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Abstract: The purpose of this literature review is to provide a fundamental synopsis of current
research pertaining to artificial intelligence (AI) within the domain of clinical practice. Artificial
intelligence has revolutionized the field of medicine and healthcare by providing innovative solutions
to complex problems. One of the most important benefits of Al in clinical practice is its ability to
investigate extensive volumes of data with efficiency and precision. This has led to the development
of various applications that have improved patient outcomes and reduced the workload of healthcare
professionals. Al can support doctors in making more accurate diagnoses and developing person-
alized treatment plans. Successful examples of Al applications are outlined for a series of medical
specialties like cardiology, surgery, gastroenterology, pneumology, nephrology, urology, dermatology,
orthopedics, neurology, gynecology, ophthalmology, pediatrics, hematology, and critically ill patients,
as well as diagnostic methods. Special reference is made to legal and ethical considerations like
accuracy, informed consent, privacy issues, data security, regulatory framework, product liability,
explainability, and transparency. Finally, this review closes by critically appraising Al use in clinical
practice and its future perspectives. However, it is also important to approach its development and
implementation cautiously to ensure ethical considerations are met.

Keywords: artificial intelligence; clinical practice; machine learning; neural networks; clinical decision;
personalized medicine

1. Introduction

Artificial intelligence (Al) refers to the emulation of human intelligence in machines
designed to exhibit cognitive abilities and acquire knowledge akin to human beings [1,2].
The ancient Greeks attributed a distinctiveness to human beings by virtue of their posses-
sion of faculties of reasoning. The notion of the soul was introduced by various religious
scholars, who posited it as an enduring and intrinsic essence bestowed upon humanity
by a divine creator [3]. According to Plato, it is conceivable for an individual to possess
intelligence while simultaneously lacking substantial knowledge about the external world
or, more significantly, one’s self. Aristotle, the student of Plato, pioneered the formulation
of a distinct set of principles that govern the logical aspect of human cognition. In 1936,
Alan Turing authored a scholarly article wherein he elucidated the concept of “Entschei-
dungsproblem” and put forth the notion of “effective calculability” as a means to address
this quandary. The authors established the groundwork for computational models known
as algorithms [4]. The initial development of an artificial neural network (ANN) composed
of electrical circuits occurred in 1943, with the aim of simulating the interactions between
neurons in the brain [5]. The inception of Al took place in 1956 at Dartmouth College.
After a span of three years, the initial computer research using an ANN was successfully
conducted, utilizing models referred to as “Adaline” and “Madaline” [6]. Computer-aided
diagnosis was initially implemented in the examination of pulmonary nodules identified
in chest radiographs in 1963 [7]. Researchers made a significant observation regarding Al’s
applicability in the bioscience field approximately fifteen years after its inception. This
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observation was particularly evident in the Dendral experiments [8]. Nevertheless, the
utilization of Alin the field of medicine was constrained by technological limitations until
1998, when the United States Food and Drug Administration (FDA) granted approval
for the first mammography computer-aided detection (CAD) system [9]. A schematic
representation of some important milestones in the evolution of Al is depicted in Figure 1.
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Figure 1. The progression of concepts in artificial intelligence and significant milestones.

Today, as stated by the expert group on Al within the European Commission’s digital
strategy, Al systems refer to software and potentially hardware systems. These systems are
designed to operate in either physical or digital conditions, with the ability to perceive their
surroundings through data acquisition. In recent years, there has been significant progress
in Al, leading to its widespread adoption across various industries such as healthcare,
finance, transportation, drug discovery, and quite recently in pharmacokinetics [10-22].
Over the past few years, notable progress has been made in the field of Al, character-
ized by the emergence of algorithms and computer programs that exhibit human-like
cognitive abilities.

One area where Al has shown great promise is in clinical practice [23]. The incorpora-
tion of Al into clinical settings introduces a range of advantages and challenges, accompa-
nied by notable implications for ethical and legal considerations [1]. Al holds the potential
to enhance diagnostic precision, streamline administrative tasks, and personalize treatment
plans. Through the analysis of extensive medical data, Al systems can discern patterns
and correlations that may elude human observation, leading to more accurate and timely
interventions [1,2]. Moreover, Al has the capacity to contribute to cost-effective healthcare
solutions, ultimately improving overall patient outcomes. The integration of Al technology
facilitates informed clinical decision-making processes, thereby promising advancements
such as quicker and more accurate diagnoses, personalized treatment plans, and reduced
healthcare costs. While the potential benefits of Al in clinical practice are substantial,
ethical and legal complexities emerge. The utilization of Al in clinical decision-making
raises concerns about transparency, accountability, and the potential bias within algorithms.
Safeguarding patient privacy and ensuring data security becomes crucial, necessitating
robust ethical guidelines and legal frameworks. Achieving a delicate equilibrium between
fostering innovation and protecting patient rights requires thoughtful consideration of the
ethical implications of Al in clinical practice, coupled with the development of adaptable le-
gal frameworks capable of keeping pace with technological advancements in the healthcare
sector. Addressing Al integration’s ethical and legal challenges in clinical practice mandates
a comprehensive approach encompassing legal frameworks and regulations, transparent
and explainable Al, ethical guidelines and standards, regular audits and assessments,
incentives for ethical practices, and international collaboration.

This literature review aims to provide a fundamental synopsis of current research
on Al within the domain of clinical practice. Apart from the widespread role of Al in
diagnostic methods, the applications of Al in several medical specialties like cardiology,
anesthesiology, surgery, pneumology, neurology, urology, gynecology, hematology, and
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pediatrics are also discussed. It should be emphasized that the purpose of this review is
not solely to provide a synopsis of a specific field (e.g., specialty) but rather to attempt to
offer an overview of the current applications of Al in medicine.

2. Materials and Methods

The scope of this investigation was confined to articles written in English and subjected
to peer review that fulfilled at least one of the following prerequisites: (a) being published
within the timeframe of the last ten years and (b) being seminal papers in the field of Al
that built what we know today as artificial intelligence.

A literature search was conducted utilizing the PubMed and Scopus databases from
14 July 2023 to 31 August 2023. Additionally, textbooks on Al were consulted. Two sets
of keywords were utilized to recognize terms within the title, abstract, and keywords of
the articles.

a.  The initial set of keywords encompassed terms associated with artificial intelligence,
such as “artificial intelligence”, “machine learning”, and “deep learning”. Never-
theless, it is highly probable that research using these methodologies will incorpo-
rate terms such as “artificial intelligence” or “machine learning” in their abstracts
or keywords;

b.  The subsequent set of keywords encompassed concepts associated with the appli-
cation in clinical practice and the legal status. In this case, composite searches were
performed using the terms “Artificial intelligence” AND the medical specialty: “car-
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diology”, “surgery”, “anesthesiology”, “gastroenterology and hepatology”, “pneu-
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monology”, “nephrology”, “urology”, “dermatology”, “orthopedics”, “neurology”,

“gynecology, “ophthalmology”, “pediatrics”, “hematology”, “intensive care unit”,
“diagnostic methods”, “legal status”, “liability”, “regulatory framework”.

Following the elimination of duplicate entries, a thorough assessment of the titles
and abstracts of the identified articles was made in order to ascertain their suitability
for inclusion:

The selection criteria for the evaluation of studies were systematically applied. After
eliminating duplicate articles, the author assessed each study based on the following
criteria: (i) journal, (ii) authorship, (iii) publication date, (iv) study design, (v) methods
of analysis, (vi) results, and (vii) conclusions. The eligibility criteria encompassed articles
written in English pertinent to the review objectives. An initial screening of abstracts was
conducted, excluding studies that did not align with the eligibility criteria. To enhance data
quality, all studies meeting the inclusion criteria underwent a comprehensive evaluation,
focusing on aspects such as rationale, method design, results, discussion, and conclusions.
Studies exhibiting any bias in methodology, results, or data interpretation that could impact
the overall outcome were subsequently excluded.

The exclusion criteria encompassed the following: (a) studies that exclusively fo-
cused on the advancement and verification of clinical Al algorithms without any tangible
implementation and (b) Al applications that predominantly provided automation function-
alities, such as the automated delivery and monitoring of insulin, as opposed to offering
decision support.

3. Results
3.1. General

Artificial intelligence has revolutionized the field of medicine and healthcare by pro-
viding innovative solutions to complex problems [1,5]. There are various types of Al,
including deep learning (DL), machine learning (ML), and natural language (Figure 2).
DL is a subset of artificial intelligence that focuses on training neural networks to learn
and make decisions in a manner similar to the human brain (Figure 3). DL algorithms
are designed to learn and improve from experience automatically, without the need for
explicit programming [24-26]. This ability to analyze large amounts of data and extract
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meaningful patterns has made DL a powerful tool in fields such as image recognition and
autonomous driving.

Artificial intelligence

Deep learning

Figure 2. The interconnectedness among artificial intelligence, machine learning, and deep learning.
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Figure 3. Schematic representation of an artificial neural network.
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Machine learning primarily focuses on advancing algorithms and models that em-
power computers to acquire knowledge and generate predictions or decisions autonomously
without the need for explicit programming [2]. ML can be broadly classified into several
categories, such as supervised, unsupervised, and reinforcement learning (refer to Table 1).
In supervised learning, an algorithm learns from labeled data to make predictions or deci-
sions [2]. This approach trains the algorithm on a dataset comprising input variables and
their corresponding output variables. The goal is to enable the algorithm to understand the
relationship between the input and output variables, thereby facilitating precise predictions
for novel and unobserved data instances. Various supervised learning algorithms are
commonly used, including linear regression, logistic regression, support vector machines,
and decision trees.

Table 1. A common classification of machine learning algorithms.

Supervised Unsupervised Reinforcement
Linear regression Principal component analysis Q-learning
Logistic regression K-means clustering SARSA
Linear discriminant analysis KNN (k-nearest neighbors) Policy iteration
Decision trees Hierarchal clustering Monte Carlo tree search
Naive Bayes Anomaly detection Bellman equations

Support vector machines Neural networks Markov decision process
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Unsupervised learning represents a distinct subfield within machine learning, where
the algorithm functions without the presence of labeled data [2,24,27,28]. Instead, its
purpose is to autonomously identify patterns, structures, or relationships within the data.
This learning type proves highly advantageous when a definitive target variable is absent
or when the goal is to extract valuable insights from the data without predetermined
predictions. Unsupervised learning algorithms include various methods, such as clustering
algorithms like k-means and hierarchical clustering, as well as dimensionality reduction
techniques like PCA and factor analysis.

The primary objective of reinforcement learning is to train autonomous agents to
effectively make a series of decisions within a given environment, aiming to optimize the
total cumulative reward obtained [29]. Unlike supervised learning, where the agent is
provided with labeled data, or unsupervised learning, where the agent learns patterns
and structures from unlabeled data, reinforcement learning operates on the principle of
trial and error. Examples of reinforcement learning approaches include the value-based
methods (e.g., Q-learning and SARSA), the policy-based methods (e.g., policy gradient and
reinforce), and model-based methods (e.g., Monte Carlo tree search).

Natural language processing (NLP) is a field of study that centers on examining and
understanding the interplay between computer systems and human language [2]. The
field of study pertains to the advancement of algorithms and methodologies that facilitate
machines in comprehending, interpreting, and producing human language in a manner
that possesses significance and utility. NLP has become increasingly important in our
digital age, as it allows computers to process and analyze vast amounts of text data, such as
emails, social media posts, and news articles, to extract valuable insights and information.

One of the primary advantages of Al in clinical practice is its ability to rapidly and
accurately analyze extensive volumes of data. This capability has given rise to a variety of
applications that have not only improved patient outcomes but also lessened the workload
on healthcare professionals [30]. In this section, we will explore some of the most promis-
ing applications of Alin clinical practice. The evolution of Al has undergone significant
changes over the last few decades. The advent of machine learning (ML) and deep learning
(DL) has expanded applications in the field of artificial intelligence in medicine, paving the
way for personalized medicine rather than relying solely on algorithmic approaches. The
use of predictive models holds promise for applications in disease diagnosis, forecasting
therapeutic response, and potentially advancing the field of preventive medicine in the
coming years. Al has the potential to enhance diagnostic precision, optimize the workflow
of healthcare providers and clinical operations, facilitate more effective monitoring of dis-
eases and therapies, improve the precision of medical procedures, and ultimately enhance
patient outcomes.

3.2. Cardiology

The application of sophisticated computational algorithms and machine learning
techniques in the field of cardiology is commonly referred to as AL This approach aims to
analyze and interpret cardiac data in a more advanced and efficient manner. It involves the
development of intelligent systems that can learn from data, make predictions, and offer
valuable insights to assist in diagnosing, treating, and managing cardiovascular diseases.

At present, two distinct positions for Al exist in the domain of cardiovascular imag-
ing [31]. Automation refers to the process of replacing human involvement in various tasks,
including but not limited to image segmentation and the assessment of structural and
functional parameters. Another significant aspect is the identification of insights that hold
clinical significance. The majority of documented applications were primarily centered
around the implementation of task automation. Furthermore, there have been reports on
developing algorithms capable of acquiring cardiac measurements.

AT has significantly impacted various facets of cardiovascular imaging, covering the
entire spectrum from initial data acquisition to the final reporting phase [32,33]. Examples
of this impact include the use of Al in advancing computed tomography and magnetic
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resonance imaging techniques for measuring lumen diameter, recognizing coronary calcium
score, and identifying obstructive coronary disease. Furthermore, Al has been instrumental
in automating processes such as acquisition, segmentation, and report generation [34,35].
In contrast to the methodologies mentioned earlier, a notable concern arises regarding the
substantial observer variability observed in the interpretation of echocardiograms. Al holds
the potential to address this issue by mitigating inter-observer variability and enhancing
diagnostic precision within the field of echocardiography.

In recent years, numerous studies have been conducted to investigate cardiomyopathy
screening, with a particular focus on the utilization of Al in conjunction with electrocar-
diography (ECG) for enhanced diagnostic capabilities [36,37]. The feasibility of the joint
use of AI/ECG screening for amyloidosis, cardiomyopathy, and dilated cardiomyopathy
remains intact, even in cases of mild left ventricular dysfunction [38,39]. The application
of AI/ECG in regular clinical practice has increased the identification of left ventricular
systolic dysfunction. In imaging, Al is utilized to automatically evaluate the thickness
and properties of the myocardium to distinguish between different types of cardiomy-
opathies [39,40]. However, there is currently a lack of research investigating the prognostic
potential of this Al technology. Al is also being utilized in cardiomyopathy genomics,
particularly for predicting the pathogenicity of genetic variants and determining their
clinical relevance [41-43].

3.3. Surgery

The application of AI and ML models holds significant potential in the field of surgery.
These models demonstrate promising applications in both the preoperative phase, accu-
rately diagnosing pancreatic conditions, and the postoperative phase, evaluating prognosis
and predicting complications [44—46]. Al has also proven beneficial in assisting bariatric
surgeries. The increasing integration of Al technologies in various healthcare subspecialties
has led to promising developments in their application within bariatric surgery [47,48].
The management of patients who are candidates for bariatric surgery is a complex subject.
The evaluation process requires the involvement of a multidisciplinary team comprising
professionals from various fields, including internists, psychiatrists, general surgeons, and
anesthesiologists. Physicians across various medical specialties engage in the compre-
hensive assessment of patients before, during, and after surgical procedures, a task that
presents considerable difficulties due to the intricate nature of individuals afflicted with
obesity [49].

Numerous potential applications of Al exist during the intraoperative period. It
has the potential to be utilized in the management of pharmacotherapy, hemodynamic
optimization, neuromuscular block monitoring, and anesthesia depth assessment [50].
One of the most notable reports pertains to predicting the early distribution kinetics of
propofol. Indeed, the volume of drug distribution in individuals with obesity is subject
to modification. Specifically, there is an increase in blood volume and cardiac output,
alongside alterations in plasma transport proteins. A study utilized Al to handle the
induction phase’s kinetics effectively [51]. This was achieved through the utilization of
a comprehensive pharmacokinetic dataset with high resolution. A comparative analysis
was undertaken to evaluate the performance of a traditional four-compartment model,
a recirculatory model, and a gated recurrent unit neural network. The study concluded
that both a recirculatory model and a gated recurrent unit ANN demonstrated similar
performance, surpassing a compartmental model in accurately representing high-resolution
pharmacokinetic data of propofol [51].

In the same context, plastic surgeons frequently encounter clinical scenarios that
lack definitive solutions. Achieving an ideal treatment approach necessitates utilizing
a comprehensive decision model that effectively incorporates various influential factors,
including clinical and demographic data. Before the advent of Al, the decision tree analysis
technique was commonly used for constructing such models. The localization of significant
anatomical landmarks in medical imaging plays a crucial role in preoperative planning
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and postoperative outcome evaluation [52]. Nevertheless, the current identification pro-
cess is carried out either manually or by running the inserted auxiliaries, resulting in a
time-consuming and imprecise procedure. In order to enhance the precision of landmark
localization on the distal femur surface, scientists devised an algorithm that initially trans-
formed three-dimensional images into three distinct sets of two-dimensional images [52].
Subsequently, the algorithm acquired the ability to recognize landmarks within these
images and subsequently integrated these outcomes to accurately determine the spatial
coordinates of the identified landmarks in three dimensions.

3.4. Anesthesiology

The application of Al has yielded remarkable outcomes in anesthesia and operating room
management [53,54]. Throughout each phase of the perioperative process—specifically
the preoperative [55-57], intraoperative [16-20], and postoperative phases [42,44]—distinct
tasks can be executed using diverse techniques. The effectiveness of a neural network
designed to identify esophageal intubation becomes unnecessary in the presence of con-
tinuous capnography [58,59]. In this case, a reliable clinical examination has revealed a
previously concealed and highly detrimental complication. The use of video laryngoscopy
requires the adjustment of an ML model designed to predict challenging intubation based
on patient appearance. The expansion of airway management technology has resulted in
an increased spectrum of acceptable outcomes in terms of laryngeal visualization.

Since the 1950s, the concept of an algorithm autonomously regulating the depth of
anesthesia using EEG recordings has been a subject of ongoing research. Anesthesiologists
have explored this possibility for a considerable period, but it continues to be an active area
of investigation.

3.5. Gastroenterology and Hepatology

The field of gastroenterology and hepatology is witnessing significant growth in the
potential implementation of Al and ML techniques. In recent years, there has been a
burgeoning body of research focusing on examining Al applications in various medical
contexts, particularly involving the utilization of computer-aided diagnosis (CAD). These
applications encompass the use of CAD in diagnosing premalignant and malignant gas-
trointestinal lesions, predicting treatment response in patients with inflammatory bowel
disease, conducting histopathological analysis of biopsy specimens, assessing the sever-
ity of liver fibrosis in individuals with chronic liver disease, developing models for liver
transplant allocation, and exploring other related areas [60].

The domain of esophageal cancer prevention and early detection shows significant
potential for advancements through the utilization of Al. Substantial research advancements
have been made in this field, with a notable portion of esophageal cancer research in the
United States dedicated to investigating technologies, including those involving Al, aimed
at enhancing the early detection and treatment of Barrett’s esophagus and esophageal
adenocarcinoma [61,62].

Al possesses the capacity to assume a significant role in the decision-making pro-
cess for the treatment of inflammatory bowel disease by accurately predicting treatment
response at an earlier stage and providing guidance for personalized therapy selection.
Within the field of inflammatory bowel disease, researchers have made advancements
in the development of AI/ML computer vision tools. These tools have been specifically
designed to assess the severity of diseases through endoscopic examination. The main
goals of their study involve the differentiation of colitis from neoplasia and the distinction
between sporadic adenomas and non-neoplastic lesions. Al algorithms have undergone
training to forecast the response to treatment and assess the likelihood of disease recur-
rence [63,64]. There are numerous potential applications for Al and ML in the domain of
hepatology. The objectives above encompass the assessment of hepatic fibrosis progression,
the identification of non-alcoholic fatty liver disease, the recognition of individuals at risk
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for hepatocellular carcinoma development, and the enhancement of protocols for organ
transplantation [65,66].

The prevention and control of colorectal cancer represent significant public health
endeavors undertaken by gastroenterologists. The progress made in the field of ML has
resulted in the utilization of computer vision techniques to assist in the detection of polyps
during colonoscopy procedures. Empirical evidence has demonstrated the efficacy of CAD
systems in enhancing the adenoma detection rate [67-70].

3.6. Pneumonology

Al, specifically the utilization of DL and ML algorithms for pattern recognition, holds
significant promise for various applications within the field of pulmonary medicine. These
applications encompass image analysis, decision-making processes, and the prediction
of prognoses [5-7]. Lung cancer is a prevalent malignant neoplasm characterized by
significant clinical morbidity and mortality rates [71]. Lung nodules are the prevailing
imaging manifestations observed during the initial phase of lung cancer, posing challenges
to manual film interpretation. Al recognition technology can conduct multi-parameter
cluster analysis and streamline image processing, thereby assisting medical professionals
in the early detection of lung cancer [72]. In recent years, reports have indicated that Al
systems have demonstrated the capability to identify malignant pulmonary nodules by
analyzing chest computed tomography (CT) images [73]. The model has been developed
using DL technology, and Al is utilized for the analysis of CT films in order to support
medical professionals in enhancing the accuracy of lung cancer screening. Another study
constructed a predictive model by applying logistic regression analysis, integrating specific
tumor markers into the model [74]. The study’s results demonstrated that the developed
predictive model showed significantly better performance when compared to the basic
combined detection strategy involving tumor markers.

Research has demonstrated that Al can potentially enhance surgical risk prediction,
thereby facilitating the selection of the most optimal surgical approach [75,76]. An example
of a cognitive computing system, IBM Watson for Oncology, utilizes Al techniques for
data analysis and image conversion. Its primary objective is to assist medical professionals
in efficiently identifying crucial information within patients” medical records, presenting
pertinent evidence, and facilitating the exploration of potential treatment options [77]. The
application of deep neural networks in the identification of respiratory illnesses, specifically
in chest radiographs and CT scans, has resulted in a noteworthy enhancement in diagnostic
precision compared to subjective characteristics like tumor speculation, as well as objective
characteristics such as shape and texture acquired through image analysis software [78].

3.7. Nephrology

The concept of progressive immunoglobulin refers to the gradual development and
maturation of immunoglobulins and IgA nephropathy (IgAN) is an acknowledged etiology
of renal failure. However, the ability of the nephrologist to anticipate the occurrence of
kidney failure among patients at the time of diagnosis is challenging. Nevertheless, the
capacity to discern these individuals would prove advantageous in terms of prognosti-
cation and treatment purposes. It has been postulated the existence of a function that
establishes a relationship between clinical and biological parameters, such as age, sex,
blood pressure, proteinuria, serum creatinine level, and anti-hypertensive treatments, at
the time of IgAN diagnosis and the likelihood of developing progressive IgAN [79]. The
researchers devised and executed the development of an ANN with the purpose of approx-
imating the aforementioned function. The findings indicated that the ANN demonstrated
superior accuracy in predicting the onset of progressive IgAN compared to experienced
nephrologists [79]. Specifically, the ANN achieved correct predictions in 87% of cases,
whereas the nephrologists achieved a lower accuracy rate of 69.4%. Furthermore, the ANN
exhibited a higher sensitivity of 86.4% compared to the nephrologists” sensitivity of 72%,
indicating its ability to correctly identify true positive cases. Similarly, the ANN displayed
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a higher specificity of 87.5% compared to the nephrologists’ specificity of 66%, indicating
its capacity to accurately identify true negative cases. These approaches can potentially
be used in a wide range of progressive diseases, thereby aiding clinicians in the process of
patient staging and management.

Al models have been applied for various purposes, including predicting the rate of
decline in glomerular filtration rate in individuals with autosomal dominant polycystic
kidney disease, enhancing anemia management in hemodialysis patients, estimating an
appropriate duration for dialysis to achieve the desired level of urea removal, determining
the optimal dry weight in patients undergoing hemodialysis, and identifying specific
pathogens responsible for bacterial infections in patients with Parkinson’s disease [80-83].

3.8. Urology

Al is predominantly used in the field of urology, particularly in the domain of gen-
itourinary malignancies. In a study, Al was utilized to predict the outcomes of prostate
biopsies, with a specific focus on prostate cancer. ML algorithms were applied to analyze
recurrence-free probability and diagnostic evaluation for bladder cancer. There have been
anecdotal reports concerning the staging and prediction of disease recurrence in cases of
kidney and testis cancer. Recently, Al has found application in non-oncological diseases,
specifically in areas such as stones and functional urology.

In recent decades, numerous scholarly investigations have examined the utilization
of Al in the management of prostate cancer. These studies align with the contemporary
paradigm of precision medicine and surgery [84]. Prostate cancer diagnosis encompasses a
broad range of applications, which have experienced numerous advancements in recent
years [85]. A seminal study was conducted in 1994 to determine the potential utility of
ANN in predicting biopsy outcomes in males displaying abnormal prostate-specific antigen
levels. Additionally, the study aimed to assess the effectiveness of ANN in predicting
treatment outcomes following radical prostatectomy [85,86]. A study demonstrated the
predictive accuracy of two distinct Al systems [87]. These systems were specifically de-
signed using Vienna-based multicenter European referral database data. These Al systems
aim to facilitate the early detection of prostate cancer in males. Another study found that a
DL survival model exhibited the ability to predict the timeframe for urinary continence
recovery after Robot-Assisted Radical Prostatectomy [88]. This prediction was achieved
by incorporating Anatomical Pathology Markers (APMs) and patient-related factors. Fur-
thermore, this particular model has successfully identified APMs of top surgeons that
can effectively classify surgeons, surpassing the predictive ability of surgeon experience
alone. The APMs were able to differentiate surgeons based on the quality of urinary conti-
nence recovery observed in their patients, distinguishing between those with superior and
inferior outcomes.

In a seminal study twenty years ago, the authors conducted a comparative analysis
of Al and Cox regression models to predict disease recurrence following surgery [89].
The results of the study demonstrated that Cox regression models exhibited superior
performance in this regard. In conjunction with the increasing range of surgical indications
for metastatic kidney cancer, a study was conducted to assess the predictive capacity of Al
in determining the prognosis of patients with metastatic renal cell carcinoma who initiate
systemic therapy [90]. The researchers provided their Al system with a dataset consisting
of information from 175 patients who had undergone nephrectomy of the primary tumor
prior to receiving systemic therapy. The objective of this study was to forecast the overall
survival rate three years after initiating the initial treatment, utilizing parameters that are
accessible at the commencement of first-line therapy. Al has demonstrated the potential to
achieve a prediction accuracy of 95% in forecasting overall survival rates. This performance
surpasses regression models, indicating the potential future application of Al as a risk
stratification tool.

A urinary tract infection is a common bacterial infection that affects the urinary system,
including the bladder and urethra. A notable study focused on urinary tract infections
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where an Al system was developed to assist in the diagnosis of such infections [91]. The
study involved individuals diagnosed with either cystitis or nonspecific urethritis. Subjects
underwent various procedures, including a medical history assessment, physical examina-
tion, analysis of urine samples, and the use of ultrasonography. The findings demonstrated
the efficacy of Al in diagnosing urinary tract infections based solely on erythrocyte values
in conjunction with symptoms such as suprapubic pain, pollakiuria, and urinalysis results.
The Al model exhibited a remarkably high accuracy rate of 98.3%, suggesting it could serve
as a cost-effective alternative to expensive laboratory and ultrasound tests.

Functional urology refers to the branch of urology that focuses on studying and
managing the urinary tract. The exploration of Al potential applications has also extended
to the domain of functional urology. A study compared an Al model and multiple linear
regression in terms of their effectiveness in replacing preoperative urodynamic evaluation
in women diagnosed with pelvic organ prolapse [92]. A total of 804 women diagnosed
with pelvic organ prolapse were subjected to examination, revealing that both multivariate
logistic regression and Al were determined to be less effective than urodynamic studies
in evaluating urinary dysfunction. A kidney transplant is a surgical procedure in which
a healthy kidney from a donor is transplanted into a recipient. Over the past few years,
there has been a growing interest in utilizing Al predictive tools in kidney transplantation.
Similarly, the potential application of Al in identifying risk factors and co-variates that
contribute to the failure of renal transplantation has been explored [93]. The AI approach
was compared with the traditional logistic regression model. The AI method demonstrated
superior accuracy compared to logistic regression, as evidenced by data analysis from
378 patients.

3.9. Dermatology

Identifying skin diseases primarily relies on the apparent attributes exhibited by the
lesions. However, dermatology encompasses a vast collection of over 2000 distinct types of
dermatological diseases. Certain skin lesions associated with various diseases may exhibit
similarities, posing challenges in accurate diagnosis and treatment [94,95]. Notably, there is
a significant shortage of dermatologists, particularly in developing countries and remote
regions, where increased medical resources, professional consultations, and clinical support
are urgently needed [96,97].

The convergence of rapid iteration in big data, advancements in image recognition
technology, and the global proliferation of smartphones present transformative potential
for diagnosing and treating skin diseases [98,99]. Al, in particular, has the capacity to offer
prompt diagnoses, facilitating a wider range of treatment options and enhancing acces-
sibility, especially for marginalized regions and individuals with limited resources [100].
The integration of Al technology and algorithms has the potential to establish itself rapidly
as a standard approach in the field of diagnosis and evaluation. The examination of the
structure and form of a skin abnormality is a fundamental aspect of dermatological diagno-
sis. Advancements in Al have led to significant improvements in facial recognition and
aesthetic analysis, rendering them more dependable [101].

The inception of Al in the field of dermatopathology can be traced back to 1987 when
a text-based system known as TEGUMENT was utilized on a personal computer. The
system was specifically developed with the purpose of classifying 986 histopathological
diagnoses based on light microscopic images. It demonstrated a diagnostic accuracy of
91.8% compared to the assessments made by a qualified dermatopathologist [102]. During
that particular time frame, the absence of necessary equipment and technologies for whole
slide imaging led to the belief that the notion of human-independent image analysis was
not viable. In recent years, the accurate classification of routine diagnoses by machine-based
systems has become a tangible reality [103].

In a research study, 11 DL algorithms were developed to identify and classify whole
slide images of dermal nevus, seborrheic keratoses, and nodular basal cell carcinoma [104].
The visual representations underwent a process of pixelation, resulting in the disintegra-
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tion of the images, which were subsequently subjected to data analysis. A DL algorithm
was developed for pathology that incorporates whole slide imaging. The algorithm effec-
tively categorizes these images into four distinct diagnostic groups: basaloid, squamoid,
melanocytic, and other. The implemented system utilizes a series of three consecutive
convolutional neural networks to determine the diagnosis with the highest probability.
Distinguishing between malignant and benign lesions holds the highest importance
for dermatopathologists due to the consequential divergence in therapeutic decisions. In
this context, a study used a sample of 695 melanocytic neoplasms to distinguish between
melanoma and nevus by means of classification [105]. The study included a comprehensive
representation of all stages of melanoma, as well as various types of nevi. In the present
investigation, it was observed that the convolutional neural network exhibited a statistically
significant superiority over the pathologists in terms of accurately diagnosing nevi and
melanoma through histopathological analysis. The observed discordance rate of 25-26%
among dermatopathologists was found to be comparable to the aforementioned similarity.
In another research study, the objective was to assess the precision of a DL algorithm
in diagnosing three dermatopathological conditions through the utilization of whole-slide
imaging [106]. The study’s findings indicated that the Al system demonstrated high accu-
racy, correctly classifying several types of carcinomas. In contrast to the straightforward
binary classification involved in diagnosing melanoma and distinguishing it from pig-
mented nevi, the diagnosis of non-melanoma skin cancers presents a more challenging task.
This challenge stems from the intricate categorization of these conditions and the inclusion
of various benign and malignant diseases, along with inflammatory dermatoses, within the
differential diagnoses. A study was conducted to assess the effectiveness of convolutional
neural networks in precisely detecting and diagnosing non-pigmented lesions [107]. The
findings were compared with the diagnoses rendered by a cohort of 95 clinicians, which
included 62 dermatologists with appropriate qualifications. Convolutional neural networks
did not exhibit superior accuracy in diagnosing medical conditions compared to human
experts. However, they demonstrated greater accuracy in diagnosing prevalent skin can-
cers. Conversely, convolutional neural networks exhibited lower accuracy than clinicians
in diagnosing uncommon non-pigmented malignancies, specifically amelanotic melanoma.

3.10. Orthopedics

Supervised ML can be applied to classify individuals into pain phenotypes based on
brain MRI, considering the high prevalence of long-standing pain in the UK, estimated to
be between 30% and 50% [108]. The absence of tissue pathology that corresponds to pain,
as well as the dependence on self-reported measures for subgroup classification, pose a
significant challenge in identifying the neural correlates of pain and provide a comprehen-
sive overview of ML applications used in the context of chronic pain, which encompasses
pain conditions beyond musculoskeletal disorders [109]. The authors specifically high-
light using ML techniques to classify individuals into distinct pain phenotypes based on
predictive models.

Another study established a correlation between frontal plane knee biomechanics
and the ability to predict the risk of knee injuries [110]. In this study, inertial sensor data
were used to categorize the performance of single-leg squats based on the extent of knee
valgus [111]. The study sample consisted of 14 participants, and a total of 140 images were
analyzed. Additionally, the researchers sought the opinions of three expert raters regarding
the potential risk associated with the observed performances. Supervised learning was
applied to perform classification among three distinct classes, namely “poor”, “moderate”,
and “good”. The study’s findings indicate that the accuracy levels were observed to be
significantly high when performing a 2-class classification task. However, when the com-
plexity of the classification task was increased to a 3-class classification, the accuracy levels
experienced a notable reduction of approximately 30%. There is a scarcity of instances
where unsupervised learning techniques have been utilized within the domain of muscu-
loskeletal research. According to a study, the chronic pain challenge assesses the likelihood
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of chronic pain based on assigned weights for various health behaviors [112]. The study
included both supervised and unsupervised methods to demonstrate the precise prediction
of pain levels, as measured by the visual analog scale and the Oswestry Disability Index.
These predictions are made based on the corresponding scores for depression, nutrition,
and physical activity. Nevertheless, although this emphasizes the potential of ML to cate-
gorize the risk of chronicity using patient-reported data, the effectiveness of unsupervised
learning by itself has not been confirmed.

3.11. Neurology

Neuroimaging plays a pivotal role in clinical practice and scientific inquiry, facilitating
the examination of the brain in various states of well-being and pathology. Similar to several
other domains, neuroimaging is enhanced by the utilization of sophisticated analysis
methodologies in order to harness imaging data effectively to investigate the brain and
its functionality. In recent times, ML has made significant contributions. Additionally, it
has played a crucial role in the prompt identification of acute conditions like stroke and
in monitoring imaging changes over time. As our capacity to visualize and examine the
brain progresses, so does our comprehension of its complex interconnections and their
significance in making therapeutic decisions.

Despite being in the early stages of development, Al’s utilization in neuro-oncology
exhibits considerable potential. It is highly probable that Al algorithms will enhance
our comprehension of brain tumors and play a pivotal role in fostering advancements
in the field of neuro-oncology. The field of neuro-oncology has experienced a growing
emphasis on the integration of molecular markers for the purpose of guiding therapeutic
interventions [113]. Al algorithms have demonstrated notable efficacy in the noninvasive
identification of significant molecular markers from diagnostic imaging, exhibiting remark-
able accuracy. In various institutional datasets, Al algorithms have successfully determined
the mutational status of several markers [114,115]. Moreover, it has been demonstrated that
algorithms based on Al can effectively identify investigational molecular markers, even in
smaller cohorts of patients [116].

The utilization of Al for the analysis of diagnostic imaging has proven to be beneficial
in the clinical management of brain tumors. The utilization of Al to automate labor-
intensive tasks holds great potential in the field of neuro-oncology. Multiple studies have
demonstrated the efficacy of DL techniques in identifying brain metastases measuring in the
millimeter range through MRI imaging. Furthermore, it has been observed that comparable
DL models have demonstrated significant efficacy in the automated segmentation of tumors,
thereby enhancing the efficiency of radiation therapy treatment planning [117-119]. Al
has demonstrated potential in accurately differentiating various central nervous system
malignancies without the need for invasive procedures, achieving comparable results to
those of expert neuroradiologists [120,121]. The extensive application of these Al algorithms
could prove to be highly beneficial in resource-constrained environments that lack access
to specialized neuroradiologists.

3.12. Gynecology

Despite encountering various obstacles, the integration of Al in obstetrics and gy-
necology has exhibited remarkable progress. The utilization of Al in various domains
has proven to be highly effective in addressing persistent issues related to diagnosis and
treatment. According to a study, Al has the potential to enhance knowledge and provide
assistance to medical professionals in the fields of gynecology and obstetrics [122]. The
latest applications of Al models in gynecology involve identifying endometrial carcinoma,
in vitro fertilization, uterine sarcoma, cervical intraepithelial neoplasia, and advancing
anticancer medication [123,124].

The integration of Al technology into ultrasonography has the capacity to enhance the
adoption of medical ultrasound in various clinical environments, facilitating its broader
application by healthcare professionals. Therefore, the utilization of Al in the field of ultra-
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sonography for prenatal care has the potential to assist medical professionals in efficiently
prioritizing and accurately diagnosing the anatomical structures of pregnant individuals.
In certain medical applications such as obstetric pelvic and echocardiography ultrasonogra-
phy, where visual analysis and measurement play a crucial role, the utilization of video
clips can provide a comprehensive set of structured data. This enables spatiotemporal
analysis and enhances the advantages of ANNs [125]. A study investigated the efficacy
of Al algorithms in ultrasonic diagnosis for pregnant patients with brain tumors. They
specifically focused on evaluating the accuracy rate of this diagnostic approach [126]. The
diagnostic accuracy achieved through the utilization of AI was recorded at 94.50%. Another
research study was conducted, which involved a prospective and descriptive approach. The
study focused on a sample of approximately 244 pregnant women in their first pregnancy
trimester. The registered female participants were specifically queried regarding their
utilization of iron, folic acid, potassium iodide, and multivitamin supplements throughout
their pregnancies. The utilization of an ANN model that incorporates variables related to
pregnancy checks, intake of iodized salt, iodized supplements, and iodine-rich foods can
be used to predict iodine deficiency during the early stages of pregnancy. This predictive
model can assist experts in making a more feasible diagnosis [127]. In their study, Sakai
et al. utilized a newly developed DL-based explainable graph chart diagram representation
to aid in fetal cardiac ultrasound screening. This screening process is known to have a
relatively low rate of detecting congenital heart disease during the second-trimester stages,
primarily due to the challenges associated with mastering the technique [128]. Conse-
quently, the utilization of Al in the second and third trimesters of pregnancy for diagnostic
purposes, specifically using diagram representation, enhances screening performance. The
accuracy rate for experts increases from 96% to 97.50%, while non-experts improve from
82% to 89% [129].

3.13. Ophthalmology

The utilization of Al in diagnosing and managing ocular disease has become increas-
ingly popular due to research findings emphasizing its potential to enhance personalized
medicine and improve healthcare outcomes [130]. Numerous Al algorithms are currently
under development for managing patients diagnosed with diabetes mellitus [131].

Due to advancements in the management of diabetes mellitus, there has been an
enhancement in the monitoring of patients, resulting in a higher incidence of diabetic
retinopathy and diabetic macular edema. The primary cause of significant visual impair-
ment and blindness among individuals of working age is the presence of diabetic macular
edema that has not been diagnosed or treated [132]. Hence, it is imperative to conduct
extensive screening for diabetic retinopathy on a large scale in order to identify potentially
detrimental alterations at an early phase, thereby facilitating effective management and
treatment strategies.

Considering the prevailing patterns of population growth and the significant inci-
dence of diabetic retinopathy and diabetic macular edema within the community, it is
inevitable that automated screening and diagnosis will become increasingly prevalent in
ophthalmic healthcare settings. Efforts have been made to explore automated retinal screen-
ing techniques for the diagnosis of diabetic retinopathy to enhance patient management and
mitigate the societal impact. Various Al, ML, and DL methodologies have been used for the
automated diagnosis and grading of diabetic retinopathy. The most efficacious automated
systems have been developed based on comprehensive investigations conducted within the
last three years. Recent research on diabetic retinopathy has shown that Al techniques have
exhibited significant accuracy, sensitivity, and specificity in identifying and diagnosing
diabetic retinopathy [133].

Automated application systems have the potential to enhance doctors’ comprehension
of diabetic retinopathy predictions and enhance the practicality of intelligent diagnostic
models in real-world clinical settings [133]. Based on the aforementioned studies, it was
observed that the automated analysis of retinal images exhibited a high level of accuracy,
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validity, sensitivity, and specificity in detecting diabetic retinopathy. Furthermore, the diag-
nostic performance of Al techniques was deemed clinically acceptable and demonstrated
high reproducibility when applied to the validation data set.

Age-related macular degeneration is a chronic ocular condition that is recognized
as a prominent contributor to visual impairment [134]. Prognostications Al algorithms
exist to generate personalized predictions in age-related macular degeneration. These
algorithms can make predictions regarding the presence of drusen beneath the retina in
individuals with age-related macular degeneration. The Al algorithms offer automated
detection capabilities for identifying drusen, fluid, and geographic atrophy in relation to
age-related macular degeneration lesions. These algorithms leverage fundus images and
spectral-domain optical coherence tomograph to enhance the diagnosis and treatment [135].
The utilization of Al in the automated detection of drusen holds promise for enhancing the
diagnostic capabilities of ophthalmologists in the early and efficient assessment of fundus
images [136]. The application of Al techniques in diagnosing and grading age-related
macular degeneration has been extensively explored. Recent studies have shown that these
automated approaches exhibit notable efficacy, demonstrating high accuracy, sensitivity,
and specificity levels in detecting age-related macular degeneration [137].

Glaucoma, which ranks as the second most prevalent factor leading to visual impair-
ment on a global scale, is distinguished by the gradual degeneration of retinal ganglion cells
and the permanent depletion of axons within the optic nerve. The timely identification and
management of glaucoma is of paramount significance in the prevention of preventable
visual impairment. Al techniques have demonstrated exceptional efficacy in efficiently
classifying glaucomatous and healthy eyes. Ophthalmologists have the ability to utilize
these automated results as a reference point, enabling them to enhance their decision-
making process within clinical practice. The utilization of automated Al applications has
demonstrated significant efficacy and holds promise in addressing the imminent challenge
of diabetic retinopathy, age-related macular degeneration, and glaucoma screenings in both
developed and developing nations [138].

3.14. Pediatrics

Imaging techniques play a paramount role in the management of pediatric neurologic,
neurosurgical, and neuro-oncological conditions [139]. Multi-parametric MRI techniques
are gaining popularity, particularly when combined with radiogenomic analyses that es-
tablish connections between imaging features and molecular biomarkers associated with
diseases. Nevertheless, incorporating this approach into regular clinical practice continues
to be challenging. Al techniques can model extensive datasets related to childhood neu-
rologic disease, including radiologic, biological, and clinical data. This capability enables
the integration of such information into prognostic modeling systems at an early stage.
Consequently, Al techniques offer a viable solution to address this issue [139].

In certain applications within the field of pediatric neuroradiology, ANNs have demon-
strated notable efficacy in a focused manner. This concept is most effectively demonstrated
through the utilization of ventricular size determination to categorize children into ei-
ther a normal or hydrocephalic group. In a recent study, an analysis was performed on
hydrocephalus and controls [140]. They achieved an accuracy score of 94.6% for hydro-
cephalus and 85.6% for controls using a training set of T2-weighted MRI images from
around 399 children. Previous studies have reported comparable achievements in the field
of pediatric hydrocephalus through the implementation of evolutionary modifications in
ANN methodologies [141].

The application of a support vector machine for the categorization of children into nor-
mal or hypoxic-ischemic brain injury groups, based on the measurement of corpus callosum
widths, yielded a classification accuracy of 95% [142]. Another study utilized a comparable
methodology to examine a group of adolescents who had experienced traumatic brain
injury. Specifically, they utilized edge-density imaging and support vector machines to clas-
sify the participants into two categories: normal and mild traumatic brain injury [143]. The
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aforementioned method, which achieved a precision rate of 94%, demonstrated superior
performance compared to neurocognitive testing in this aspect [25]. Support vector ma-
chines have demonstrated successful classification of various magnetic resonance imaging
abnormalities in the fetal brain. These abnormalities encompass functional connectivity,
brain maturity, and severe fetal abnormalities. The classification accuracies achieved by
support vector machines in these studies range from 79% to 84% [144].

Support vector machines (SVMs) have been utilized in magnetic resonance imaging
texture analysis to examine brain tumors. This machine learning application aims to quan-
titatively analyze imaging data to generate an image texture that is generally imperceptible
to human visual perception [145]. Texture analysis in clinical practice is advantageous for
clinicians because it can incorporate comprehensive imaging data of the entire tumor. This
approach takes into consideration the presence of intra-tumor heterogeneity, which may
not be adequately represented by a single biopsy site or even multiple biopsy sites [145].

A study expanded on the application of texture analysis by integrating both linear
discriminant analysis and a probabilistic neural network [146]. Their objective was to
categorize posterior fossa tumors, specifically medulloblastoma, pilocytic astrocytoma,
and ependymoma. The combined techniques achieved an accuracy ranging from 86%
to 93% through a validation process. The utilization of Al in diagnosis offers a potential
enhancement to the effectiveness of diagnoses.

Decision trees have also been used in another significant capacity within the field
of ML in the context of pediatric neuroimaging. Specifically, they have been utilized
for the purpose of data analysis in order to provide insights and information regarding
neuroimaging in clinical trials. An instance can be observed in a study where a decision tree
classifier was used within a randomized controlled trial conducted on children diagnosed
with autism who were undergoing treatment with simvastatin [147]. The study utilized a
random forest classifier to effectively categorize children from the control group who had
undergone simvastatin treatment [147]. The classifier achieved a classification accuracy of
79%. This observation suggests the potential benefits that such applications may offer in
the future.

3.15. Hematology

Al has been used to examine various types of medical data, including hematopatholog-
ical, radiographic, laboratory, genomic, pharmacological, and chemical data. The purpose
of using Al in these analyses is to enhance the accuracy and effectiveness of diagnosis,
outcome prediction, and treatment planning and to expand our understanding of benign
and malignant hematology.

Recent advancements in CNN-based models have shown the ability to effectively
differentiate between various types of leukocytes on peripheral smears, indicating their
potential for automating routine pathology practices [148]. Ongoing research is being
conducted in the field of automated interpretation of bone marrow specimens [149]. CNNs
have also exhibited their usefulness in characterizing qualitative and quantitative variations
within specific cell lineages, such as the morphology of erythrocytes and the textural alter-
ations observed in sickle cell disease [150]. The aforementioned achievements encompass
the differential diagnosis of various diseases, as evidenced by the capacity of models to
accurately diagnose acute myeloid leukemia, distinguish between different causes of bone
marrow failure, and function as a screening tool for lymphoma in settings with limited
resources [151].

Al has been applied in various domains to enhance diagnostic processes” dependability,
convenience, and efficacy. Previous studies have shown that CNN methods have proven
effective in diagnosing multiple myeloma solely using mass spectrometry data obtained
from peripheral blood [152,153]. Personalized models have been shown to possess a
high diagnostic capability when distinguishing between challenging conditions, such
as different causes of bone marrow failure, is difficult. This is achieved by integrating
patient demographics, laboratory data, and fundamental genetic information. Previous
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studies have also utilized similar methods to differentiate between peripheral leukemia
and lymphoma [154].

The task of prognosis is widely recognized as challenging, and even commonly used
clinical prognostication tools exhibit notable variability within different risk categories [155].
Al, possessing advanced capabilities in processing nonlinear and intricate data, promises
to deliver more sophisticated and individualized prognostications. The aforementioned
methodologies have been used within the field of benign hematology to enhance the
accuracy of risk assessment for central catheter thrombosis. These methodologies have
successfully identified individuals with a low risk of developing thrombosis [155]. Al
has been utilized to categorize patients undergoing hematopoietic stem cell transplants
into low and high-risk groups for acute graft-versus-host disease. This classification has
important implications for making informed decisions regarding the administration of
immunosuppressive treatments to these individuals [156]. Previous studies have also been
conducted in the field of autologous transplants for multiple myeloma. Al has been utilized
in the field of malignant hematology to enhance the initial assessment of risk stratification
for acute myeloid leukemia and myelodysplastic syndromes [157,158]. In post-treatment
scenarios, where minimal residual disease is considered a negative prognostic factor, Al
has exhibited the capability to attain performance comparable to that of humans. This
achievement has the potential to simplify and establish a consistent approach to handling
and analyzing this kind of data [159].

3.16. Intensive Care Unit

ML models have been applied within the intensive care unit (ICU) setting to anticipate
pathologies such as acute kidney injury, identify symptoms such as delirium, and suggest
appropriate therapeutic interventions such as vasopressors and fluid administration in cases
of sepsis. The timely identification and management of sepsis is of paramount importance
due to its potential to significantly decrease mortality rates. Although the management of
early sepsis involves source control and the administration of broad-spectrum antibiotics,
the detection of sepsis during this phase of the illness poses considerable challenges [159].
Identifying sepsis becomes increasingly feasible as the condition advances, while the
treatment poses considerable challenges. Due to the diverse nature of sepsis, the existing
diagnostic and prognostic methods pose a significant challenge in early sepsis detection
and accurate prognosis estimation. This difficulty further complicates determining an
appropriate treatment strategy for individual patients [160]. Al prediction models have
the potential to provide significant value for patients diagnosed with sepsis. Al models
possess the capacity to enhance the timely identification of individuals requiring antibiotic
treatment. Certain Al prediction models appear to outperform existing diagnostic methods;
however, these models exhibit notable limitations, such as including predictor variables like
blood pressure in the present sepsis definition. The assessment of Al models” performance
is exaggerated in this context. These models exhibit limited generalizability. The existence
of unresolved concerns has resulted in a significant disparity between the advancement of
algorithms and their practical implementation in clinical settings.

The growing utilization of Electronic Health Records within the ICU is driving the
dissemination of data science and ML techniques in the critical care setting. Hemodynamic
data derived from monitors, infusion data obtained from infusion pumps, and respiratory
data collected from ventilators generate substantial data volumes. These datasets can
be compared to other sources of big data, such as omics data encompassing genomics
or proteomics. A study devised a computational model utilizing reinforcement learning
techniques to propose optimal treatment strategies dynamically for adult ICU patients [161].
A study was conducted wherein pervasive monitoring and ML techniques were applied
to continuously evaluate delirium and agitation in a cohort of 22 patients admitted to an
ICU [162]. The patients were categorized based on the Confusion Assessment Method
for the ICU scale. The researchers utilized cameras and accelerometers to capture and
document facial expressions and movements. Three accelerometers were strategically
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positioned on the patient’s wrist, ankle, and arm to discern and classify their posture. The
researchers applied a pre-existing neural network model to perform facial recognition and
detect facial expressions using individual facial features.

3.17. Diagnostic Methods

AT has the capability to fundamentally transform the methodologies applied in disease
diagnosis and treatment. Through the examination of patient data, including medical
history, symptoms, and test results, Al algorithms can provide clinicians with more precise
and tailored diagnoses for individual patients. This has the potential to facilitate the
identification of diseases at an earlier stage and enhance the efficacy of treatment strategies.
Additionally, Al can assist in identifying potential drug interactions and adverse reactions,
ensuring that patients receive the safest and most effective treatments.

Ultrasound (US) has gained widespread global adoption as a primary imaging modal-
ity in various clinical domains, owing to the continuous advancements in ultrasonic tech-
nologies and the established digital health infrastructure. Breast cancer is widely recognized
as a prevalent form of cancer among women globally and continues to be the second most
significant contributor to cancer-related mortality [163]. The predominant utilization of DL
in breast US, as observed in the surveyed literature, pertains to diagnosing and categorizing
breast masses [164]. The utilization of DL techniques for the analysis of abdominopelvic
imaging has various applications within the United States. A significant portion of these
applications have been specifically directed towards the examination of the liver [165].
Their research revealed that this approach exhibited superior accuracy compared to two-
dimensional shear wave elastography and certain biomarkers in the evaluation of advanced
fibrosis and cirrhosis in patients infected with the hepatitis B virus. In a study, the authors
devised a CNN approach to predict the METAVIR score, a semi-quantitative measure of
liver fibrosis [166]. The training dataset consisted of several thousands of US images ob-
tained from two tertiary academic referral centers. This approach demonstrated a notable
level of precision in forecasting the METAVIR score, surpassing radiologists” diagnostic
capabilities in identifying liver fibrosis. In their study, Ta et al. developed a computer-
aided diagnosis system for the classification of malignant and benign focal liver lesions
using contrast-enhanced ultrasound cine recordings [167]. The researchers found that the
accuracy of this method was comparable to that of an expert reader.

Deep learning algorithms have been utilized in various applications, including iden-
tifying muscle diseases [168], determining cone positioning, and segmentation of muscle
imaging [169]. The diagnostic accuracy for neuro-muscular diseases was improved by using
a CNN-based method, which enhanced the assessment and classification of inflammatory
muscle diseases [168]. The progress in the field of AI/ML tools for the interpretation of
imaging is experiencing rapid acceleration. This can be attributed to several factors, includ-
ing the availability of extensive digitized image datasets, the accessibility of open-source
algorithms, advancements in computing power, the emergence of cloud services, and the
continuous development of DL techniques [170].

The utilization of automation in tasks frequently performed by radiologists, such as
identifying rib fractures and lung nodules using CT scans, reassessing pleural effusion size
via sequential chest radiographs, or conducting mammographic screening, shows potential
as a favorable strategy. This has the potential to enable radiologists to dedicate additional
time to more advanced interpretive tasks that may not be amenable to automation, as well
as participate in endeavors such as multidisciplinary team meetings. The utilization of Al
in the triage procedure demonstrates a notable ability to efficiently assign priority to critical
cases that require immediate reporting. These cases may include CT scans that unveil
the presence of pulmonary embolism, chest radiographs that indicate pneumothorax, or
head CTs that reveal hemorrhage. The aforementioned methodology possesses the capacity
to reduce patient morbidity and expedite the duration of hospitalization in emergency
departments. The utilization of DL systems in synthetic MRI enables the post-processing
and reconstruction of MR image data, reducing image acquisition time without signifi-
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cant deterioration in image quality. This advancement can potentially enhance efficiency,
decrease expenses, and enhance accessibility [171].

CNNs are a fundamental element within networks utilized in orthopedic and muscu-
loskeletal radiology [172]. In recent times, the concept of generative adversarial networks
(GANS’s) has been introduced. GANs are models designed to generate novel data closely
resembling the original dataset. These models comprise two distinct networks that engage
in a competitive game-like training process. A total of 12 enhanced GAN models incorpo-
rating CNNs have been successfully utilized in the domain of radiographic images [173].

Extensive research has been conducted in the field of oral and maxillofacial radiology
to investigate the potential of Al in the diagnosis of various conditions. The aforemen-
tioned conditions encompass dental caries, periodontal disease, osteosclerosis, odontogenic
cysts, and tumors, as well as ailments that impact the maxillary sinus or temporomandibu-
lar joints.

Al has been used in the field of dentistry for image analysis, encompassing a range
of tasks, including tooth segmentation and localization, assessment of bone quality for
osteoporosis, determination of bone age through hand-wrist radiographs, and localization
of cephalometric landmarks [172]. DL systems utilizing CNN architectures have been
successfully applied in the domain of dentistry. Notably, a novel system has been developed
that incorporates both three-dimensional cone beam computed tomography images and
two-dimensional images [172].

The application of DL techniques has been used to identify and categorize teeth within
both cone beam computed tomography images and panoramic images. The utilization of
classification systems for teeth enables dentists to make clinical decisions and streamline
their charting process by using automated computer-aided design outputs. These outputs
facilitate the automatic completion of digital patient records [174].

4. Discussion
4.1. General

The aim of this literature review is to provide a comprehensive overview of existing
research on Al in clinical practice. In addition to its extensive use in diagnostic techniques,
Al integration has been explored in various medical disciplines, including cardiology,
anesthesiology, surgery, pneumology, neurology, urology, gynecology, hematology, and
pediatrics. Given the continuous influx of new articles and the exponential increase in pub-
lished papers, this review focuses on indicative articles to illustrate Al’s robust penetration
and wide-ranging applications in clinical practice.

One of the major advantages of Al in clinical practice is its ability to improve diag-
nostic accuracy and treatment outcomes [10-22]. With Al-powered algorithms, healthcare
providers can analyze large amounts of patient data and identify patterns that may not
be immediately apparent to human clinicians. This can help to identify diseases earlier,
resulting in expedited medical intervention and improved prognoses for individuals. Addi-
tionally, Al can predict which treatments are likely to be most effective for a given patient,
allowing for personalized medicine that considers individual patient characteristics. Al
can help reduce healthcare costs by streamlining administrative processes and reducing
unnecessary tests [23].

In a study, ML techniques were applied in the analysis of high-throughput genome
sequencing data, aiming to enhance comprehension of disease processes and the develop-
ment of therapeutic modalities [175]. In this study, cutting-edge ML algorithms, including
random forest, support vector machine radial kernel, adaptive boost, averaged neural net-
work, and gradient boosting machine, were applied. The goal was to stratify patients with
head and neck squamous cell carcinoma into early and late clinical stages and to predict
the risk based on the expression profiles of miRNAs [175]. Also, quite recently, variational
autoencoders (i.e., a type of neural network) were introduced as a method to effectively aug-
ment the sample size of clinical studies, thereby mitigating costs, time constraints, dropouts,
and ethical considerations [176]. In a study, the efficacy of variational autoencoders in the



Appl. Biosci. 2024, 3

32

context of data augmentation was demonstrated through the utilization of simulations
encompassing multiple scenarios [176]. Also, in the field of bioequivalence studies, several
ML methods were utilized to solve the old problem of defining the appropriate absorption
rate metric [20-22]. Through the joint utilization of ML algorithms, non-linear mixed effect
modeling, and Monte Carlo simulations, a new metric termed “average slope” was defined
and introduced. It was proven that the currently used Cmax (i.e., the maximum observed
plasma concentration) is unsuitable for expressing the absorption rate. On the contrary, the
newly defined measure (average slope) comprises the desired properties of absorption rate,
has the appropriate units of measurement (i.e., concentration units per time), exhibits ease
of estimation directly from the concentration-time data of the drug, and all ML algorithms
showed its supremacy over all other metrics used or proposed in bioequivalence [20-22].

Although the advantages of Al in clinical practice are evident, a number of obstacles
exist that necessitate attention and resolution [177]. One of the foremost considerations
revolves around the possibility for Al to sustain and propagate bias within the healthcare
sector. If the algorithms used in Al systems are trained on biased data, they may produce
biased results, leading to disparities in healthcare outcomes for certain patient popula-
tions. Also, there is a lack of transparency, interpretability, and explainability of the Al
algorithms since the latter can be considered as a black box. This issue will be discussed
later. Additionally, there is a risk that Al could dehumanize healthcare, with patients
feeling disconnected from their care providers and reduced to a set of data points. There
are also fears around the ethical implications of using Al in healthcare, particularly. The
impact of integrating Al technologies into the field of medicine will be most pronounced
among present and prospective medical trainees. Consequently, it is imperative for medical
schools and graduate medical education programs to modify their curriculum in order to
instruct current and future generations of physicians on the conscientious utilization of
these potent and transformative technologies [178]. Integrating Al in medicine introduces
several legal and ethical considerations, including medical liability issues such as training
and competence, transparency/traceability, explainability, personal health data, regulatory
compliance, product liability, and malpractice insurance. The fundamental aspects of these
issues are delineated below.

4.2. Training of Healthcare Professionals

Healthcare professionals using Al systems need appropriate training to ensure com-
petence in their use. Failure to properly understand and operate Al systems may lead to
medical errors and subsequent liability. Furthermore, prospective medical students will
be required to develop new skills, encompassing the concept of “knowledge capture, not
knowledge retention”. This implies a shift from a curriculum focused on rote memorization
to one that prioritizes critical thinking. The field of Al places significant emphasis on two
primary domains: collaboration and management of Al applications, as well as a deeper
comprehension of probabilities and their consequential application in clinical decision-
making involving patients and families. The aforementioned domains aim to acquire
knowledge pertaining to the efficient and ethical utilization of Al, while also promoting the
practical application of Al technologies in the healthcare field [179].

4.3. Transparency, Traceability, and Explainability

Drawing inspiration from various disciplines, the domains of transparency and trace-
ability in the context of healthcare and individual patients necessitate adherence to more
rigorous criteria [180]. From a legal standpoint, it is necessary for data to adhere to all
applicable laws, regulations, and additional legal obligations throughout its entire lifecy-
cle, including acquisition, storage, transfer, processing, and analysis. Furthermore, it is
imperative for the law, its interpretation, and its implementation to continually adjust in
response to the ever-changing advancements in technology [181]. Numerous Al algorithms,
particularly those based on deep learning models, function as enigmatic “black boxes”,
rendering it difficult to clarify the rationale behind their decisions. In situations where
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the validity of a medical decision generated by an Al system is scrutinized, the absence of
transparency can give rise to legal complications. Even when meeting all of these apparent
prerequisites, the question persists as to whether the utilization of Al-driven solutions and
tools necessitates the need for explainability. In essence, doctors and patients must possess
knowledge regarding the outcomes presented and an understanding of the qualities and
attributes upon which these outcomes are founded, as well as the corresponding underlying
assumptions. Furthermore, the inclusion of additional stakeholders may necessitate a com-
prehensive comprehension and explication of algorithms and models. From a Western legal
standpoint, three fundamental areas have been identified for the purpose of elucidating the
concept of explainability [182]. These areas include (a) informed consent, (b) certification
and approval in accordance with the regulations set forth by the FDA and the Medical
Device Regulation (MDR), and (c) Liability.

4.4. Liability and Regulatory Framework

The certification and approval bodies responsible for medical devices have been rela-
tively sluggish in implementing regulations pertaining to explainable Al and its impact on
developing and marketing such products. The FDA significantly promotes the continuous
development and enhancement of Al-based medical products through its comprehensive
total product lifecycle approach. The concept of explainability is not explicitly referenced;
however, there is a requirement for an appropriate level of transparency and clarity in the
output and algorithm intended for users [183,184]. The primary focus of this inquiry per-
tains to the functionalities of the software and the alterations it has undergone throughout
its evolution. The MDR does not explicitly address the requirement for explainability in
relation to medical devices utilizing Al and ML, specifically. In this context, it is important
to emphasize the significance of accountability and transparency [185]. Specifically, these
requirements pertain to the provision of information that enables the tracing, transparency,
and explication of the development process of ML and DL models that contribute to medical
treatment. There is a strong probability that in forthcoming times, a more refined delin-
eation of these prerequisites will emerge, necessitating manufacturers of Al-driven medical
devices/software to furnish exhaustive details pertaining to the training and evaluation of
the models, the data utilized, and the overarching methodologies used in their creation.

The integration of Al in healthcare frequently entails the utilization of highly sensitive
patient data. Suppose a data security or privacy breach results in unauthorized access
or use of patient information; healthcare providers and Al developers may face legal
repercussions. This underscores the critical importance of robust data protection measures
and adherence to privacy regulations in developing and deploying Al applications within
the healthcare sector [185]. The processing of personal health data is permissible under
the law only when the individual has provided explicit consent for its utilization. The
current standard for utilizing patient data in Al applications is informed consent, as there is
a lack of overarching legislation governing the use of personal data and information [185].
Healthcare organizations and Al developers must comply with various data protection
regulations, such as the Health Insurance Portability and Accountability Act (HIPAA) in
the United States or the General Data Protection Regulation (GDPR) in Europe [186,187].
Failure to comply with these regulations can lead to legal consequences and fines. Clear
policies should be established regarding data ownership and patient consent. Patients
should be informed about how their data will be used, who will have access to them, and
for what purposes. Obtaining informed consent is essential for ethical and legal reasons.
Implementing robust encryption methods for both data in transit and data at rest helps
protect patient information from unauthorized access. Encryption adds an extra layer of
security to prevent sensitive data from being intercepted or accessed by unauthorized
parties. Access to healthcare Al systems and the data they process should be restricted
and monitored. Role-based access controls should be implemented to ensure that only
authorized personnel can access sensitive information. Also, healthcare Al systems should
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use secure methods for storing and transmitting data, while periodic security audits and
assessments help identify vulnerabilities in the system.

The legal framework concerning Al in healthcare is still in a state of evolution. New
laws and regulations may be introduced to address issues related to liability specifically,
and healthcare professionals must stay informed about these changes. As the field of Al
continues to advance, legal frameworks are likely to adapt to ensure that ethical, transpar-
ent, and responsible practices are followed in developing and deploying Al technologies
in healthcare. Staying abreast of these evolving regulations is crucial for healthcare pro-
fessionals to navigate the complex legal terrain and uphold accountability and patient
care standards. Nevertheless, even to this day, disparities persist in international guid-
ance between Europe and the United States regarding the legal challenges that may arise
from the use of Al in healthcare. These regions adopt distinct approaches to addressing
these challenges. The European Union (EU) has emerged as a leading force in the field
of medical Al innovation and has acknowledged the specific difficulties that Al poses to
current liability frameworks. In order to establish coherence in liability principles and
ensure legal clarity, the European Commission has introduced the Artificial Intelligence Act,
which represents one of the initial legal frameworks dedicated specifically to AI [186]. The
European Commission endeavors to advance the secure utilization of Al in sectors with
significant consequences, such as healthcare, while concurrently enhancing technological
innovation. The United States lacks a comprehensive legal framework that specifically
regulates Al resulting in limited legal precedent concerning liability and medical AL The
regulatory aspect of Al in healthcare has been acknowledged by the FDA, which aims to
facilitate the secure implementation of Al by developing a strategic plan to ensure ongoing
supervision of Al as a medical device [187]. In order to foster a patient-centric approach, the
FDA endeavors to enhance transparency by requesting manufacturers to provide detailed
descriptions of the operational mechanisms of their Al devices. This initiative is aimed
at facilitating a comprehensive comprehension of the advantages and potential hazards
associated with such devices. The FDA also endeavors to address potential bias that may
arise from training Al algorithms on specific populations or historical datasets [187]. The
FDA has recently published a discussion paper entitled “Proposed Regulatory Framework
for Modifications to Artificial Intelligence/Machine Learning-Based Software as a Medical
Device” with the aim of guaranteeing the safety of medical software that utilizes Al and
ML technologies.

In addition, as the use of Al in healthcare becomes more prevalent, malpractice
insurance considerations evolve to address potential risks associated with these technolo-
gies [188]. Given the unique risks associated with Al in healthcare, malpractice insurance
policies may need to be tailored to address liabilities arising from the use of Al technologies
specifically. This could include coverage for errors or malfunctions in Al algorithms that
lead to adverse patient outcomes. Insurers may face challenges in underwriting policies
related to Al, as the field is rapidly evolving, and assessing risks associated with emerging
technologies can be complex. Insurers may need to adapt their underwriting processes
to account for the specific risks posed by Al in healthcare [189]. Malpractice insurance
policies related to Al must align with evolving legal and regulatory frameworks governing
the use of Al in healthcare. Insurers may need to stay informed about changes in laws and
regulations to ensure that their policies remain relevant and compliant. Also, insurers may
require healthcare organizations to implement monitoring and reporting mechanisms for
Al-related incidents. Timely reporting adverse events can facilitate a proactive response
and help mitigate potential liabilities.

In the same vein, product liability in the context of Al refers to the legal responsibility
of those involved in the design, development, manufacturing, distribution, and deployment
of Al systems for any harm or damages caused by the Al product [190,191]. If the design
of an Al system is inherently flawed and leads to harmful consequences, the designers
and developers may be held liable. Al design defects could include biased algorithms,
inadequate testing, or a lack of robust safety features. Manufacturing defects pertain to
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issues arising during an Al system’s production or deployment. These defects may lead to
malfunctions, security vulnerabilities, or other problems that could result in harm. Manu-
facturers may be held responsible for these defects. If Al products come with inadequate
warnings or instructions regarding their proper use, healthcare professionals or end-users
may be unaware of potential risks. Failure to provide clear guidance on the limitations
and risks of an Al system could result in liability. In cases where third-party vendors
provide Al components or services, liability may extend to these vendors if their products
or services contribute to harm. Determining the chain of responsibility and liability in
complex Al ecosystems can be challenging. Rigorous testing and validation of Al systems
are essential to identify and address potential issues before deployment. If inadequate
testing contributes to harm, the parties responsible for the testing and validation process
may be held liable. Maintaining detailed records of the design, development, testing,
and deployment processes is important for demonstrating due diligence in the event of
a product liability claim. Clear documentation can provide evidence of compliance with
industry standards and best practices.

4.5. Overall

This literature review discusses the current applications of Al in various medical
specialties in clinical practice. Al possesses the capacity to fundamentally transform clinical
practice and enhance patient outcomes. The potential for further advancements in Al
technology is vast, and the impact on patient outcomes could be significant.

Certainly, not all aspects and bibliographic references could have been included,
as this literature review aims to offer a comprehensive overview of the applications of
Al in as many medical specialties as possible. Consequently, it was unavoidable that
some important contributions in each field could not be discussed. As an example, there
has been a substantial rise in the utilization of biomarkers as early warning systems for
assessing disease risk over the past decade, with extensive application evident during
the recent COVID-19 pandemic [192]. In the same context, in dermatology, which is one
of the fields with the widest use of Al, quite recently, a research paper has underscored
the capability of machine learning to serve as a biomarker for differentiating among
individuals with psoriasis, psoriatic arthritis, and those in good health [193]. Also, several
investigations have been carried out, uncovering notable molecular biomarkers through
miRNA expression that can differentiate between early and late stages of carcinomas [175].

It should also be emphasized that despite the concerns discussed in this review, the
potential benefits of Al in healthcare cannot be ignored. Al has the ability to improve
diagnosis accuracy, personalize treatment plans, and reduce healthcare costs. In the future,
AT will likely become a standard tool in clinical practice, with healthcare providers working
alongside Al systems to provide the best possible care for patients [185,186]. Nevertheless,
to guarantee the ethical and efficient utilization of Al in the healthcare sector, we must
confront these apprehensions and establish explicit protocols for advancing and integrating
Al systems. The complete realization of Al’s potential to enhance healthcare outcomes
can only be achieved under such circumstances. Overall, it is considered that Al has the
potential to greatly improve healthcare outcomes, but it is important to address ethical
concerns and establish clear guidelines for its development and implementation.

5. Conclusions

Integrating Al into clinical practice brings forth many benefits and challenges with sig-
nificant implications for ethical and legal considerations. Al holds the promise of improving
the precision of diagnostic accuracy, streamlining administrative tasks, and personalizing
treatment plans. By analyzing vast amounts of medical data, Al systems can identify
patterns and correlations that might escape human observation, leading to more precise
and timely interventions. Additionally, Al can contribute to cost-effective healthcare solu-
tions and improve overall patient outcomes. This integration of Al technology facilitates
informed clinical decision-making processes. Thus, Al has the potential to enhance patient
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outcomes, offering faster and more accurate diagnoses, personalized treatment plans, and
reduced healthcare costs. While there is still much to be explored and developed in the field
of Al in clinical practice, it is crucial that we continue to invest in research and development
to unlock its full potential. This approach can improve our understanding of how Al can
enhance healthcare and lead to the developing of new tools and technologies that benefit
patients and healthcare professionals alike. Nevertheless, it is important to approach its
development and implementation cautiously and collaborate with healthcare professionals
to ensure ethical considerations are met.

However, these advancements come with ethical dilemmas and legal complexities.
The use of Alin clinical decision-making raises concerns about transparency, accountability,
and the potential for bias in algorithms. Ensuring patient privacy and data security becomes
paramount, demanding robust ethical guidelines and legal frameworks. Striking the right
balance between innovation and safeguarding patient rights requires careful consideration
of the ethical implications of Al in clinical practice, alongside the development of legal
frameworks that can adapt to the rapid pace of technological evolution in the healthcare
sector. To overcome the ethical and legal challenges associated with the integration of ai
in clinical practice, a multi-faceted approach is essential that includes legal frameworks
and regulations, transparent and explainable Al, ethical guidelines and standards, regular
audits and assessments, incentives for ethical practices, and international collaboration.
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