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Abstract: From an evolutive perspective, tumor cells endure successive turnover upon stress condi-
tions and pressure to adapt to new environments. These cells use exceptional communication skills to
share biological information to “survive upon every metabolic cost”. The tumor microenvironment
(TME) is a miscellaneous collection of cells, factors, and extracellular vesicles (EVs). EVs are small
lipid bilayer-delimited particles derived from cells with sizes ranging from 100 to 1000 nm. Exosomes
(<160 nm) are the minor subtype of EVs, originating from the endosomal pathways. The TME also
contains “giant” vesicles, microvesicles (100–1000 nm, MV), originated from membrane blebbing.
EVs can act as intercellular communication mediators, contributing to many biological processes,
by carrying different biomolecules, such as proteins, lipids, nucleic acids, and metabolites. EV se-
cretion can promote either tumor cell survival or manage their stress to death. Tumor-derived EVs
transfer adaptative stress signaling to recipient cells, reprograming these cells. Heat shock proteins
(HSP) are prominent stress response regulators, specifically carried by exosomes. HSP-loaded EVs
reprogram tumor and TME cells to acquire mechanisms contributing to tumor progression and
therapy resistance. The intercellular communication mediated by HSP-loaded EVs favors the escape
of tumor cells from the endoplasmic reticulum stress, hypoxia, apoptosis, and anticancer therapies.
Extracellular HSPs activate and deactivate the immune response, induce cell differentiation, change
vascular homeostasis, and help to augment the pre-metastatic niche formation. Here we explore
EVs’ mechanisms of HSP transmission among TME cells and the relevance of these intercellular
communications in resistance to therapy.

Keywords: extracellular vesicles; tumor-resistance; chaperones; heat shock proteins; CSC-derived
exosomes; cancer

1. Introduction

Cancer cell survival is challenged by internal and external stress factors, which exert
selective pressure on cancer cells, driving the emergence of genetic and phenotypic diver-
sity that allows cell survival. Harsh tumor microenvironment (TME) conditions increase
intracellular misfolded and damaged proteins; thus, from an evolutionary perspective, can-
cer adaptability involves proteotoxic stress adaptation. The proteostasis network preserves
the proteome functionality by coordinating processes such as protein synthesis and folding,
translocation, or degradation, to promptly respond to stress conditions [1,2]. However,
severe or persistent stress stimulus can disturb the protein-folding equilibrium and surpass
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the proteostasis “buffering” capacity, culminating in the induction of cell death. Heat
shock proteins (HSPs) are a group of conserved protein families that play crucial roles in
cellular protection against stress and the maintenance of cellular proteostasis. HSPs were
originally named proteins induced by thermal stress; however, this nomenclature may also
be used to describe proteins induced by other stressors, such as hypoxia, inflammation,
and infection. The numerous members in the various human HSP families contributed to
the inconsistencies in their nomenclature. In 2009, Kampinga et al. provided a guideline for
a more consistent HSP nomenclature. Here, we reproduce the HSP nomenclature used in
the original papers, and provide in parenthesis the information of the HSP family [3]. They
mainly function as molecular chaperones, acting as protectors of misfolding protein accu-
mulation by facilitating protein folding, trafficking, assembly, and degradation (reviewed
in [4]). The interface between environmental stress and protein homeostasis impacts the
evolution and selection of more adaptive phenotypes. In a model of Drosophila cell lines,
it was evidenced that the direct folding of mutated proteins provided new functions that
eventually conferred selective advantages to cells to survive in hostile environments [5]. In
addition to their chaperone activity, HSPs play important roles in the cell cycle, apoptosis
regulation, and cell signaling transduction [6]. Here, we exploit the idea that increased HSP
expression and activity in cancer cells [7–9] can be an evolutionary advantage to respond
environmental stress signals that result in cancer progression and resistance to therapy.

Cancer cells survivability and proliferation require continuous communication among
tumor and TME cells [10]. The systemic release of extracellular vesicles (EVs) has been
reported as a particular mechanism of cancer cells to propagate stress tolerance to other
cells. EVs are small lipid bilayer-delimited particles derived from cells with sizes ranging
from 100 to 1000 nm. Exosomes (<160 nm) are the minor subtype of EVs, originating from
the endosomal pathways, and the “giant” EVs microvesicles (100–1000 nm, MVs) originate
from membrane blebbing [11]. EVs can act as intercellular communication mediators,
contributing to many cells’ biological processes, by carrying different biomolecules, such as
proteins, lipids, nucleic acids, and metabolites [12,13]. The release of EVs from cancer cells
as an adaptative stress response to harsh conditions has been well documented. We have
previously shown that acquisition of resistance to treatment by melanoma cells could be
mediated by EVs derived from treated tumor cells [14]. EVs are shed by tumors as unique
forms of processing or reshaping of cell content in a way that they can share, with other
cells, information received by a particular population of cells. Similarly, cancer cells can
receive foreign information from EVs that signal them to survive, grow, migrate, or even
die [15,16].

Considering the primary function of HSPs to maintain cellular homeostasis, it is
important to explore the potential role of EVs loaded with HSPs (HSP-EVs) in activating
the proteostasis network within the TME with prominent modulators to undergo internal
proteotoxic stress [17]. Although the concept of EVs’ preconditioning mechanism remains
under construction, it is mainly attributed to the EV’s internal cargo. In addition, some
knowledge needs to be explored; in contrast to external uncovered HSPs, EVs can deliver
HSPs to distinct cell types and at distant sites outside the body’s compartments in saliva
or other fluids. In this review, we exploit the idea that HSP-EVs are shed by cancer cells
upon stress stimulus and focus our discussion on HSP-mediated stress response adaptation
within the TME, what contributes to tumor progression.

2. Extracellular Vesicle (EV)-Mediated Stress Propagation during Tumor Development
and Progression

Cells release EVs because of their physiology and pathophysiology. EVs can be classi-
fied into three main subtypes [18] according to their biogenesis and size. Apoptotic bodies
are generated by membrane disintegration after injuries and cell death activation, produc-
ing vesicles having a diameter ranging from 1 to 5 µM. Microvesicles are particles generated
by the direct outward budding of the plasma membrane of viable cells, having vesicles in a
size range of around 50 nm to 1000 nm in diameter. Finally, exosomes are generated by the
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endosomal sorting complex required for the transport (ESCRT) system composed of differ-
ent proteins able to interact with other proteins and promote the formation of intraluminal
vesicles. Exosome formation starts after the invagination of the plasma membrane and the
formation of an early-sorting endosome (ESE). The ESE contains cell-surface and soluble
proteins associated with the extracellular milieu in addition to content from the trans-Golgi
network and endoplasmic reticulum. Late-sorting endosomes (LSEs) are matured ESEs
that generate multivesicular bodies (MVBs) containing intraluminal vesicles. MVBs form
by double invagination of the plasma membrane and can later fuse with lysosomes or
autophagosomes to be degraded. Release of exosomes occurs after the fusion of MVBs to
the plasma membrane; these exosomes have a size of around 40 to 160 nm in diameter [19].

Studies have been conducted to investigate the role of EVs in the transfer of the stress
tolerance phenotype in different cancer models. Hypoxia leads to EV release and/or a
higher cargo loading per vesicle, and transfers a hypoxic tolerance phenotype to TME, as
well as promoting pro-tumoral effects, including induced proliferation, migration, angio-
genesis, and immunomodulation [20]. The main cellular hypoxia effect is protein-folding
instability with damaged and misfolded protein accumulation. Proteostasis instability
affects the endoplasmic reticulum (ER), triggering a specific cellular state known as ER
stress and the unfolded protein response (UPR) to restore homeostasis. Mahadevan et al.
demonstrated that ER stress can be transmitted from cancer cells to bone marrow-derived
myeloid cells, a phenomenon known as transmissible ER stress [21]. This communication
was confirmed to be organized by EVs, which was firstly attributed to cancer cell soluble
factors [22], and compelling evidence from cancer cells submitted to ER stress inducers
demonstrates that this insult increases EV secretion [23,24].

EV-mediated remote stress preconditioning has identified several EV cargos, including
mRNA, microRNA, and proteins that impact HIF-1α-, UPR-, angiogenesis-, and autophagy
signaling in recipient cells (reviewed in [20]). Given the critical role of HSPs in driving the
stress response, their activity is one of the main cellular pro-survival mechanisms, and it
would be logical to expect the presence of these proteins in EVs. Five major mammalian
HSP families have been classified according to the guideline proposed by Kampinga et al.:
HSP70 superfamily (HSP70 (HSPA) and HSP110 (HSPH)), DNAJ (HSP40), small heat
shock proteins (HSPB), HSPC (HSP90), and chaperonins (HSPD/E) [3]. EVs containing
diverse HSP members are passively or actively released by damaged, stressed, or dead
cells. The expression of HSP90 (HSPC family) in exosomes derived from diverse normal
cells was previously reported [25–28]. Later, B cell-derived exosomes were reported to
have increased levels of chaperones under heat stress conditions [29]. Oral squamous cell
carcinoma secretes HSP90-enriched EVs and promotes expression of HSP90, TRAP1, and
HSP105 (HSP70 superfamily), which were correlated with poor prognosis in head and
neck carcinoma patients [30]. A mitochondrial chaperonin, HSP60 (chaperonin family),
is secreted into exosomes as a regular process independent of cell death induction [31].
A mitochondrial chaperone, GRP75/mt-HSP70 (HSP70 superfamily), is involved in EV
secretion by breast cancer cells and its blockage decreases tumoral EV secretion [32]. The
release of EV-HSP70 (HSP70 superfamily) can also be enhanced immediately in plasma
after cardio-exercising, which follows the return to the baseline quantitate amount of HSPs
in EVs extracted from patients’ serum [33].

3. Heat Shock Protein (HSP) Secretion by EVs Triggered by Chemo- or Radiotherapy

Several reports have underlined that stress induced by anticancer therapies, such
as chemotherapy and radiotherapy, induce EV secretion from TME cells, resulting in
drug resistance transfer to recipient cells (reviewed in [34]). Importantly, high levels of
tumoral HSPs have been reported to be associated with poor prognosis and resistance to
therapy (reviewed in [35]). Some authors revealed that diverse HSPs, including HSP27
(HSPB family), HSP60, HSP70, and HSP90, have a cytoprotective activity in reducing the
sensitivity of tumor cells to anticancer drugs [36–41]. It has become apparent that HSPs



Appl. Biosci. 2024, 3 48

are released and are able to induce cellular responses in the extracellular milieu, including
therapy resistance [42].

For many years, findings of extracellular HSPs were considered artifacts caused by cell
necrosis, due to the absence of a peptide secretion signal in their sequence [43]. However,
this concept was revised, showing HSPs to be released even in the absence of cell death [44],
and further studies described diverse unconventional pathways of HSP secretion, including
within EVs [42]. Importantly, HSPs are present in exosomes released by various cancer cells
and different TME cells (Table 1). The exact mechanism by which HSPs are incorporated
within EVs is still controversial. However, the promotion of malignant features by HSP-EVs
and drug resistance are extensively reported [30,45–50].

Table 1. HSP-EVs secreted by cancer cells or different TME cells.

HSP Cell Type and Reference

HSP20 Gynecologic cancer cells [51]

HSP27
HSC70
HSP70
HSP90

B cells [29]

HSP60 Human lung carcinoma cells [52]

HSP60
HSP70 H292, A549 and K562 tumor cell lines [31]

HSP60
HSP70
HSP90

Hepatocellular carcinoma cells [53]

HSP70 Human peripheral blood mononuclear cells [54]

HSP70 Natural killer cells [46]

HSP70 Choriocarcinoma cells [23]

HSP72 Breast adenocarcinoma cells
Erythroleukemic cells [55]

HSC73 Dendritic cells [25]

HSP70
HSP90 Prostate cancer cell [56]

mt-HSP70 Breast cancer cells [32]

GRP78 Colon cancer cells [57]

HSP90 Cancer stem cell-like [58]
HSP (heat shock protein), HSC (heat shock cognate protein), mt-HSP (mitochondrial HSP), GRP (glucose-
related protein).

4. Transfer of Therapy Resistance Mediated by HSP-EVs’ Release by Tumor Cells

Besides the advances in targeted therapies, some patients relapse even after an initial
positive response to a therapy schedule and become unresponsive after a few cycles.
Therapy resistance is documented for all cancer and therapy types. To date, the focus of
drug resistance research has been on identifying genetic and epigenetic changes in cancer
cells and/or cells from the TME. They usually aim for pro-survival signaling, apoptotic
pathway inhibition, and controlled drug alteration. It was recently revealed that EVs also
alter cancer cell plasticity to modify them to become chemotherapeutic-resistant [59–61].
EVs mediate drug resistance by reducing the concentration of the drug by exporting it
from cancer cells or by dividing their cargo among TME cells [62]. These altered pathways
evolve cells to diminish drug efficacy [61]. The role of intercellular transfer of HSPs
mediated by EVs in the horizontal transmission of drug resistance in multiple cancer types
is explored here.
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Chemo- and radiotherapy stimulate secretion of EVs by tumor cells with pro-survival
and pro-metastatic capacity [63–70]. Lv et al. showed that paclitaxel, irinotecan, and
carboplatin promote the release of HSP-exosomes from HepG2 hepatocellular carcinoma
cells [53]. Campanella et al. observed a decrease in HSP60 intracellular levels and an
increase in nitrated HSP60 exportation via exosomes in a human lung-derived carcinoma
cell line (H292) after treatment with the histone deacetylase inhibitor, suberoylanilide hy-
droxamic acid (SAHA) [71]. Similarly, evidence shows that radiotherapy also promotes the
release of exosomes containing HSP72 (HSP70 superfamily) from PC-3 and DU-145 prostate
cancer cells [64]. Shao et al. showed that glioblastoma cells treated with temozolomide
(TMZ) secreted more microvesicles with HSP90 as cargo. In a combined TMZ plus an
HSP90 inhibitor (geldanalmycin) treatment, there were more glioblastoma cells undergoing
apoptosis and diminished vesiculation [72]. Kıyga et al. observed increased expression
of HSP70, HSP60, HSP90, and HSP27 (HSPB family) on EVs derived from glioblastoma
cells after treatment and this increased expression was related to therapeutic resistance [73].
Lv et al. showed that chemotherapeutic treatment of hepatocarcinoma cells, HepG2 and
PLC/PRF/5, increases secretion of exosomes expressing HSP60, HSP70, and HSP90 on
their membranes. Interestingly, HepG2 cell-derived exosome secretion and the highest HSP
levels in exosomes were observed in response to chemotherapy, showing that HepG2 cells
exhibit resistance [53].

These findings indicate that increased HSP expression on EVs may confer advan-
tages to cancer cells to resist and survive anticancer therapies. Notably, a comparative
proteomic analysis of EVs derived from breast cancer patients who relapsed or not, showed
a differential expression of HSP70 amongst both groups [74]. Likewise, Rothammer et al.
observed higher HSP70 serum levels in breast cancer patients who exhibited contralateral
recurrence or metastases after radiotherapy treatment [75]. This is of particular interest, as
tumor recurrence results from therapy resistance and suggests the involvement of HSPs in
this phenomenon.

5. Cancer Cell Intrinsic Mechanism Modulated by HSP-EVs That Impact
Therapy Response

In addition to the transfer of HSP cargo from EVs to cancer cells, HSPs present on
the external surface of EVs can interact with surface receptors of target cancer cells and
contribute to resistance phenotype propagation. McCready et al. described that invasive
cancer cells secrete HSP90α-EVs and also identified the pro-migratory protein plasminogen
as a potential client protein of these extracellular chaperones [48]. Tsen et al. revealed
another mechanism by which HSP90α, the inducible cytosolic isoform of HSP90, can
modulate cancer cell migration. In this study, they provided evidence that extracellular
HSP90α binds to the subdomain II of the extracellular part of low-density lipoprotein
receptor-related protein 1 (LRP-1), which signals to Akt kinases, Akt1 and Akt2, to promote
cell motility [76]. Similarly, Ono et al. showed that HSP90-EVs derived from metastatic
oral cancer cells initiate epithelial-mesenchymal transition (EMT) in normal epithelial cells
and promote migration and invasion of tumor cells. Moreover, these EV-driven migra-
tory events were reversed by HSP90 depletion [77]. Tang et al. also demonstrated that
breast-cancer-derived exosomes present HSP90α on their external surface and stimulate
the migration of both normal stromal cells and tumor cells in a paracrine and autocrine
mechanisms [78]. The intercellular transfer of chemoresistance mediated by HSPs-EVs was
shown by Wang et al. [79]. In their study, they demonstrated that the transfer of DNAJB8
(HSP40 family) by EVs derived from oxaliplatin-resistant cells could transfer the resistance
phenotype to recipient colon cancer cells. HSP-EVs can also mediate the communication of
cancer cells with other stromal cells, such as endothelial cells, and promote angiogenesis.
Yukawa et al. investigated the influence of exosomes secreted from hepatocellular carci-
noma cells on angiogenesis and found that HepG2-derived exosomes expressing HSP70 are
incorporated by HUVEC cells and induce lumen formation [80]. Notably, several reports
have suggested a key role of HSP90 in regulating tumor angiogenesis, as multiple arms



Appl. Biosci. 2024, 3 50

of angiogenic signaling have been described as clients of this chaperone [81]. Feng et al.
reported that HSP90 is directly associated with a smaller (165 amino acid) VEGF isoform
found in the outer surface of microvesicles (MVs) isolated from MDAMB231 and SKBR3
breast cancer cells. Interestingly, this association results in a sustained activation of VEGFRs
and a consequent resistance to Bevacizumab. However, HSP90 inhibitors disrupt this
client–protein interaction and the release of VEGF90K from the MVs restores Bevacizumab
sensitivity [82]. HSP-EVs can also promote the activation of fibroblasts in the pre-metastatic
niche (PNM). Sun et al. demonstrated that HSP60 present on the surface of EVs derived
from tumor cells was crucial for EV-induced lung PMN formation. HSP60-EVs in circula-
tion could mediate immunomodulatory effects and immune response. Colon carcinoma
patients present HSP60 expression in macrophages and NK cells; at the same time, HSP-EVs
are present in the blood of the patients. High levels of EVs in circulation are dependent
on tumor presence because, after tumor removal, HSP60-EVSs in circulation decrease [83].
The same scenario is found in other tumor types; in thyroid papillary carcinomas, HSP27-,
HSP60-, and HSP90-EV levels in plasma decreased in number after surgical resection of the
tumor [84]. These data support the idea that HSP60-EVs in circulation may be useful to
follow up in patients’ recurrence after surgical treatments, for instance.

Taken together, all these reports clearly demonstrate that HSP-EVs can contribute
to tumor heterogeneity response to anticancer therapies by inducing EMT, migration,
and angiogenesis. It is interesting to stress that HSP-EVs can also propagate cancer drug
resistance by interacting with and modulating crucial components of the immune response.

6. Immunological Roles of Cancer HSP-EVs That Impact Therapy Response

Many studies have been conducted to reveal the immunological consequences of tu-
moral HSP-EVs. All processes related to the immune system are tissue-context dependent
on which the response is occurring. In the TME and in the presence of HSP-EVs, this idea
is no different. Therefore, HSP-EVs can have an anti-tumor or pro-tumor role (Figure 1).
Chalmin et al. and Diao et al. provided a mechanistic insight linking HSP72 and HSP70
present in tumor-derived exosomes (TDEs) and tumor-induced immunosuppression, re-
spectively. They showed that both HSP70 and HSP72 are present in TDEs and they can bind
to toll-like receptor 2 (TLR2) in myeloid-derived suppressor cells (MDSCs), triggering Stat3
activation and, promoting the suppressor activity of MDSCs [85,86]. Chalmin et al. also
observed that dimethyl amiloride reduced exosome secretion and Stat3 phosphorylation
in MDSCs, resulting in an enhanced cytotoxic effect on T cells under cyclophosphamide
treatment [86]. In line with this, Gobbo et al. evaluated the blockage of HSP70 and TLR2
association by using the peptide aptamer A8, which targets the extracellular domain of
membrane-bound HSP70 on exosomes. They observed that this peptide impaired MDSCs’
activity induced by cisplatin and 5-fluorouracil treatment, and potentiated the anti-tumor
effect of these chemotherapeutic drugs [87]. Additionally, Ono et al. showed that HSP90-
EVs derived from metastatic oral cancer cells are taken up by macrophages, resulting in
M2 polarization [77].

On the contrary, there is also evidence that HSP-EVs can modulate innate immune
responses, which leads to tumor control. Gastpar et al. demonstrated that high-HSP70/Bag-
4 surface-positive exosomes act as natural killer (NK) cell attractants and elicit a strong NK
lytic capacity to HSP70 membrane-positive tumors [46]. Elsner et al. also found that HSP70-
EVs derived from human melanoma cells induce the activation of mouse NK cells and result
in tumor growth and metastasis reduction [88]. Additionally, the encounter of myeloma-
HSP-expressing exosomes and dendritic cells efficiently stimulates their maturation to
promote T helper 1 (Th1) and cytotoxic T lymphocyte (CTL) anti-tumoral responses [89].
Similarly, HSP70-enriched exosomes derived from a tumor heat-treatment promote tumor
regression in murine models mediated by a Th1 immune response [90]. Menay et al.
showed the presence of HSP70 in the lumen and HSP90 on the surface of exosomes isolated
from mice bearing a very aggressive T-cell lymphoma. The immunogenic properties of
these HSP exosomes were found to induce Th1 response in naïve-syngeneic mice, resulting
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in protection against secondary challenges [91]. Sen et al. demonstrated that the exposure
of naïve murine macrophages is activated by HSP70-rich exosomes released from murine
breast carcinoma cell lines post hyperthermia treatment. Moreover, other anti-tumoral
responses were observed, such as increased macrophage migration and release of TNF-
α and RANTES, which triggered a cytotoxic response against breast cancer cells [92].
Vega et al. also showed that exosomes enriched in HSP70 activate macrophages to increase
TNF-α production [93].
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Figure 1. The dual role of EV-HSPs inside the tumor microenvironment. (HSP: heat shock protein;
MDSC: myeloid-derived suppressor cell; NK: natural killer). Created with BioRender.com (accessed
on 10 May 2023).

Hurwitz MD et al. showed that the prostate cancer cell lines PC-3 and DU-145 secrete
HSP72 exosomes after irradiation treatment. These exosomes also promote the increase
in pro-inflammatory cytokines IL-6 and TNF-α and the expression of CD8+ T and NK
cells [64]. HSP-EVs play a pivotal role in stimulating an anti-tumor immune response after
anticancer therapies. Lv et al. showed that hepatocarcinoma HepG2 cells secrete HSP-rich
exosomes in response to paclitaxel, irinotecan, and carboplatin. These secreted EVs elicit an
NK-cell-mediated anti-tumor response after granzyme B production. Exosome treatment in
NK cells decreased the expression of inhibitory receptor CD94 and increased the expression
of activating receptors CD69, NKG2D, and NKp44 [53].

All these reports demonstrate that the same HSP-EVs can sometimes act as a danger
signal, increasing tumor immunogenicity and inducing an active response. On the other
hand, HSP-expressing EVs can induce immunosuppression and compromise anticancer
therapy efficacy. Furthermore, there is growing evidence that HSPs inside or on the
membrane of EVs contribute to tumor progression and resistance to therapy. However,
once the timeline and order of these events are understood, physicians can use them to
manage the patient’s treatment better and improve their follow-ups (Table 2).
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Table 2. EV-HSPs dual role in cancer.

Chaperone
Activity

Pro-Tumor Anti-Tumor

HSP70
Promote cell-survival, protect againist oxidative stress and

others, promote protein folding and degradation, and
promote cell migration and invasion.

Induce tumor cells’ apoptotic death and sensitize
them to chemo- or radiotherapies.

HSP72
Promote angiogenesis, protect cancer cells from oxidative

stress. Supress apoptosis and promote cell invation,
and migration.

Favor arresting of tumor growth, promote
apoptosis, sensitize to chemotherapy.

HSP90 Promote protein folding and stabilization of multiple
proteins, promote cell survival, and suppress apoptosis.

Promote apoptosis, sensitize to chemo-
and radiotherapy.

7. Future Perspectives

Research to date strongly supports that HSPs promote resistance to stress conditions
by protecting cells against cell death [94]. An overview of molecular evidence of HSPs, such
as HSP70, HSP60, HSP27, HSP40 (HSP40 family), and HSP90, on the regulation of apoptosis
and necrosis, has been provided by Takayama et al. and Beere et al. [95,96]. HSPs exhibit
antiapoptotic activity by interacting with key elements that regulate events occurring either
upstream or downstream of caspase activation [94]. HSPs can also inhibit TNF-induced cell
death [97] and favor the activity of survival factors, such as the Akt pathway [98]. The HSP’s
ability to sustain cell survival following stress stimuli by coordinating multiple events
within apoptotic pathways could be propagated by EVs. For example, Cesa et al. identified
that inhibitors of apoptosis proteins (IAPs) are specific client substrates of HSP70 [99].
Considering that overexpression of IAPs has been associated with resistance to chemo-
and radiotherapy [100], it is highly likely that the delivery of HSP70 by EVs could inhibit
the turnover of IAPs in target cells, favoring their accumulation and resulting in tumoral
apoptosis resistance. We speculate that anticancer therapy stress increases the intracellular
expression of HSPs that are secreted by EVs, mainly exosomes, and promotes an anti-
apoptotic cytoprotective phenotype in the target cancer cells, conferring protection against
a second therapy’s stressful stimulus, thereby favoring tumor repopulation (Figure 2). It is
clear that HSPs are present in EVs derived from tumor cells or TME cells. There is evidence
indicating that HSPs are either integrated on the EV’s membrane or in its lumen. However,
the localization of HSPs in EVs is questionable, considering possible technical artifacts, the
undetermined mechanism of HSP incorporation in EVs, and recent evidence of exosome
secretion from other EVs leads to a raised discussion about EVs being uptaken by other
EVs [101].

A major player in therapy resistance and tumor repopulation is the cancer stem cell
(CSC). One of the distinguishing characteristics of CSCs is their high tolerance to oxidative
stress, hypoxia, and nutritional shortage [102], and it has been shown that HSP70 and
HSP90 are involved in the development and maintenance of the CSC phenotype, as well as
the cytoprotective machinery that allows these cells to survive stress conditions [103,104].
These chaperones are constantly secreted by CSCs and have been widely reported as
being involved in cancer-stemness-associated events, such as EMT, angiogenesis, treatment
resistance, tumor immunosuppression, and metastasis [104]. Importantly, CSCs release EVs
that perform a variety of biological roles in tumors, including transferring stem-like features
to non-CSCs and mediating cell–cell communication in the TME [105,106]. The ability of
CSCs to release EVs that carry specific proteins and transcription factors to surrounding
cells has a stronger impact on tumor heterogeneity [107]. Consequently, the investigation
of EVs transporting key molecular chaperones involved in establishing and sustaining the
CSC phenotype may become very attractive. To our knowledge, the only EV chaperones
secreted by CSCs reported to date are exosomal HSP90 and HSP70, which are both found
in prostate cancer. Hypoxia-stressed prostate cancer cells secrete exosomes rich in HSP90
and HSP70 [56], which seem to play a role in the establishment of the CSC phenotype.
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Prostate cancer cell organoids with CSC-like properties secrete abundant amounts of
HSP90 and EPCAM-containing exosomes, as well as exhibiting expression of multiple
stemness markers [58]. Furthermore, extracellular HSP90 (eHSP90) has been linked to
the overexpression of a cohort of stemness-associated markers and the EMT marker Snail
in prostate CSCs. Additionally, eHSP90 has been implicated in boosting self-renewal,
tumoroid formation, and treatment resistance associated with metastatic propensity [108].
Further research looking for HSPs in CSC-EVs and investigating the mechanisms by which
they contribute to the maintenance of CSCs is needed and their modulation may represent
an important weapon in the elimination of these hard-to-treat cells.
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8. Concluding Remarks

The interplay between EV-mediated communication and HSP cargo has profound
implications for tumor biology and therapeutic strategies. Thus, interfering in HSP-EVs
has emerged as a new potential target therapy. However, interfering in HSP signaling is
challenging due to the overlap among HSP family members, and because they can vary
widely depending on the disease context. While evidence suggests that targeting EV-HSPs
may be a promising strategy for cancer therapy, it is unlikely that analyzing HSPs inside
EVs alone would be a reliable method for predicting bad or good therapy responses for
different types of cancer. It is crucial to consider other primordial factors that can influence
therapy response, such as tumor stage, mutation status, history of disease, age of patient,
and overall health status. Although HSP inhibitors could eventually lead to improved
cancer treatment outcomes for some patients, to anticipate drug resistance it is crucial to
better understand the crosstalk between HSP networks and other molecular factors in the
TME to influence treatment response.
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