addresses the in-
tricate interactions among various influencing factors. The incorporation of a time lag in
the correlation analysis for jet fuel prices and average airfares provides a nuanced under-
standing of their relationship, leading to a more accurate simulation model for monthly air
passenger demand and flight counts.

4.1. Limitations

Despite its valuable contributions, this study has certain limitations that should be
acknowledged. First, the analysis is based on historical data up to 2016, and the dynamic
nature of the aviation industry necessitates continuous monitoring and updates. Therefore,
future studies should consider incorporating more recent data to capture current market
dynamics.

Second, the study’s scope focuses on certain airlines and regions, and variations in in-
dustry dynamics across different geographical areas may not be fully captured. Expanding
the sample to include a more diverse set of airlines and regions could provide a broader
perspective on the studied relationships.

To build on this research, future studies should explore the evolving dynamics of the
aviation industry by considering recent data. Examining how airlines have adapted their
strategies in response to changing market conditions, technological advancements, and
global events (e.g., pandemics and geopolitical shifts) would offer valuable insights into
the industry’s resilience and adaptability.

Furthermore, investigating the role of other external factors, such as geopolitical risks,
regulatory changes, and environmental concerns, on airline stocks and performance would
contribute to a more comprehensive understanding of the industry’s drivers.

4.2. Practical Implications

The findings of this study have several practical implications for airline companies.
Firstly, it highlights the importance of considering diverse factors beyond oil price and
economic growth when making investment decisions and forecasting capacity. Airlines
should adopt a holistic approach to risk management and consider long-term hedging
strategies to mitigate market fluctuations effectively.

Secondly, the study emphasises the significance of tailoring strategies to fit the specific
characteristics of an airline. Different airlines may be influenced differently by external
factors, and understanding these nuances can lead to more informed decision making.

4.3. Proposals and Recommendations for Airlines

Based on the study’s findings, the following proposals and recommendations are
offered to airlines:

Diversify Risk Management: Airlines should consider a diversified risk management
approach, including hedging strategies, to shield themselves from the impacts of fluctuating
oil prices and economic changes. By implementing a mix of long-term and short-term
hedges, airlines can manage risks more effectively.

Continuous Monitoring and Adaptation: Airlines should continuously monitor market
conditions and industry trends to adapt their strategies promptly. Staying proactive in
response to changes can help airlines maintain their competitive edge.

Tailored Forecasting Models: Airlines should develop dynamic capacity-forecasting
models that incorporate specific variables and factors relevant to their operations. This
customised approach can enhance accuracy and decision making.

4.4. Policy Recommendations for Policymakers

The study’s insights also have implications for policymakers in the aviation sector:
Regulatory Support: Policymakers should consider providing regulatory support to

encourage airlines to adopt risk management strategies, including fuel hedging. Promoting
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stable fuel prices and offering incentives for sustainable practices can foster a resilient
industry.

Infrastructure Investment: Policymakers can invest in aviation infrastructure to en-
hance the industry’s efficiency and capacity. Improving airport facilities and air traffic
management can support airlines in managing demand fluctuations.

Research and Development Funding: Policymakers should allocate funding for re-
search and development in aviation technology and alternative fuels. Advancements in
these areas can reduce reliance on fossil fuels and improve the industry’s sustainability.

In conclusion, this study contributes to the understanding of the complex relation-
ships within the aviation industry, shedding light on the influences on airline stocks and
capacity forecasting. The findings underscore the importance of considering various factors
when making investment decisions and offer valuable insights for stakeholders in the
aviation sector. To build on this research, continuous monitoring of industry dynamics
and the consideration of additional external factors are essential. Airlines should adopt
diversified risk management strategies and tailored forecasting models to navigate market
fluctuations successfully. Policymakers can support the industry’s resilience by providing
regulatory support, investing in infrastructure, and promoting research and development
in sustainable aviation practices.
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