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Abstract: This paper presents the object detection algorithms GRASS GIS applied for Landsat 8-9
OLI/TIRS data. The study area includes the Sudd wetlands located in South Sudan. This study
describes a programming method for the automated processing of satellite images for environmental
analytics, applying the scripting algorithms of GRASS GIS. This study documents how the land
cover changed and developed over time in South Sudan with varying climate and environmental
settings, indicating the variations in landscape patterns. A set of modules was used to process satellite
images by scripting language. It streamlines the geospatial processing tasks. The functionality of the
modules of GRASS GIS to image processing is called within scripts as subprocesses which automate
operations. The cutting-edge tools of GRASS GIS present a cost-effective solution to remote sensing
data modelling and analysis. This is based on the discrimination of the spectral reflectance of pixels
on the raster scenes. Scripting algorithms of remote sensing data processing based on the GRASS
GIS syntax are run from the terminal, enabling to pass commands to the module. This ensures the
automation and high speed of image processing. The algorithm challenge is that landscape patterns
differ substantially, and there are nonlinear dynamics in land cover types due to environmental factors
and climate effects. Time series analysis of several multispectral images demonstrated changes in
land cover types over the study area of the Sudd, South Sudan affected by environmental degradation
of landscapes. The map is generated for each Landsat image from 2015 to 2023 using 481 maximum-
likelihood discriminant analysis approaches of classification. The methodology includes image
segmentation by ‘i.segment’ module, image clustering and classification by ’i.cluster’ and ’i.maxlike’
modules, accuracy assessment by ‘r.kappa’ module, and computing NDVI and cartographic mapping
implemented using GRASS GIS. The benefits of object detection techniques for image analysis are
demonstrated with the reported effects of various threshold levels of segmentation. The segmentation
was performed 371 times with 90% of the threshold and minsize = 5; the process was converged in 37
to 41 iterations. The following segments are defined for images: 4515 for 2015, 4813 for 2016, 4114
for 2017, 5090 for 2018, 6021 for 2019, 3187 for 2020, 2445 for 2022, and 5181 for 2023. The percent
convergence is 98% for the processed images. Detecting variations in land cover patterns is possible
using spaceborne datasets and advanced applications of scripting algorithms. The implications of
cartographic approach for environmental landscape analysis are discussed. The algorithm for image
processing is based on a set of GRASS GIS wrapper functions for automated image classification.
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1. Introduction
1.1. Background

Automatic segmentation is one of the important tasks required in environmental
analytics and satellite image processing for pattern recognition. The Sudd is the largest
wetland area in the world and the largest swamp area in the Nile Basin. The effects from
hydrological, climate, and anthropogenic factors results in annual flooding of the Sudd,
which yearly varies in extent and intensity. At the same time, the Sudd marshes provide
key water and food resources for populations and habitats for species. A script-based
framework of image processing is presented the GRASS GIS for monitoring the Sudd
swamps using a time series of nine Landsat images from 2015 to 2023. The GRASS GIS
techniques are successfully employed to detect changes in inundated areas of the Sudd
wetlands during the last nine years to contribute to the environmental monitoring of East
Africa, South Sudan (Figure 1).

Figure 1. Topographic map of South Sudan. Software: GMT v. 6.1.1. Data source: GEBCO. Rotated
read square shows the study area of the Sudd wetlands. Map source: author.
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A satellite image is far from being a random configuration of pixels. Rather, it exhibits
a high degree of organisation, e.g., reflected in its spatial and spectral properties, such as
geometric shapes of land cover types, various levels of brightness, and texture of patterns.
In this regard, one of the main tasks in satellite image processing is the detection of image
structures, such as polygons and groups of pixels, which form a fundamental matrix
of images [1]. The most widely accepted approach to this task is image segmentation,
which partitions the image into several segments representing distinct regions based on
the characteristics of the pixels constituting the image. The algorithms of image partition
divide a whole image into multiple segments, with a general aim to discriminate relevant
and important parts of the image from the entire array of pixels on the image [2–4].

1.2. Current Research Status

New scripting languages present more powerful approaches to remote sensing data
processing, providing a cost-effective alternative to the state-of-the-art image processing
software. In this work, we present a set of scripting algorithms through the Geographic
Resources Analysis Support System (GRASS) GIS to satellite image processing. The biggest
algorithmic challenge we face when putting the idea of script-based image processing
into practice is pattern recognition, which is also the reason why the GRASS GIS concept
was undertaken in this study. This paper builds on and extends our previous research on
satellite image processing using scripting algorithms [5,6].

In contrast to the previously used Python and R tools, the GRASS GIS presents a more
powerful toolset for image processing. Hence, after a first look at the data quality in the
RGB image scenes, one may be tempted to not even try to interpret the land cover patterns
due to the high similarity of the individual patches. However, in this paper, we show that
an appropriate combination of the GRASS GIS modules, image enhancement, clustering,
classification, and interpretation enables us to differentiate the land cover types through
recognition of patches on the images taken at different time periods.

Satellite image segmentation have received significant attention in recent years. Mod-
els developed for it have been used in numerous applications, such as surficial materials
mapping [7], machine-learning-based computer vision [8], change detection threshold
techniques [9], contextual pattern recognition for object detection [10–12], statistical seg-
mentation [13,14], fusion detection with spectral and thermal feature combination [15], and
texture synthesis [16], among many others. The segmentation of a satellite images is based
on probabilistic modelling, which is applicable to a wide range of image structures [17].

Nevertheless, much software for image processing is distributed on a commercial
basis. In order to reduce the cost and increase the effectiveness of image processing,
a lot of approaches are proposed as an alternative to proprietary software for image
processing, some of them using programming and scripting methods and some of them
using embedded algorithms and libraries. Alternative ways of image processing may be
used as components of workflow in various approaches to image analysis, to enhance
image quality, and to adjust bands of satellite channels for specific landscape types. At the
same time, various software has different mechanisms and algorithms of image processing,
controlling the techniques of raster data processing. Therefore, understanding the workflow
and way of image processing, the effects of specific libraries, and their performance during
scripting is of great importance.

Through detecting objects and boundaries, segmentation supplies essential informa-
tion for detecting relevant landscape patches of Earth visible on spaceborne images at
various scales [18]. The essential part of the segmentation algorithm consists in the par-
tition of images using thresholds, which analyses the natural image and seeks to divide
the image into the regions of interest and other parts through analysis of the properties of
pixels characterising land cover types in the landscapes. Various modifications of threshold
algorithms exist that aim to optimise the process. Examples include, for instance, multi-
level thresholding [19–21], double threshold approaches for two-dimensional Otsu image
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segmentation [22,23], weighted threshold algorithms using thread segmentation [24], and
mean-shift clustering algorithms [25], to mention a few.

Specifically for remote sensing applications, segmentation recognises objects through
grouping pixels with similar values of spectral reflectance identified as threshold values
into unique segments on the image [26]. Threshold algorithms present an efficient method
of image partition, which employs machine vision to derive the parameters of pixels
discriminating the region of interest on the image from the background using properties
of cells [27]. The extended approach of multilevel thresholding divides the image into
multiple regions based on the level of colour intensity defined for each segment [28–30].

1.3. Examples of Tools and Software

Relevant examples of satellite image processing show that segmentation applied to
environmental mapping gives rise to a semantically meaningful detection of vegetation
assemblages, which are equivalent to habitats [31]. Selected previous works on satellite
image segmentation include various developed algorithms, e.g., discriminating the regions
against neighbours by semantic approach and normalisation using deep features in network
convergence [32], contrasting land categories using diversity in pixels and smoothing
shapes of the regions [33], iterative mean-shift clustering optimisation [34], layering images
and segmenting through the R-Convolutional Neural Networks (CNNs) [35], evaluating
the saliency in pixels using weighted dissimilarities in patches [36], and extracting contours
by simplification [37,38].

Intuitively, using the patchy texture of images enables the detection of homogenous
habitats for use in various image processing and computer vision applications in envi-
ronmental analyses. The advantage of employing segmentation approaches in remote
sensing data analysis is that the results are based on feature extraction independent of the
choice of parametrisation of segments. A wide range of satellite image segmentations have
also been reported, with case studies including the detection of shorelines [39], burned
areas [40,41], or forest variables [42] and change detection in wetlands [43]. If a trackable
parametrisation exists, similar to image classification, then it can be used directly with no
loss of information in segmentation [44]. In such cases, the strategy of object detection in
segmentation algorithms is based on the identification of the regions on the image which
present an assembly of contiguous pixels that meet threshold criteria [45,46].

Conventional spectral clustering techniques have revealed critical links between polyg-
onal approximation and the definition of the segments in image partition. This is achieved
using the embedded segmentation algorithms [47–49]. More complex cases reduce the
level of the fragmentation through contouring segment carcasses derived from the up-
scaled colour texture features and adjusted to the level of fragmentation [50]. In this way,
colour features perform better in the classification tasks, since the region is formed by an
optimised size of clusters forming segments of pixels that depict their major contour and
colours [51]. Such similarity between the segments and separated objects can further be
used to convert the bitmap image into segments. Other algorithms include image filtering,
which can be performed through the similarity of pixels analysed by Euclidean and Maha-
lanobis distances, as well as segmentation that splits the image into several clusters on the
scene [52–54].

The success of image processing can be evaluated through measured characteristics
of the land cover classes which indicate changes in landscapes over time. The traditional
methods of evaluation land cover types include the classification of scenes and detecting
diverse landscape types using image analysis. Such an approach provides direct infor-
mation on variations in land cover types and landscape dynamics due to the relationship
between spectral brightness and the properties of land cover types. As a general rule, the
combination of various Landsat bands enables to detect various land cover types, along
with the increased wetness or dryness of soil, which indicates the content of water and may
point to the desertification of landscapes or, on the contrary, increases in swamp marshes.
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1.4. Research Goals and Gaps

A major advantage of the machine learning approach to remote sensing applications
and computer vision is that it allows optimised modelling through algorithms of automatic
image processing [55–58]. Thus, specifically for image segmentation, machine learning
proposes embedded techniques of image discrimination to find the contours of the ob-
jects [59–61]. However, the general workflow of image partition is still not fully automated
for geospatial data and requires an optimised approach. This especially concerns such tasks
as object recognition, image partition, and identification of image segments as separated
objects for satellite imagery. Meanwhile, using segmentation techniques for remote sensing
data processing suggests the benefits of automation for environmental monitoring through
the extraction of spatial information [62].

Given the benefits of image segmentation algorithms, their geospatial application
to satellite image partition promises to be an advantageous technique for environmental
monitoring. Image processing techniques using only a classification approach are suitable
for capturing categories of land patches, since they operate without any prior information
or training samples. On the other hand, using segmentation prior to classification increases
accuracy, since it helps extract features in an image using image partition, which improves
the classification process. For example, landscape pattern recognition can be implemented
using the partition of the bitmap satellite image by the optimisation technique of regrouping
patches [63]. Moreover, the approaches of change detection based on image segmentation
are often used for mapping based on remote sensing data [64].

In view of the discussed benefits of the advanced methods of image analysis, the
GRASS GIS scripting framework was applied in this work for the environmental moni-
toring of East African landscapes with the case study of the Sudd wetlands, South Sudan.
The strategy of scripting is successful in the case of automatic image processing and imple-
menting the optimised workflow of image processing [65,66]. Automatic image processing
using scripts enables avoiding the erroneous matching of pixels and misclassification while
grouping cells into clusters due to finding correspondences among pixels with similar
spectral reflectances using the machine-based algorithms of computer vision.

1.5. Motivation

The contribution of this research consists in the environmental monitoring of East
Africa, South Sudan using advanced methods of programming applied to image process-
ing. Using these methods, it was demonstrated how landscapes change over time. The
innovation of this research consists in a novel developed workflow that includes several
libraries of GRASS GIS for diversified steps of image processing: segmentation, clustering,
classification, accuracy assessment, and mapping. It has been shown that segmentation
serves as a useful seed for image classification and detection of land cover classes. There-
fore, in this paper, an automated segmentation of the Landsat satellite images using a
region growing and merging algorithm is presented. The employed approach includes a
script-based framework by the Geographic Resources Analysis Support System (GRASS)
Geographic Information System (GIS) [67]. The GRASS GIS was used due to its high com-
putational functionality, cartographic functionality, logic, and flexibility of syntax [68]. Such
advantages of the software enables one to improve the performance of image segmentation,
clustering, and classification for the recognition of land cover classes in the Sudd wetlands
of South Sudan, Eastern Africa (Figure 1).

The segmentation was compiled using nine Landsat images as a preprocessing step
for image classification. The main idea behind segmentation is to use the collection of the
raster scenes obtained from the archives of the United States Geological Survey (USGS)
for the detection of landscape patches to map flooded areas of the Sudd wetlands which
experience spatio-temporal changes over time [69–71]. To demonstrate the value of image
segmentation techniques, we use them as priors in image classification and object detection
as land cover classes. The classified series of images provides insights into the character-
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istics of flooded marshes and surrounding landscapes in the Sudd region reflected in the
images [72].

The problem of image segmentation is addressed by presenting the advanced scripting
algorithm based on the GRASS GIS syntax [73–76]. In contrast to the existing image classifi-
cation techniques which group pixels with similar spectral reflectance into classes [77–80],
image segmentation is an object-based recognition techniques. It enables to identify con-
tiguous region blocks on the images based on landscape categories. This presents a more
advanced approach, which is useful both independently and linked to the next object-
oriented classification process for noise reduction and to increase the effectiveness of image
processing through increased accuracy and speed of image processing. Several modules of
the GRASS GIS were applied to provide a new foundation for the automatic segmentation
of the short-term time series of the satellite images. Of these, the most important module,
‘i.segment’, was used to detect patches in wetlands, and ‘i.maxlik’ was used for image
classification. Image analysis aimed at assessing the difference in the flooded areas by
pixels assigned to segments as groups of the image processed as bitmap graphics. The
example of satellite image segmentation and classification using GRASS GIS syntax is
discussed to show how the general theory of image partition is applied to a particular case
of East African wetlands.

2. Characterisation of Study Area

The Sudd is a large area of wetlands located in South Sudan (Figure 1). The total area
of swamp varyies between 30,000 to 40,000 km2 according to the wet or dry seasons [81].
The origin of these wetlands is strongly related to the geologic evolution of the Nile River
basin, which affected the development of nearby landscapes [82]. Thus, the Sudd wetlands
were formed in the course of the geologic development of the Upper Nile. Specifically,
the study area is situated around Lake No, near the Bahr al-Jabal section of the White
Nile (Mountain Nile), a branch of the Greater Nile [83]. Major geologic units include the
Quaternary outcrops with clayey sediments of the Cenozoic (QT) Nile floodplain, shown
in Figure 2.

Figure 2. Surficial geologic units in South Sudan and surrounding area. Software: QGIS version 3.32.
Data source: USGS. Map source: author.
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The Nile River basin forms a part of the Great Rift Valley, which originated from a
system of rift and faults with correspondent geomorphic forms, such as hilly areas, valleys,
and plains [84,85]. Possible movements along these faults are reflected in the recent relief
and the structure of the Quaternary sediment complex around the Sudd. The topographic
analysis shows that the Sudd region has a contrasting relief, with river meanders having
northward-oriented general gradient [86]. Moreover, the topography of south Sudan is
strongly connected to the hydrology of the Sudd swamps, which is reflected in morpholog-
ical features on seasonally flooded grasslands and slopes. The effects from topography and
hydrology of the Nile, together with climate factors (precipitation, atmospheric circulation,
and temperature), determined the formation of the wetland ecosystems of the Sudd. Thus,
the plain geomorphology of the Nile floodplain provided perfect conditions for a series of
basins which serve as reservoirs and accumulate water in the Sudd marshes during wet
periods [87].

The Sudd wetlands are formed as a downstream of Lake Victoria and Lake Albert in
the Nile Basin in the Sudd geologic province [88] (Figure 3). Recently detected diatoms
proved the existence of the large Lake Sudd, which covered central and southern Sudan
during the Holocene, when active tectonic structures significantly reduced their activity,
acquiring the segmented character of the Sudd wetlands [89]. Other studies also reported
the existing series of the interconnected basins along the Nile distributed over the territory
of the modern Sudd province (Figure 3) during the Tertiary period [90]. Such palaeographic
conditions contributed to further development of the current lacustrine environment in
the Sudd. The dominated soil type in the Sudd wetlands is heavy clays and fine-grained
sedimentary rocks [91]. Clayey soil creates favourable conditions for the formation of
wetlands due to high impermeability and low porosity, which contribute to the accumu-
lation of water [92]. As a consequence, a highly specific hydrogeological structure of the
impermeable clays results in a very limited groundwater influence on the hydrology of the
Sudd, where a top layer of vertisol is about 50 cm, and sands are distributed at depths of 30
m and below [93].

Figure 3. Geologic provinces in South Sudan and surroundings. Software: QGIS version 3.32. Data
source: USGS. Map source: author.

Climate factors affect the Sudd swamps through water balance [94] and evapora-
tion [95]. The average temperature is 18.5 ◦C, while the precipitation is 320 mm. High
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evaporation over the Sudd marshes results in strong effects on the regional water cycle of
the Nile hydrology, which is amplified to a large extent by the Sudd wetland area: it is the
largest wetland area existing in the world and the largest freshwater swamp region in the
Nile Basin [96]. The environmental measures were undertaken to decrease evaporation
from the Sudd by constructing Jonglei channels [97].

Climate effects on the Sudd wetlands are related to changes in precipitation and
temperature: the increase in rainfall during the El Niño phases leads to warming and
a rise in temperatures [98]. The dry season includes summer months, while the rainy
season includes autumn–winter months. The transitional period is spring time. Climate
factors threaten the hydrology and environmental sustainability of the Sudd wetlands [99].
Other climatic issues are related to the rise of Lake Victoria in 1960s, which triggered water
losses in the Sudd [100]. The integrated effects from all these factors result in the highly
unstable dynamics of the Sudd’s hydrology. Thus, the intensity of annual flooding differs
significantly by years and affects the extent of the wetlands [101]. During the wet season,
the Sudd increases in extent by almost twice due to the excess of water, which results in an
extended area of floodplains affected by recurring inundation.

The Sudd wetlands play a strategic role in livelihoods, environmental sustainability,
biodiversity balance, and the maintenance of water resources in South Sudan [102]. The
value of the water resources in the Sudd relies on its economic and environmental services,
high biodiversity impact, and fishery and food resources [103], which are necessary for
social development and the existence of the local population [104]. At the same time,
the ecosystems of the Sudd form a part of the global tropical wetland system, which
is an important source of biodiversity and carbon storage in soils and vegetation [105],
contributing to biogeochemical cycles and climate regulation [106]. The Sudd wetlands
are known for hierarchical and complex food webs with diverse types of aquatic plants,
animals, and microbial communities. The dominating vegetation types in the Sudd include
papyrus, herbaceous plants, water hyacinth, marsh sedges, and grasslands [107]. Their
distribution differs by habitat in the open-water areas with floating and submerged plants,
as well as seasonally flooded grasslands occupied by the adapted plants.

Climate–hydrological fluctuations have cumulative environmental effects on the sus-
tainability of the Sudd ecosystems. Thus, during the flood period, large areas of grasslands
in the permanent Sudd swamps are inundated, which triggers fish migration into other
sections of the floodplain [108]. Human-related factors affecting the Sudd ecosystems
include overexploitation of the natural resources, increased pollution [109], landscape frag-
mentation [110], and habitat changes [111], which are reflected in the recent dynamics of
land cover types in the Sudd region. At the same time, small grassland patches are hotspots
of biodiversity in the fragmented landscapes and should be conserved for environmental
sustainability [112].

3. Materials and Methods

In the following section, we present the scripting algorithm of GRASS GIS to process
a series of satellite images through the powerful functionality of its tuned modules that
are adjusted to diverse tasks of image processing and modelling. Our procedure works
by running the script via the terminal command console shell, which makes it flexible
and easier to handle and interpret the spaceborne data. Our pipeline then creates the set
of commands used for image processing via the modules that include the multiline code
snippets integrated in a script for image processing (Figure 4).

3.1. Software and Tools

A general scheme summarising the approach in this study is visualised in Figure 4. The
data include topographic DEM, geologic layers, and remote sensing data processed with
GRASS GIS, GMT, and QGIS. While the GRASS GIS tool was used for image processing,
other software was used as an auxiliary tool for creating the methodology flowchart and
topographical and geological mapping.
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Figure 4. Methodological flowchart scheme. Software: R version 4.3.1. Graph source: author.

3.2. Data Collection and Import

The full dataset included in the framework is available at the United States Geological
Survey (USGS) (Figure 5).

The Landsat images from 8 and 9 OLI/TIRS sensors were downloaded from the
EarthExplorer repository: URL https://earthexplorer.usgs.gov/ (accessed on 30 July 2023).
The EarthExplorer aims at Earth observation data, collected for the multiscale monitor-
ing of Earth-related processes using remote sensing data. It is supported by the USGS,
which coordinates and promotes storage of the datasets in digital format for queries. It
enables downloading the satellite images and provides cartographic information for data.
Besides Landsat, it also supports other remote sensing products, such as radar data, aerial
imagery, Digital Elevation Models (DEM), Advanced Very High Resolution Radiometer
(AVHRR), etc. The reason for the nine satellite images consists in demonstrating the dy-
namics of the land cover types within a comparable period. Another reason consists in
the available images with low cloudiness, which are below 10% for the scenes takes in the
appropriate seasons.

The images cover 9 years, from 2015 to 2023, Figure 5. These years were chosen for the
two following factors: the availability of the cloud-free images or those with minimised
cloudiness (below 10%) and the gap between the years enabling the comparison and
analysis of environmental dynamics. The choice of image data is explained by the two
criteria: (1) the cloudiness of the image is below 10% for all the scenes; (2) the images are
captured in the dry period to objectively assess the postflood scenario. The wet period of
the Sudd region is accompanied by heavy rainfalls that last throughout the summer period.
The exact period differs significantly by year and, according to various information sources,
may last between April and September [113] or from March to October, according to the
Climate Change Knowledge Portal. The data import was performed using the ‘r.import’
command in the GRASS GIS module. The scripts are shown in Appendix A of this study
with the code for data import.

The greatest concentration of rainfalls in the Sudd is recorded between June and
September [114]. Therefore, all the images were taken during the dry period to avoid the
months from June to September. Since flooding and seasonal dynamics vary yearly, each

https://earthexplorer.usgs.gov/
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scene was inspected to evaluated the quality and distinguished contours of the diverse
land cover types. Each Landsat OLI/TIRS image included eleven spectral bands in visual,
panchromatic, and near-infrared channels. Besides the satellite Landsat images, this study
also included auxiliary data, such as topographic data (GEBCO/SRTM grid), geologic
USGS data, and descriptive information from textual sources regarding the social and
economic activities in the Sudd region, as well as statistical and descriptive environmental
reports on South Sudan available online), which were used for environmental analysis.

(a) 2015 (b) 2016 (c) 2017

(d) 2018 (e) 2019 (f) 2020

(g) 2021 (h) 2022 (i) 2023

Figure 5. The Sudd wetlands in the Landsat images in natural colours for 8 recent years (2015–2023).
The acquisition period of each image is as follows: (a) 8 January 2015, (b) 12 February 2016; (c) 31
December 2017; (d) 1 February 2018; (e) 8 March 2019; (f) 26 March 2020; (g) 29 March 2021; (h) 19
January 2022; (i) 14 May 2023.

3.3. Data Preprocessing

The overview topographic map of the study area shown in Figure 1 was mapped
using the Generic Mapping Tools (GMT) software version 6.1.1. [115]. The applied GMT
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scripting technique was derived from the existing works [116,117]. The geological maps
were plotted using QGIS. The remaining workflow was performed using the GRASS GIS
using diverse modules, following existing similar works using GRASS GIS in environmental
applications [118–121]. A folder with the uploaded Landsat imagery was stored in the
‘Location/Mapset’ working directory of the GRASS GIS with relevant subdirectories. Here,
all the map layers were located and hierarchy-supported for imported satellite images
following the standard GRASS GIS workflow [122]. The codes were written using the
Xcode and run from the GRASS GIS console. The files were imported in TIFF format using
Listing A1 and stored in the WGS84 coordinate system.

The atmospheric correction method included the algorithms of the embedded GRASS
GIS module ‘i.landsat.toar’. This module enables to convert the DN pixel values to re-
flectance values using DOS1 from Digital Number (DN) to reflectance. Before creating an
RGB composite, it is important to perform the atmospheric correction and thus convert the
digital number data (DN) to reflectance or radiance. Otherwise, the colours of a natural
RGB composite do not look convincing but rather hazy. This conversion is performed
using the metadata file which is included in the dataset with i.landsat.toar, which cal-
culates the top-of-atmosphere radiance or reflectance and temperature for the Landsat
MSS/TM/ETM+/OLI.

The general outline of the data processing includes data capture of the Landsat 8-
9 OLI/TIRS images, data preprocessing, data conversion, segmentation, classification,
validation, computing the land cover classes by covered area, and mapping. The workflow
aimed at detecting variations in the wetland areas and identifying the extent of the flooded
area in the Sudd marshes over the nine-year period. For a comparison of gradual changes,
a one-year interval was selected between each pair of images. To ensure that technical
requirements of code quality are met, several tests were carried out for Landsat images
on various years using different parameters of segmentation threshold. This aimed at
analysing the behaviour of the algorithm for various levels of image fragmentation using
different threshold levels. The obtained image samples were stored in a separate folder of
the GRASS GIS with a path to the working folder of the repository.

3.4. Metadata and Extent

A dataset of the nine Landsat 8-9 OLI/TIRS images containing TIFF raster files was
analysed for metadata, with the parameters summarised in Table 1. The Landsat images
were taken on the following periods: 8 January 2015, 12 February 2016, 31 December 2017, 1
February 2018, 8 March 2019, 26 March 2020, 29 March 2021, 19 January 2022, 14 May 2023.

Table 1. Metadata for Landsat 8-9 OLI/TIRS images.

Proj. Zone Dat. Ellips. N S W E Nsres Ewres Rows Cols Cells

UTM 36 WGS84 WGS84 915,615 682,785 190,785 419,115 30 30 7761 7611 59,068,971

Abbreviations in Table 1: Proj—projection; Dat.—datum; Ellips—ellipsoid; N—north; S—south; W—west; E—east;
nsres—resolution in north–south direction; ewres—resolution in east–west direction; cols—columns.

Visual bands of the original Landsat images (channels 1 to 7) were uploaded in TIFF
format, processed and converted into several segments. The region extent and groups of
the bands were defined on the Landsat images using the parameters in the scene by the
snippet of code presented in Listing A2. The region borders for the Landsat scenes covering
the Sudd area are as follows: north: n = 915,615; south: s = 683,085; west: w = 185,985; east:
e = 414,315.

3.5. Defining Segments

The approach of the GRASS GIS to image segmentation is based on the use of the
module ‘i.segment’. The algorithm groups similar pixels on the satellite image into unique
segments. The thresholding algorithm assigns pixels on the image based on the similarity
between two neighbour segments and detects the segments. This enables the detection of
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the flooded area and automatically recognises changes in the landscapes. The segmentation
was performed with a 90% threshold and minsize = 5; the process was converged in 41
iterations. The process was completed in 50 min for the Landsat satellite image for 2023.
The region IDs were assigned to all the regions, including the remaining single-cell regions.
Overall, 8464 segments were created for one Landsat image (2023).

Afterwards, the minimal size was changed to 100 to check the effects from the modified
parameters on the results of the segmentation process. For modified parameters, the seeds
were used to optimise the procedure and to provide the basis information for image
classification. These included random segments which were selected automatically using
previous segmentation rounds and used to start the segmentation process anew, using the
code shown in Listing A3.

3.6. Threshold Algorithm

The threshold algorithm searches for the bounds of each segment on the image and
plots the image generated using threshold parameters according to the similarity level
below the input threshold for a coarse analysis. The rise of threshold level increases the
fragmentation of the segments accordingly; see Figure 6. In turn, if the similarity distance is
smaller, the pixels are assigned to other neighbour segment. Afterwards, the algorithm sets a
start–end position, and the process is repeated iteratively until no more merges are possible
for the segments of landscape patches during a complete pass of image segmentation. The
segmented image is then visualised using the code in Listing A4 and saved as standard TIFF
output format in full-resolution mode using GRASS GIS. The information on the Landsat
scene is retrieved from the file, and the segments are visible in the visualised image.

(a) 2023, segmentation threshold = 0.90 (b) 2023, segmentation threshold = 0.05

Figure 6. Segmentation the Landsat 8-9 OLI/TIRS image of the Sudd area for 2023: (a) segmentation
parameters include minsize = 5 and threshold = 0.90, (b) minsize = 100 and threshold = 0.05 and
included seeds from the previous segmentation.

3.7. Image Segmentation

The images resulted from the segmentation at the two levels of threshold are shown
in Figure 6. The code for processing the image with script is based on defining the objects
through image segmentation that contains patches of regions with similar parameters of
the pixels located inside. Here, the similarity between the current segment and each of
its neighbours is computed using a search algorithm, which includes the given distance
formula for a target segment. The processing of these segments is possible at both high
and low threshold modes and defined similarity parameters. It displays merged segments
if they meet technical criteria and analyses the coverage of the valid segments using the
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algorithm function on an image. Then, it computes the position for each pair of the
segments, which shows the best mutual similarity in a target region of the image using
iteration for each next region.

Accordingly, the search for the closest segment is based on a similarity between the
segments and objects. In such a way, the algorithm is propagated along the image, searching
for every consecutive object iteratively to determine which objects are merged. The values
of the smaller distance between the objects were evaluated to indicate a closer match within
each iteration on the image. Thus, a similarity score of zero is assigned for identical pixels
which are assigned to an identical segment. In case of the lower threshold of segments
on the images, the similarity between the two segments is lower than a given threshold
value. In such a case, the combination of these region is performed using the minimal size
parameter. According to this principle, all the segments with a lesser number of pixels
are merged with their similar neighbour. Such an approach enables the optimisation of
segments through the distribution of the array of pixels into the segments.

3.8. Parameter Estimation

The estimation of segmentation parameters was based on the tested variants of the
threshold value of the segments in a relative number, which is always between 0.0 and
1.0. A changed degree of segment fragmentation is visible in trial cases (Figure 5). The
tested segment size has a thickness varying from a threshold = 0.90 to a threshold = 0.05,
and a seed minimal size is defined at 100 pixels. The repetitive iterations described above
divided the image into several segments, indicating land cover classes. The resolution of
30 pixels for the Landsat image is used as the optimal parameter for a given landscape
patch, allowing one to indicate small segments on an image. A lower threshold allows
only large groups of vegetation to be merged using valued pixels with similar spectral
reflectance values. In contrast, a higher threshold (close to one) allows neighbouring land
cover classes to be merged. Thus, the threshold level of image segmentation is scaled to the
actual data range.

To reduce the noise effect and to optimise data processing, a minimal size greater than
one was added as an additional step of image processing. During this step, the threshold
of segmentation is ignored to avoid too fragmented images. Thus, for segments smaller
then the defined size, this parameter merges tiny patches with their most appropriate
neighbours. In such a way, the original Landsat scene is partitioned by the complete image
according to the values of the pixels’ colour and intensity. The process of thresholding
was based on the analysis and separation of the pixels compared against the value of the
minimum segment size. It aims to discriminate the meaningful part of the image containing
landscape patches from the noise pixels.

3.9. Clustering

The performance of the segmentation was a slow process and required further post-
processing for identification of the land cover classes within the Sudd area. To address
this, a three-step process was implemented: First, the segmentation was executed as dis-
cussed in the previous subsection. This produces segments that include identity grid
pixels, in which we expect to landscape patches. The grid cells were then generalised,
and the classification process was performed using the ‘i.maxlik’ module, which uses the
maximum-likelihood discriminant analysis classifier. Third, the accuracy assessment is
performed using the GRASS GIS module ‘r.kappa’, which computes error matrices and
kappa parameters for accuracy assessment of classification for each Landsat scene. The
code for the maximum-likelihood classification is presented in Listing A5.

The clustering algorithm approach by the ‘i.cluster’ module is a powerful tool for
image partition prior to classification. It operates on an image using defined parameters,
such as initial number of clusters, minimum distance between them, coherence between
loops, and minimum area for each cluster. The robustness of clustering is tuned by the
correspondence between the iterations and the defined maximum number of loops. The
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initial cluster means for each band are defined by values of the first cluster as a band mean
corrected for standard deviation, and all other clusters are distributed equally between the
first and last clusters, as implemented in GRASS GIS.

The flexibility of clustering is that all clusters less than the defined minimum are
merged smoothly, which outperforms similar algorithms of image partition. Hence, the
clusters are regrouped accordingly in the iterative way. Here, each pixel is assigned accord-
ing to the closest distance to a given cluster using the algorithm of Euclidean distance, and
the results are saved in a signature file, which is then used for classification by the ‘i.maxlik’
module of GRASS GIS. The clustering report is generated automatically for an image, with
an example presented in Appendix C. Thus, clustering presents the advanced object-based
detection method. which creates signatures for the next step of image classification, which
computes the distance between pixels using the similarity method.

3.10. Classification

Afterwards, the maximum-likelihood discriminant analysis classifies the generated
clusters, segments and covariance matrices, computed previously. These are used to define
categories of each evaluated cell. The 30-resolution remote sensing imagery corresponds
to the following land cover types in the Sudd region [123]: (1) Cropland; (2) Herbaceous
coverage; (3) Forest; (4) Mosaic tree canopies; (5) Shrubland; (6) Grassland; (7) Flooded and
inundated areas; (8) Bare areas; (9) Built-up areas; (10) and Water areas. These land cover
types were used for landscape analysis. Hence, the pixels are assigned to the categories of
the land cover classes according to the calculated highest probability of belonging to the
given class on the image based on their spectral reflectance. The assignment of pixels into
classes of land cover types is based on the signature file (“signaturefile”), which contains
the cluster and covariance matrices calculated by the module ‘i.cluster’ and is shown in
Listing A5. In such a way, the maximum-likelihood classifier partitions the total number
of pixels on the whole Landsat scene using the segmentation and clustering results as
preprocessing steps for image classification that sequentially examine all current segments
in the raster map.

The pixels were grouped into segments representing land cover types as separate
segment objects, and the map is generated for each Landsat image from 2015 to 2023 using
the maximum-likelihood discriminant analysis approach of classification. The description
is created for the segments of each land cover type of the Sudd in the relevant images. The
segments of land cover classes which have a sharp transient from neighbouring class are
considered as another category. Afterwards, valid segments in connected landscapes are
regrouped using the trial tests for various threshold parameters. The segments from the
Sudd landscapes are combined into maps and compared for various years from 2015 to
2023. The distinct classes are detected using the GRASS GIS algorithms iteratively for each
segment using image analysis.

3.11. Calculating the NDVI

To evaluate the distribution of healthy vegetation over the study area in the postflood
scenario, the NDVI was computed using the script in Listing A6. For atmospheric correc-
tions, the values of the Digital Number (DN) of the pixel were converted to reflectance
values using DOS1 to avoid a hazy background. This conversion is performed using the
metadata file which is included in the dataset with ‘i.landsat.toar’ and information about
the sun elevation for each scene. Using the ‘i.landsat.toar’ module, the top-of-atmosphere
radiance and temperature were corrected for the Landsat OLI sensor. Afterwards, the
NDVI was computed using the existing combination of the Red and NIR bands of the
image, and the images were visualised using the script presented in Listing A6.

3.12. Accuracy Assessment

The accuracy assessment was performed in two ways. First, the error matrix and
kappa parameters were computed by the ’r.kappa’ module of GRASX GIS. Second, the
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rejection probability classes were calculated to estimate the pixel classified according to
confidence levels based on the classification of the satellite images. This was implemented
using the ‘i.maxlik’ module and resulted in plotted maps showing the rejected threshold
results, as shown above in Listing A5. The confusion matrix was estimated by kappa with
computed possible misclassification cases and derived kappa index of agreement. This was
performed using the code in Listing A7.

Image processing by GRASS GIS also included the removal of the noise signals from
the images through the adjusted segmentation threshold and image partitioning into
segments for monitoring inundated areas and classification. The results of the kappa
calculation are presented as confusion matrices in a tabular format (kappa.csv). These
tables were computed for each classified Landsat image and present the calculation results,
reporting data for every category of land cover classes, as summarised in the Appendix B.

4. Results
4.1. Remote Sensing Data Analysis

The algorithms of the GRASS GIS described above and summarised in scripts were
applied to process the Landsat satellite images, with the results of the segmentation shown
in Figure 6. Scenes were segmented for each year with the visualised maps. Remote sensing
data organisation and management were performed using the GRASS GIS software. It
presents a multifunctional GIS as well as workspace and editing system for remote sensing
and cartographic data storage and processing [122]. Its effective functionality enables
one to perform various steps of image processing and spatial data processing: storage
and organising, navigating and visual inspection, projecting, formatting and converting,
image analysis, handling metadata adding annotations on maps, visualising and analysing
diverse features related to Earth observation data, and mapping. Other advantages include
open-source availability and double-mode functionality: using either scripts or a Graphical
User Interface (GUI). Moreover, GRASS GIS enables one to operate large datasets in vector
and raster formats. Here, each folder of Landsat images contained 800–900 MB, which
resulted in the processing of 9 Gb for nine satellite images, effectively processed by the
GRASS GIS.

4.2. Detection of Segmented Areas

The results of Landsat 8-9 OLI/TIRS image segmentation are presented in Figure 7.
The computed areas by land cover classes and their changes by years are summarised

in Table 2. The classes signify the following land cover types: (1) Cropland; (2) Herbaceous
coverage; 473 areas (3) Forest; (4) Mosaic tree canopies; (5) Shrubland; (6) Grassland; (7)
Flooded and inundated; 474 areas; (8) Bare areas; (9) Built-up areas; (10) Water areas. These
land cover types were used 475 times for landscape analysis.

A multiscale time series analysis demonstrated changes in flooded areas of the Sudd
region, revealed in the maps by gradual changes in the landscapes, which are visible on the
segmented Landsat images taken yearly from 2015 to 2023. For the Landsat 8-9 OLI/TIRS
scenes, the results of the image segmentation performed using the identical parameters
defined for all the images are summarised in Table 3. Here, the number of iterations (passes)
depends on the level of fragmentation of the image and varies by years. Segmentation
and processing of the Landsat 8-9 OLI/TIRS datasets by GRASS GIS served for detecting
flooded areas and monitoring the inundated areas in the Sudd marshes. The detected
large seasonal changes in wetlands result from variation in the flow of Nile tributaries
and Victoria Lake, as well as climate–hydrological pulsing. The approach is based on the
analysis of landscape patches, grouping segments on the images, and hierarchical clustering
(subgroups of landscapes using various threshold levels) for classification following image
segmentation (Figure 7).
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(a) 2015 (b) 2016 (c) 2017

(d) 2018 (e) 2019 (f) 2020

(g) 2021 (h) 2022 (i) 2023

Figure 7. Segmentation maps of the satellite images of the Sudd wetlands, South Sudan based on the
time series of the Landsat 8-9 OLI/TIRS images (2015–2023).

Detecting and recognising the segments on the Landsat images implies identifying the
fields of regions which correspond to the 10 major land cover types in the Sudd wetlands
of South Sudan. These regions are grouped into semantic categories (landscape patches
and land cover types). The hierarchical level of the geometric objects with regard to their
scale (small-, middle-, and large-size) was applied, and the threshold was optimised. The
detection of segments on the images was based on the mean shift image segmentation,
including filtering and clustering (Figure 7). Since both algorithms are embedded in the
’i.segment’ module, the images were segmented without the priori landscape-dependent
information, which ensured independent interpretation.
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Table 2. Computed areas of land cover classes derived from the classified Landsat 8-9 OLI/TIRS
images for the region of the Sudd, South Sudan in the period from 2015 to 2023.

Year Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10

2015 1,501,537.8 243,574.1 317,231.5 17,077.0 241,763.7 734,523.3 447,070.3 528,704.9 466,546.4 281,024.0

2016 606,130.3 594,056.0 251,200.3 478,775.3 108,958.6 202,940.2 558,836.7 132,573.3 471,370.5 386,764.2

2017 344,062 395,409.0 458,500.0 458,986.4 526,807.8 540,912.0 761,353.5 468,330.1 664,728.9 873,149.5

2018 427,690.5 1,054,373.0 1,083,009.3 881,093.1 881,190.4 705,596.0 526,685.1 315,125.8 1,128,926.5 495,258.0

2019 376,759.4 332,136.8 251,513.7 982,144.2 124,956.3 757,819.1 1,090,100.0 625,188.6 109,114.2 689,025.5

2020 272,113.4 180,816.8 419,207.8 402,059.3 493,457.7 1,156,585.4 937,007.5 584,898.4 1,567,576.9 752,311.4

2021 416,413.7 234,023.4 189,669.0 414,165.1 490,691.7 578,060.7 118,864.8 467,398.9 283,889.0 355,065.7

2022 307,658.6 1,168,006.6 147,964.0 423,542.0 617,279.5 442,903.9 383,683.5 788,245.4 770,970.0 267,592.8

2023 0.0 29,203.0 1,599,665.7 434,129.5 1,012,475.1 1,032,878.3 934,255.0 1,214,757.6 167,164.5 687,965.9

Table 3. Results of the segmentation procedure for Landsat 8-9 images with No of created segments.

Year Scene ID Iterations Segments

8 January 2015 LC08_L1TP_173055_20150108_20200910_02_T1 37 4515
12 February 2016 LC08_L1TP_173055_20160212_20200907_02_T1 37 4813
31 December 2017 LC08_L1TP_173055_20171231_20200902_02_T1 38 4114
1 February 2018 LC08_L1TP_173055_20180201_20200902_02_T1 36 5090
8 March 2019 LC08_L1TP_173055_20190308_20200829_02_T1 34 6021
26 March 2020 LC08_L1TP_173055_20200326_20200822_02_T1 39 3187
29 March 2021 LC08_L1TP_173055_20210329_20210408_02_T1 35 2445
19 January 2022 LC09_L1TP_173055_20220119_20230501_02_T1 35 4413
14 May 2023 LC09_L1TP_173055_20230514_20230514_02_T1 41 5181

Notation for Table 3: The Landsat images were selected with cloudiness below 10% to achieve maximal distin-
guishability of the contours of the images.

The grouping decision is made using the features of pixels that match target classes
(‘segment’/‘not segment’), colour, distance to the threshold in pixels, and the spectral
reflectance of the pixel. The shape of the segment is defined through the boundary con-
straints, which limits the adjacency of pixels and segments on a satellite image. In such a
way, the image is represented as a vector geometric structure, recognised and identified
by a computer vision approach. The assessment is based on the connectivity of pixels
constituting the segment, except for the threshold fitness and the difference between several
segments, which break the image scene into a mosaic of patches.

Defining the segments on an image series enabled us to detect inundated areas after
flood disasters and compare changes in complex channel and lagoon systems within the
area of the Sudd marshes (Figure 8). The areas covered by water are distinct from the
neighbour regions and only include pixels with corresponding spectral reflectance for water,
which shows a contrast between the red and near-infrared (NIR) areas. The segments show
the location of the Bahr al Jabal flow and its floodplain with distributed small tributaries
separated based on the values of pixels, which are different from the forest land cover
types or those covered by agricultural vegetation. The consequences of the flood events are
visible on the corresponding image scenes by an analysis of land cover changes. Thus, the
changed pattern of the postflood landscapes as a consequence of severe floods in July 2014
triggered by seasonal rainfalls is visible in the image in Figure 8a. Social consequences of
such disasters include worsened living conditions and the displacement of 68% of 1.3 M
people [124].

Winter months after the annual flood peak are characterised by the saturated soils
with the highest moisture level, which cannot retain additional water due to the reached
saturation level. Therefore, even minimal rainfall triggers further catastrophic flooding and
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results in chained consequences. Thus, occasional rainfalls contribute to the high level of
inundated lands (Figure 8b–d). Flash floods and heavy rains between June and November
2018 affected over 142,000 people, with damaged households and livelihoods [125]. The
consequences of these disasters with flooded grassland ecosystems and inundated areas
(bright green areas) are visible in the image taken in early 2019, shown in Figure 8e.
Abnormally heavy seasonal flooding in South Sudan in July 2019 devastated large areas
of the Sudd and surrounding areas of the White Nile tributaries, swamps, and lakes [126].
The postflood image in early 2020 shows inundated areas and landscapes (Figure 8f).

(a) 2015 (b) 2016 (c) 2017

(d) 2018 (e) 2019 (f) 2020

(g) 2021 (h) 2022 (i) 2023

Figure 8. Classification maps of the satellite images of the Sudd wetlands, South Sudan based on the
time series of the Landsat 8-9 OLI/TIRS images (2015–2023). The classification shows the categories
of land cover classes based on the maximum-likelihood algorithm using GRASS GIS.

The increased in flooded areas (bright green areas; Figure 8g) resulted from the worst
floods in Sudan in August 2020, which were reported by the United Nations Office for the
Coordination of Humanitarian Affairs (UN OCHA) [127]. The social consequences of such
events are around 600,000 people being affected by disasters along the White Nile since July
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2020, and widespread flooding continued in until autumn 2020. The largest affected state is
Ayod, with 150,000 affected and displaced people due to the flood’s effects. The affected land
cover changes are reflected in the postflood image of March 2021, shown in Figure 8g.

The NDVI maps for a time series of the images show the distribution of vegetation
in the postflooded scenario, shown in Figure 9. The floods in August 2021 represent the
disaster in the Sudd due to the heavy showers in southwestern South Sudan, resulting in
floods and river overflow. The flooding in 2021 was particularly dire in central regions of
the country along the Upper Nile region, including the Jonglei state where the Sudd area
extends [128].

(a) 2015 (b) 2016 (c) 2017

(d) 2018 (e) 2019 (f) 2020

(g) 2021 (h) 2022 (i) 2023

Figure 9. Normalised difference vegetation index (NDVI) computed based on the satellite images of
the Sudd wetlands, South Sudan: Landsat 8-9 OLI/TIRS images (2015–2023).

The social consequences of floods for the local population are reported accordingly [129].
It is also noted by the World Health Organization (WHO) [130] that severe floods in July
2022 resulted in evacuations and damage to one million people, and 7380 people were
displaced in South Sudan. The consequences for infrastructure include blocked routes
by increased flood waters, which disabled humanitarian actions. The southern part of
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the country, including Bentiu and Jongleis state, were the most affected. The increased
inundated areas as a postflood consequence in 2023 are visible as bright-green-coloured
areas, shown in Figure 9i. To evaluate the rejection probability classes, maps of pixels
classified according to confidence levels were made based on the classification of nine
satellite images, shown in Figure 10.

(a) 2015 (b) 2016 (c) 2017

(d) 2018 (e) 2019 (f) 2020

(g) 2021 (h) 2022 (i) 2023

Figure 10. Rejection probability classes with pixels classified according to confidence levels based on
the classification of the satellite images of the Sudd wetlands, South Sudan: Landsat 8-9 OLI/TIRS
images (2015–2023).

Spectral information relevant to land cover classes is obtained from the landscape
analysis of the Sudd area, while the information on flooding detected in each image is
retrieved through segmentation. The land cover classes are identified during classification
using the distinct colours of segments and constructing the morphological shapes of the
represented objects (e.g., the flow of the Nile River) in each of the images. All the pixels
encompassed inside each segment are identified iteratively by the machine and interpreted
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accordingly. The information from landscape patches is used to find the variations by years
and propagate inundated areas using comparative analysis. Afterwards, the segments are
identified as land cover classes for each segment of the image, and the metadata of the
segments are updated for each scene accordingly.

5. Discussion
5.1. Advantages of the Tools

This paper presents an alternative algorithm of scripts-based remote sensing data
analysis for environmental modelling. A multiple-methodology approach was applied to
various steps of research. Image segmentation, classification, NDVI calculation, computing
land cover classes, and validation of the results with accuracy assessment were performed
using the GRASS GIS using a time series of the Landsat satellite images, while the QGIS
was applied for geological mapping, and the topographic map was plotted using GMT. The
presented series of maps supports the evaluation of the environmental setting in the Sudd
region, South Sudan. Thus, based on the satellite computations of the flooded area in the
Sudd, the obtained maps estimated the extent of 10 major land cover classes and flooded
areas, with notable extent especially in the years 2016, 2018, and 2020. Additionally, the
maximum flood extent occurs early, with an earlier peak in the flooded extent of inundated
areas, which is related to the Sudd’s hydrodynamics. Thus, the expanded flooding in the
wetlands of the Sudd might have caused backwater effects that affected the wetland’s
extent and behaviour.

In this way, the current paper contributed to monitoring the Sudd wetlands through
image analysis, including segmentation and classification, with the aim to determine
landscape changes over the past nine years. The important deliverables of this work
include image segmentation and classification to identify the diverse land cover classes for
analysis of vegetation and flooded areas based on image analysis techniques. In contrast
to the former reported results [131] where low-resolution SAR imagery was used and
processed using ENVISAT software for the period of 2007–2011, this study presented a
scripts-based approach using an open-access high-resolution dataset, which enables the
repeatability and continuation of this study. Previous works also reported an increase in
peak flood area, which ranges considerably from 2007 to 2009, and classified permanent
flooding, seasonal flooding, and intermittent flooding areas. Likewise, this study reports
an increase in the inundated areas of the Sudd for the years 2016, 2018, and 2020.

5.2. Key Deliverables

The wetland systems of the Sudd are one of the most important ecosystems of South
Sudan and are included in the list of the Ramsar Convention on Wetlands of International
Importance Especially as Waterfowl Habitat due to their hydrological importance in the
Nile Basin, as well as the high number of endangered and vulnerable species therein.
The Sudd plays a crucial role in regulating the balance of floodwater and accumulating
sediments from the Mountain Nile. Moreover, since over half of the water is evaporated in
the Sudd, it serves as an important mechanism of hydrological stability in the Nile River.
Therefore, the disturbed flooding system will necessarily affect the Nile Basin and involve
negative environmental consequences. The decrease in wetland area and the changed
hydrological regime of marshes can directly and indirectly affect the Nile Basin and thus
increase the negative effects of climate change. In this regard, conservation actions focused
on the Sudd wetlands support the regulation of the following climate–environmental
issues: increase in temperatures, unstable precipitation patterns, unbalanced crop planting,
deforestation, carbon emissions related to regional agriculture sector, etc.

The floods presented in simulated models are also related to the drought periods,
which are reflected in the periods of minimum flood extent in the years 2015, 2019, and
2021. This also supports the findings from previous works on climate–environmental
relationships and report on the impact of the Sudd wetlands on atmospheric moisture
fluxes in South Sudan through evaporation [132]. The presented geospatial visualisation
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supported sustainable monitoring of the Sudd wetlands and the mapping of the inundated
areas using segmentation and classification as comparative analysis and NDVI calculation
to detect vegetation areas. Furthermore, topographic and geologic data were used for
the analysis of geomorphic structures, main geologic units, and provinces to show the
distribution of Quaternary sediments characterised by clayey soils, which create perfect
conditions for the extension of swamps and wetlands.

5.3. Reliability of Methods

The demonstrated results are based on Landsat 8-9 OLI/TIRS products, which continues
existing studies using Landsat products for the Sudd area [133]. The images were processed
and tested using GRASS GIS to contribute to the initiatives on digital environmental moni-
toring of African wetlands. In relevant studies [95], spatial constraints in flooded areas were
exploited using data from MODIS imagery and reported a connectivity between swamps
in the wetlands of the Sudd. In this regards, this study supports the analysis of changes in
flooded areas of the Sudd through presenting a cartographic mapping based on the open-
source remote sensing data and advanced techniques of image processing. Landscape analysis
included the detection of segments corresponding to the flooded land areas from pixel-based
data extraction. Creating a novel series of maps based on the segmentation and classification
of the remote sensing data aims at the environmental monitoring of South Sudan and, specifi-
cally, detecting the inundated areas of the Sudd wetlands. It is furthermore intended to present
novel information accessible to ecologists and environmental modellers as an information
source for conservation actions and detecting vulnerable regions prone to inundation during
flood periods with links to the ecology in the Sudd wetlands.

The study aimed at monitoring flooded areas of the Sudd and affected land cover
types for analysis of the climate–environmental effects on the sustainability of wetlands. To
this end, a series of numerical experiments and cartographic data processing using remote
sensing data were performed to evaluate the changes in the Sudd wetlands in regard to the
Nile’s environmental setting in South Sudan. The detected variation in segments by years
indicated difference in peaks of flooding, which were visualised using processing Landsat
8-9 OLI/TIRS images. The fluctuated flooded areas of the Sudd wetlands in South Sudan
(dry land or filled by water) were recognised during the period of 9 years. The recognition of
the of the pixels was based on the discrimination of spectral reflectance properties based on
threshold criteria, which is an essential part of the segmentation algorithm. Thus, pixels were
assigned to segments of the images that were distinct from the others, which identified the
following land cover classes of the Sudd wetlands: sand, marsh, flooded areas, bare land, etc.

From a cartographic perspective, the demonstrated application and functionality of
the GRASS GIS also contributes to the continuation of the environmental research focused
in the Sudd ecosystems due to the open-source availability of the used tools. Thus, the
GRASS GIS software was used for processing the remote sensing data and image analysis,
which can be continued in similar studies using presented scripts. The demonstrated and
explained cartographic tasks included the conversion of raster satellite images into the
maps of segmented patches and classification of the land cover types. Technically, the
algorithms for region growing and merging were employed for discrimination of various
land cover classes using unique IDs in segmentation by the ‘i.segment’ module. A collection
of contiguous pixels that meet these criteria is merged and assigned to segments as objects.
The classification was based on the ‘i.maxlike’ module. The input dataset included 9
satellite images in a raster TIFF format obtained from the USGS. The algorithms of the
GRASS GIS were discussed in detail with comments provided on scripts, demonstrating
the efficiently of this software for the processing and segmentation of satellite images.

6. Conclusions

This research developed links between the technical approach of cartographic data pro-
cessing by GRASS GIS and environmental analysis of the Sudd area using image processing.
In this way, it presents the first data-driven approach that can make its own decisions on
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the variations in the flooded areas of the unique Sudd wetland system in South Sudan. The
cartographic interpretation of the vegetation and inundated areas was performed using
data collected in a sequence of nine years (from 2015 to 2023) for a retrospective analysis of
changes in the Sudd marshes. In this respect, the research performed monitoring and map-
ping of the extent of floods in South Sudan using a comparison of images as a short-term
time series of satellite images. The analysis of the remote sensing data and supplementary
information supported the detection of the areas prone to flooding. Future similar studies
may also consider the overlay of the presented maps with additional cartographic materials,
as well as the use of biogeochemical and environmental data as additional information for
extended research.

The use of additional data for the presented research would enable one to extend
the environmental analysis and monitoring in further directions. The methods of image
processing by GRASS GIS are applicable to other research areas, since the Landsat images
have comparable technical characteristics standardised for the satellite products of Landsat.
Furthermore, this study can be continued by using new Landsat images covering other
periods. Since access to the USGS EarthExplorer repositories with Landsat data are open
and freely available, the use of images for various periods can support long-term envi-
ronmental monitoring of South Sudan. As a continuation of this work, these data can be
reused for recommendations regarding preventive measures to avoid the risks of flooding
using data on wetland boundaries, as well as the inflow and outflow of water affecting
vegetation communities in the Sudd marshes. Furthermore, the communication and results
dissemination to involved parties can assist with decision making regarding the extent of
the inundated areas. This especially concerns fishery communities or farmers depending
on the flood periods in the Sudd area.
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Appendix A. GRASS GIS Scripts for Image Processing, Segmentation
and Classification

Listing A1. GRASS GIS code for importing data for the Landsat OLI/TIRS bands.

1 r.import input=/ Users/polinalemenkova/grassdata/SSudan/
LC09_L2SP_173055_20230514_20230516_02_T1_SR_B1.TIF output=L9_2023_01 resample=
bilinear extent=region resolution=region --overwrite

2 r.import input=/ Users/polinalemenkova/grassdata/SSudan/
LC09_L2SP_173055_20230514_20230516_02_T1_SR_B2.TIF output=L9_2023_02 extent=region
resolution=region

3 r.import input=/ Users/polinalemenkova/grassdata/SSudan/
LC09_L2SP_173055_20230514_20230516_02_T1_SR_B3.TIF output=L9_2023_03 extent=region
resolution=region

4 # repeated for the rest of bands
5 r.import input=/ Users/polinalemenkova/grassdata/SSudan/

LC09_L2SP_173055_20230514_20230516_02_T1_SR_B7.TIF output=L9_2023_07 extent=region
resolution=region

Listing A2. GRASS GIS code for creating semantic labels for the Landsat OLI/TIRS.

1 # listing the available raster bands in GRASS GIS mapset
2 g.list rast
3 # obtaining information on raster metadata:
4 r.info -r L9_2023_07
5 # grouping data by i.group and set up a computational region to match the scene
6 g.region raster=L9_2023_01 -p
7 # store VIZ , NIR , MIR into group/subgroup and leaving out TIR as redundant
8 i.group group=L9_2023 subgroup=res_30m \
9 input=L9_2023_01 ,L9_2023_02 ,L9_2023_03 ,L9_2023_04 ,L9_2023_05 ,L9_2023_06 ,L9_2023_07

10 # Set the region test area with the resolution taken from the input Landsat bands
11 g.region -p raster=L9_2023_01

Listing A3. GRASS GIS code for segmentation for image tested with 2 levels of threshold.

1 # Threshold tested with values between > 0 and < 1
2 i.segment group=L9_2023 output=segs_L9 threshold =0.90 similarity=euclidean method=

region_growing
3 minsize =100 --overwrite
4 i.segment group=L9_2023 output=segs_L9_2 threshold =0.05 similarity=euclidean method=

region_growing
5 seeds=segs_L9 minsize =100 iterations =10

Listing A4. GRASS GIS code for mapping the segmented raster image Landsat 9 OLI/TIRS.

1 d.mon wx0
2 g.region raster=segs_L9 -p
3 r.colors segs_L9 color=roygbiv -e
4 d.rast segs_L9
5 d.legend raster=segs_L9 title="2023" title_fontsize =12 font="Helvetica" fontsize =10

bgcolor=white border_color=white
6 d.out.file output=segs_L9 format=jpg --overwrite

Listing A5. GRASS GIS code for classification of the Sudd region based on the segmented raster
image Landsat 9 OLI/TIRS.

1 # Importing bands , here for Band 1, repeated for all the Landsat bands likewise
2 r.import input=/ Users/polinalemenkova/grassdata/SSudan/

LC08_L2SP_173055_20150108_20200910_02_T1_SR_B1.TIF output=L8_2015_01 resample=
bilinear extent=region resolution=region --overwrite

3 # check up the imported files
4 g.list rast
5 # Defining computational region to match the scene ’s extent
6 g.region raster=L8_2015_01 -p
7 # creating groups from the VIZ , NIR , MIR Bands into groups/subgroups:
8 i.group group=L8_2015 subgroup=res_30m \
9 input=L8_2015_01 ,L8_2015_02 ,L8_2015_03 ,L8_2015_04 ,L8_2015_05 ,L8_2015_06 ,L8_2015_07

10 # Clustering by k-means algorithm and generating signature file and clustering report (
presented in Appendix B)

11 i.cluster group=L8_2015 subgroup=res_30m \
12 signaturefile=cluster_L8_2015 \
13 classes =10 reportfile=rep_clust_L8_2015.txt --overwrite
14 # Running classification
15 i.maxlik group=L8_2015 subgroup=res_30m signaturefile=cluster_L8_2015 \
16 output=L8_2015_cluster_classes reject=L8_2015_cluster_reject
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Listing A6. GRASS GIS code for computing the NDVI for assessment of vegetation coverage over
Sudd (example for 2015).

1 i.landsat.toar input=lsat8_2015. output=lsat8_2015_toar. sensor=oli8 \
2 method=dos1 date =2015 -01 -08 sun_elevation =50.07334117 \
3 product_date =2015 -01 -08 gain=HHHLHLHHL
4 # Calculation of NDVI
5 g.region raster=lsat8_2015_toar .4 -p
6 i.vi red=lsat8_2015_toar .4 nir=lsat8_2015_toar .5 viname=ndvi \
7 output=lsat8_2015.ndvi --overwrite
8 r.colors lsat8_2015.ndvi color=ndvi
9 # displaying the map

10 d.mon wx0
11 g.region raster=lsat8_2015_toar .4 -p
12 d.rast lsat8_2015.ndvi
13 d.legend raster=lsat8_2015.ndvi range=-1,1 title="NDVI" title_fontsize =14 font=Helvetica

fontsize =12 -t -s -b border_color=white thin =12 label_step =0.1 -d
14 d.out.file output=SSudan_NDVI_2015 format=jpg --overwrite

Listing A7. GRASS GIS code for computing the error matrix and kappa parameters for accuracy
assessment of Landsat classification.

1 # r.kappa - Calculates error matrix and kappa parameter for accuracy assessment of
classification result.

2 g.region raster=L8_2015_cluster_classes -p
3 r.kappa -w classification=L8_2015_cluster_classes reference=training_classes_Sudd
4 # export Kappa matrix as CSV file "kappa.csv"
5 r.kappa classification=L8_2015_cluster_classes reference=training_classes_Sudd output=

kappa.csv -m -h --overwrite

Appendix B. Accuracy Assessment: Calculated Error Matrices and Kappa Parameters

Table A1. Calculated error matrix and kappa parameter for accuracy assessment of the classification
results for Landsat 8 image on 2015 using ‘r.kappa’ module of GRASS GIS.

cat# Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 RowSum
Class 1 733,990 71,250 51,480 7839 46,757 700,709 113,227 113,324 9887 5118 1,853,581
Class 2 26,060 6727 35,538 26,438 364,431 2,554,250 860,056 672,721 31,768 28,371 4,606,360
Class 3 126,808 1,031,318 265,035 526,075 315,900 19,612 264,441 41,069 252,749 7260 2,850,267
Class 4 49,698 1,019,916 414,261 1,502,475 729,561 151,428 544,346 56,599 699,290 36,435 5,204,009
Class 5 55,812 124,601 65,706 587,382 1,069,099 2,306,196 1,927,058 744,408 55,621 67,236 7,003,119
Class 6 52,480 54,546 5866 311,905 743,280 2,588,755 1,866,894 982,650 119,871 76,889 6,803,136
Class 7 24,987 458,562 337,404 1,432,717 276,379 72,536 202,169 59,283 1,294,871 6729 4,165,637
Class 8 85,044 497,573 2,216,937 118,633 30,004 449 10,108 1598 90,003 1007 3,051,356
Class 9 5751 10,876 1737 36,475 89,652 424,421 705,550 1,286,583 70,834 17,102 2,648,981
Class 10 19,907 13,236 51,275 160,668 121,074 40,570 76,701 87,681 861,525 291 1,432,928
ColSum 1,180,537 3,288,605 3,445,239 4,710,607 3,786,137 8,858,926 6,570,550 4,045,916 3,486,419 246,438 39,619,374

Table A2. Calculated error matrix and kappa parameter for accuracy assessment of the classification
results for Landsat 8 image on 2016 using ‘r.kappa’ module of GRASS GIS.

cat# Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 RowSum
Class 1 780,231 220,046 154,297 83,530 30,508 5503 20,356 2895 47,941 1275 1,346,582
Class 2 99,741 1,580,160 638,455 893,432 63,464 1502 16,019 1711 347,409 2430 3,644,323
Class 3 45,287 105,436 146,747 352,943 857,966 1,395,889 842,830 283,690 379,210 41,515 4,451,513
Class 4 35,525 99,491 19,632 174,655 357,086 3,414,838 689,202 854,448 255,453 45,549 5,945,879
Class 5 62,103 104,822 101,515 593,389 1,081,257 1,214,029 1,864,351 467,083 179,258 81,250 5,749,057
Class 6 78,202 734,566 2,116,828 415,473 20,173 166 6818 564 101,522 2036 3,476,348
Class 7 34,081 325,250 183,816 1,522,681 609,621 148,043 895,476 76,289 838,978 29,955 4,664,190
Class 8 20,087 100,341 47,817 255,331 336,311 2,069,073 1,207,148 1,054,234 176,795 22,133 5,289,270
Class 9 26,399 62,204 48,815 358,068 358,608 529,045 819,897 518,414 845,407 14,161 3,581,018
Class 10 4591 43,312 37,546 143,710 82,955 93,770 258,290 809,648 410,504 6326 1,890,652
ColSum 1,186,247 3,375,628 3,495,468 4,793,212 3,797,949 8,871,858 6,620,387 4,068,976 3,582,477 246,630 40,038,832
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Table A3. Calculated error matrix and kappa parameter for accuracy assessment of the classification
results for Landsat 8 image on 2017 using ‘r.kappa’ module of GRASS GIS.

cat# Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 RowSum
Class 1 714,689 117,487 52,980 29,136 14,787 67,746 17,701 9756 14,785 723 1,039,790
Class 2 29,352 89,841 42,227 189,497 504,534 2,227,043 827,928 594,172 32,439 44,234 4,581,267
Class 3 132,797 1,146,691 330,041 822,072 207,013 12,648 202,651 11,771 1,125,908 7090 3,998,682
Class 4 41,460 802,806 164,039 1,157,656 1,081,506 581,552 1,024,952 173,449 519,751 25,839 5,573,010
Class 5 31,282 101,832 47,418 331,621 491,478 1,274,293 1,413,071 693,162 42,470 39,397 4,466,024
Class 6 94,598 767,242 1,889,767 803,189 138,593 5507 58,560 6832 831,596 3347 4,599,231
Class 7 60,993 201,077 890,179 350,265 126,975 21,032 61,723 47,984 720,003 432 2,480,663
Class 8 56,736 177,652 99,278 980,998 910,525 1,832,830 1,627,262 653,205 200,345 67,755 6,606,586
Class 9 28,932 33,432 11,456 142,960 309,440 2,717,290 1,130,225 1,143,763 76,522 52,290 5,646,310
Class 10 4903 29,081 7521 51,253 49,527 129,146 315,224 775,406 94,041 6616 1,462,718
ColSum 1,195,742 3,467,141 3,534,906 4,858,647 3,834,378 8,869,087 6,679,297 4,109,500 3,657,860 247,723 4,045,4281

Table A4. Calculated error matrix and kappa parameter for accuracy assessment of the classification
results for Landsat 8 image on 2018 using ‘r.kappa’ module of GRASS GIS.

cat# Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 RowSum
Class 1 732,406 145,516 55,377 18,756 2042 567 2028 265 3889 540 961,386
Class 2 42,867 83,461 39,794 120,546 646,654 1,668,545 60,5985 381,538 67,729 44,928 3,702,047
Class 3 50,806 72,438 243,34 192,753 550,591 3,041,550 1,180,439 877,680 45,519 67,934 6,104,044
Class 4 39,524 549,507 130,403 1,162,081 956,566 163,501 1,005,861 76,938 592,355 40,140 4,716,876
Class 5 19,153 74,871 29,427 184,968 292,231 1,738,221 1,323,091 903,817 42,208 24,979 4,632,966
Class 6 103,865 1,380,744 464,199 991,808 155,944 2218 115,542 2619 675,785 4254 3,896,978
Class 7 108,450 727,966 2,543,054 684,347 22,111 767 13,922 755 586,134 1725 4,689,231
Class 8 40,667 144,063 127,960 1,069,080 804,237 591,309 1,066,923 232,496 725,319 28,954 4,831,008
Class 9 19,387 60,859 25,457 154,727 238,558 1,584,571 993,358 960,600 88,933 25,916 4,152,366
Class 10 24,735 80,861 21,160 165,180 115,558 65,516 258,729 595,195 693,860 6799 2,027,593
ColSum 1,181,860 3,320,286 3,461,165 4,744,246 3,784,492 8,856,765 6,565,878 4,031,903 3,521,731 246,169 39,714,495

Table A5. Calculated error matrix and kappa parameter for accuracy assessment of the classification
results for Landsat 8 image on 2019 using ‘r.kappa’ module of GRASS GIS.

cat# Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 RowSum
Class 1 718,640 203302 172,239 93,576 43,600 4256 18,785 1009 154,123 961 1,410,491
Class 2 125,598 1,493,295 662,957 875,909 62,791 233 12,810 1003 199,881 2890 3,437,367
Class 3 54,049 77,429 71,198 263,136 915,884 1,601,573 838,669 292,464 542,080 38,583 4,695,065
Class 4 54,698 420,455 224,468 1,593,385 860,119 197,570 1,208,920 145,740 498,281 68,378 5,272,014
Class 5 100,175 681,102 2,082,822 353,990 9774 12 1168 33 55,344 1488 3,285,908
Class 6 62,037 74,841 42,628 229,455 708,692 3,498,641 1,282,209 997,764 207,553 73,493 7,177,313
Class 7 27,615 96,635 47,774 265,935 444,419 2,280,163 1,435,551 1,089,070 182,786 27,049 5,896,997
Class 8 22,403 103,576 69,604 564,151 491,174 491,554 1,015,617 231,168 782,133 20,739 3,792,119
Class 9 7734 84,827 34,720 226,934 165,732 728,783 621,082 968,785 172,290 5761 3,016,648
Class 10 8316 75,416 46,918 267,452 80,567 52,556 124,414 300,513 716,496 6747 1,679,395
ColSum 1,181,265 3,310,878 3,455,328 4,733,923 3,782,752 8,855,341 6,559,225 4,027,549 3,510,967 246,089 39,663,317
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Table A6. Calculated error matrix and kappa parameter for accuracy assessment of the classification
results for Landsat 8 image on 2020 using ‘r.kappa’ module of GRASS GIS.

cat# Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 RowSum
Class 1 683,544 309,023 99,294 155,266 51,772 166,487 46,734 33,393 90,153 1763 1,637,429
Class 2 140,068 1,405,103 502,303 960,693 301,650 1969 244,355 7645 463,950 15,581 4,043,317
Class 3 34,985 29,270 6265 56,130 239,734 1,980,369 393,702 256,511 33,095 39,034 3,069,095
Class 4 37,825 13,154 4829 51,406 404,025 3,157,656 857,426 692,151 43,581 53,723 5,315,776
Class 5 138,477 671,024 2,455,571 568,894 34,995 1184 15,184 5799 152,695 3956 4,047,779
Class 6 51,528 717,269 267,346 1,543,446 1,005,959 256,180 637,860 126,776 660,357 42,351 5,309,072
Class 7 18,831 12,591 2094 90,961 386,704 1,777,537 1,583,559 956,054 54,353 31,397 4,914,081
Class 8 44,343 134,707 147,092 1,003,947 1,035,822 832,105 1,440,973 404,912 853,895 42,981 5,940,777
Class 9 19,763 43,411 10,566 249,256 272,111 597,942 1,194,978 989,956 638,501 9637 4,026,121
Class 10 18,842 61,878 10,717 128,166 71,966 106,674 222,352 605,939 610,029 6357 1,842,920
ColSum 1,188,206 3,397,430 3,506,077 4,808,165 3,804,738 8,878,103 6,637,123 4,079,136 3,600,609 246,780 40,146,367

Table A7. Calculated error matrix and kappa parameter for accuracy assessment of the classification
results for Landsat 8 image on 2021 using ‘r.kappa’ module of GRASS GIS.

cat# Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 RowSum
Class 1 702,916 170,016 144,023 121,055 160,622 146,539 319,847 201,335 17,125 11,327 1,994,805
Class 2 137,245 772,838 405,525 861,919 482,726 297,935 637,744 319,340 133,967 40,635 4,089,874
Class 3 100,084 553,381 1,979,310 375,399 32,820 15,876 19,359 17,344 62,178 772 3,156,523
Class 4 52,869 1,280,901 736,804 1,341,217 227,239 203,122 179,091 173,844 332,915 21,818 4,549,820
Class 5 31,298 348,878 82,337 988,002 669,137 367,343 590,315 179,041 732,481 23,781 4,012,613
Class 6 82,156 20,454 2383 73,286 843,448 2,928,722 1,185,373 683,802 52,542 112,618 5,984,784
Class 7 14,080 2677 12 10,134 199,861 3,664,407 1,106,320 869,961 27,095 16,303 5,910,850
Class 8 11,133 3988 2954 140,173 514,342 987,416 1,809,103 776,155 79,990 9808 4,335,062
Class 9 53,852 247,468 154,669 881,230 602,744 79,115 361,528 69,245 1,863,006 6719 4,319,576
Class 10 2991 1500 291 19,321 73,820 188,976 432,371 791,227 303,449 3076 1,817,022
ColSum 1,188,624 3,402,101 3,508,308 4,811,736 3,806,759 8,879,451 6,641,051 4,081,294 3,604,748 246,857 40,170,929

Table A8. Calculated error matrix and kappa parameter for accuracy assessment of the classification
results for Landsat 8 image on 2022 using ‘r.kappa’ module of GRASS GIS.

cat# Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 RowSum
Class 1 731,146 290,319 237,623 291,223 132,078 263,431 319,057 187,293 56,788 22,701 2,531,659
Class 2 35,991 11,448 5617 16,586 180,690 2,141,375 456,161 458,916 27,192 49,483 3,383,459
Class 3 18,712 5274 1374 21,109 225,586 2,424,597 624,656 524,088 18,643 21,329 3,885,368
Class 4 130,449 1,176,764 483,567 1,149,433 546,547 352,960 717,444 317,804 486,570 39,343 5,400,881
Class 5 30,884 35,859 16,397 213,410 535,419 1,358,447 1,173,149 582,758 40,234 37,240 4,023,797
Class 6 26,411 18,092 8246 150,852 504,812 1,178,353 1,640,165 765,099 49,838 32,619 4,374,487
Class 7 53,164 1,017,166 636,794 1,598,491 736,672 375,514 548,660 219,776 849,537 30,208 6,065,982
Class 8 108,133 594,918 1,948,383 348,009 32,300 59,628 18,387 25,360 138,083 1559 3,274,760
Class 9 24,740 168,328 93,599 521,826 575,816 606,032 927,642 694,886 707,640 9358 4,329,867
Class 10 32,749 110,613 91,007 522,968 352,275 131,057 246,218 329,246 1,254,761 3620 3,074,514
ColSum 1,192,379 3,428,781 3,522,607 4,833,907 3,822,195 8,891,394 6,671,539 4,105,226 3,629,286 247,460 40,344,774
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Table A9. Calculated error matrix and kappa parameter for accuracy assessment of the classification
results for Landsat 8 image on 2023 using ‘r.kappa’ module of GRASS GIS.

cat# Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 RowSum
Class 1 696,181 265,690 210,677 147,949 47,848 2351 28,532 11,048 318,677 916 1,729,869
Class 2 149,373 875,176 345,372 679,954 298,325 17,823 276,754 36,126 491,199 13,422 3,183,524
Class 3 68,987 1,103,574 616,225 1,449,488 384,491 27,522 383,103 58,688 592,878 31,005 4,715,961
Class 4 113,808 718,554 1,928,287 399,929 82,193 29,429 53,107 31,572 253,169 1602 3,611,650
Class 5 36,422 248,019 189,972 890,162 567,087 292,147 1,021,289 370,809 523,327 29,114 4,168,348
Class 6 44,185 40,446 42,802 309,544 969,941 1,256,540 1,076,897 398,925 377,458 54,559 4,571,297
Class 7 51,650 18,914 13,974 115,112 323,824 4,387,107 966,427 899,834 55,327 72,308 6,904,477
Class 8 17,292 54,481 80,843 400,775 627,113 1,343,379 1,726,289 675,519 195,048 23,051 5,143,790
Class 9 9240 5475 4241 86,789 210,760 1,163,138 817,121 1,116,546 54,160 12,431 3,479,901
Class 10 7212 129,323 102,017 367,368 311,372 314,712 311,368 501,372 792,399 8292 2,845,435
ColSum 1,194,350 3,459,652 3,534,410 4,847,070 3,822,954 8,834,148 6,660,887 4,100,439 3,653,642 246,700 40,354,252

Appendix C. Clustering Report of GRASS GIS: Calculated for the Landsat Image

The example is given for the scene on 2016. All the other reports are provided
in the author’s GitHub repository along with GRASS GIS scripts: https://github.com/
paulinelemenkova/Sudd_South_Sudan_Image_Analysis (accessed on 10 August 2023).

#################### CLUSTER (Sun Jul 2 13:35:38 2023) ####################

Location: SSudan
Mapset: PERMANENT
Group: L8_2016
Subgroup: res_30m
L8_2016_01@PERMANENT
L8_2016_02@PERMANENT
L8_2016_03@PERMANENT
L8_2016_04@PERMANENT
L8_2016_05@PERMANENT
L8_2016_06@PERMANENT
L8_2016_07@PERMANENT

Result signature file: cluster_L8_2016

Region
North: 915615.00 East: 416415.00
South: 682785.00 West: 189555.00
Res: 30.00 Res: 30.00
Rows: 7761 Cols: 7562 Cells: 58688682

Mask: no

Cluster parameters
Nombre de classes initiales: 10

Minimum class size: 17
Minimum class separation: 0.000000
Percent convergence: 98.000000
Maximum number of iterations: 30

Row sampling interval: 77
Col sampling interval: 75

Sample size: 7018 points

means and standard deviations for 7 bands

moyennes 8341.81 8839.87 9796.06 10347 13521 14268 12593.9
écart-type 333.559 397.401 538.123 866.886 1982.91 1927.26 1630.37

initial means for each band

https://github.com/paulinelemenkova/Sudd_South_Sudan_Image_Analysis
https://github.com/paulinelemenkova/Sudd_South_Sudan_Image_Analysis
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classe 1 8008.25 8442.47 9257.94 9480.1 11538.1 12340.7 10963.6
classe 2 8082.38 8530.78 9377.52 9672.74 11978.8 12769 11325.9
classe 3 8156.5 8619.09 9497.1 9865.39 12419.4 13197.3 11688.2
classe 4 8230.63 8707.41 9616.69 10058 12860.1 13625.5 12050.5
classe 5 8304.75 8795.72 9736.27 10250.7 13300.7 14053.8 12412.8
classe 6 8378.87 8884.03 9855.85 10443.3 13741.3 14482.1 12775.1
classe 7 8453 8972.34 9975.43 10636 14182 14910.4 13137.4
classe 8 8527.12 9060.65 10095 10828.6 14622.6 15338.7 13499.7
classe 9 8601.25 9148.96 10214.6 11021.2 15063.3 15766.9 13862
classe 10 8675.37 9237.27 10334.2 11213.9 15503.9 16195.2 14224.3

class means/stddev for each band

class 1 (742)
moyennes 7951.81 8339.41 9061.5 9178.93 11076.1 10852.5 10158.2
écart-type 257 262.216 327.764 454.974 1467.52 1336.4 1392.45

class 2 (402)
moyennes 8135.75 8577.49 9368.62 9690.99 12024.7 12474.3 11626.2
écart-type 206.535 190.022 178.166 289.903 1227.6 363.851 1008.55

class 3 (548)
moyennes 8233.58 8669.82 9470.17 9846.65 12343.6 13017.8 12042.3
écart-type 245.584 210.629 176.849 316.624 1339.17 373.941 1071.32

class 4 (767)
moyennes 8279.24 8738.97 9588.8 10030.2 12750 13501.6 12361
écart-type 242.165 238.415 231.391 373.139 1383.88 409.177 1106.05

class 5 (973)
moyennes 8313.09 8784.31 9689.54 10170 13314.3 14001.5 12545.2
écart-type 239.434 244.552 210.543 463.114 1560.73 423.344 1161.71

class 6 (1048)
moyennes 8315.49 8800.87 9775.46 10268.6 14087 14416.4 12578.4
écart-type 241.751 268.06 233.945 562.31 1841.81 557.805 1274.18

class 7 (810)
moyennes 8395.39 8911.3 9925.59 10555 14249.5 14988.4 12993.8
écart-type 226.309 252.265 238.656 532.931 1667.51 541.879 1186.87

class 8 (589)
moyennes 8451.32 9018.86 10096.9 10879.7 14397.7 15615.7 13388.1
écart-type 244.289 296.493 347.211 510.795 1292.85 513.351 1030.24

class 9 (383)
moyennes 8542.06 9143.82 10280.9 11175.9 14651.7 16187.5 13737.7
écart-type 226.471 215.073 232.586 443.034 1002.04 370.811 894.101

class 10 (756)
moyennes 8805.39 9451.85 10737.7 11805 15797.2 17600.5 14593.2
écart-type 355.91 426.665 563.559 744.099 1255.16 1086.85 1233.36

Distribution des classes
742 402 548 767 973

1048 810 589 383 756

######## iteration 1 ###########
10 classes, 63.02% points stable
Distribution des classes

494 665 533 840 908
1068 608 721 664 517

######## iteration 2 ###########
10 classes, 75.24% points stable
Distribution des classes

369 624 667 799 988
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1017 765 661 709 419

######## iteration 3 ###########
10 classes, 86.09% points stable
Distribution des classes

293 598 833 757 927
833 944 761 720 352

######## iteration 4 ###########
10 classes, 91.58% points stable
Distribution des classes

249 599 869 818 947
716 943 818 747 312

######## iteration 5 ###########
10 classes, 94.69% points stable
Distribution des classes

229 622 824 874 1009
648 896 865 751 300

######## iteration 6 ###########
10 classes, 96.21% points stable
Distribution des classes

217 640 795 921 1023
604 851 930 742 295

######## iteration 7 ###########
10 classes, 97.08% points stable
Distribution des classes

210 649 770 972 1018
582 807 984 735 291

######## iteration 8 ###########
10 classes, 98.10% points stable
Distribution des classes

205 647 756 1014 994
574 779 1025 733 291

########## final results #############
10 classes (convergence=98.1%)

class separability matrix

1 2 3 4 5 6 7 8 9 10

1 0
2 1.3 0
3 1.6 1.0 0
4 2.6 1.8 1.1 0
5 2.6 1.4 1.3 0.8 0
6 1.9 0.8 1.6 2.3 1.8 0
7 2.5 1.3 1.5 1.3 0.7 1.2 0
8 3.2 2.2 2.1 1.2 1.0 2.3 1.1 0
9 3.2 2.2 2.3 1.8 1.4 2.0 1.1 0.8 0

10 3.6 2.8 2.9 2.4 2.2 2.7 2.0 1.5 1.0 0

class means/stddev for each band

class 1 (205)
moyennes 7792.09 8125.77 8749.8 8685.25 9720.39 9033 8554.86
écart-type 269.203 248.508 325.667 367.886 1192.41 1032.1 923.673

class 2 (647)
moyennes 7958.2 8386.62 9338.01 9492.04 13584.7 12120 10320.6
écart-type 184.172 217.176 342.491 469.583 889.819 826.243 578.126
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class 3 (756)
moyennes 8203 8635.6 9330.98 9704.04 11117.4 12400.5 11990.4
écart-type 180.79 155.652 189.472 264.785 613.41 635.13 637.803

class 4 (1014)
moyennes 8474.28 8940.79 9705.86 10252.6 11769.3 13891.5 13495.2
écart-type 245.105 171.081 169.501 243.028 399.04 444.049 495.903

class 5 (994)
moyennes 8293.53 8811.29 9742.85 10406.3 13008.9 14232 12696
écart-type 152.479 155.328 213.418 325.007 427.795 473.935 481.045

class 6 (574)
moyennes 8070.27 8430.14 9509.54 9368.75 17090.2 13486.3 10600.1
écart-type 167.24 165.95 253.195 345.468 1170.35 700.286 496.695

class 7 (779)
moyennes 8270.21 8760.55 9784.77 10342.1 14674.7 14922.2 12197.4
écart-type 140.611 149.126 220.25 390.38 674.5 660.764 550.25

class 8 (1025)
moyennes 8556.69 9135.1 10148 11001.2 13308.2 15441.2 14126.3
écart-type 230.6 188.688 211.968 304.661 564.956 535.661 698.561

class 9 (733)
moyennes 8568.91 9185.04 10382 11327.4 15261.8 16677 13644.6
écart-type 254.495 334.43 432.144 536.085 844.786 635.139 713.034

class 10 (291)
moyennes 9044.36 9738.61 11135.6 12383.7 16390.7 18607.7 15523
écart-type 348.47 409.735 566.885 667.853 1254.96 936.286 1038.31

#################### CLASSES ####################

10 classes, 98.10% points stable

######## CLUSTER END (Sun Jul 2 13:35:38 2023) ########
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