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Abstract: We show that intuitionistic propositional logic is Carnap categorical: the only interpretation
of the connectives consistent with the intuitionistic consequence relation is the standard interpretation.
This holds with respect to the most well-known semantics relative to which intuitionistic logic is
sound and complete; among them Kripke semantics, Beth semantics, Dragalin semantics, topological
semantics, and algebraic semantics. These facts turn out to be consequences of an observation about
interpretations in Heyting algebras.
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1. Motivation and Background

Carnap [1] was concerned with the existence of ‘non-normal’ interpretations of the con-
nectives in classical propositional logic (CPC), i.e., interpretations that were different from
the usual truth tables but still consistent with `CPC. Though neglected for many decades,
the issue has been reopened in recent years. One reason was that non-normal interpreta-
tions were seen to clash with inferentialist meaning theories ([2]). It has been countered
that inferentialism is not really threatened by non-normal interpretations (e.g., [3]), or that
such interpretations are avoided by a proper understanding of inference rules (e.g., [4]).

In this note, we do not discuss the shape or the epistemological status of rules, but
we follow the model-theoretic approach to Carnap’s problem initiated in [5]. That is,
a single-conclusion consequence relation ` in a logical language is given—no matter in
what way—and, relative to a semantics which compositionally assigns semantic values
(set-theoretic objects of various kinds) to formulas, one investigates to what extent the
meaning of the logical constants in that language is fixed by consistency with `. This is a
precise model-theoretic task.

A first observation, which, as pointed out in [5], is hidden already in Carnap’s 1943
book, is that compositionality already rules out non-normal interpretations of the connectives
in CPC, relative to the usual two-valued semantics.1 More interestingly, the classical first-
order consequence `FOL does not by itself fix the meaning of ∀, relative to a semantics
that interprets quantifier symbols as sets of subsets of the domain (unary generalized
quantifiers) but constrains it to be a principal filter. However, if permutation invariance is also
required, then the only consistent interpretation is the standard one: `FOL forces ∀xϕ(x) to
mean ‘for all x in the domain, ϕ(x) holds’.

Carnap’s question can be asked for any consequence relation in any logical language, rela-
tive to any formal semantics for that language. Bonnay and Westerståhl [6] deals with Carnap’s
problem in modal logic and [7] discusses it for some logics with generalized quantifiers.

Here, we consider Carnap’s problem for intuitionistic propositional logic (IPC). Rela-
tive to which formal semantics should we ask the question? There is by now a plethora
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of semantics for which IPC is sound and complete: Kripke semantics, Beth semantics,
topological semantics, algebraic semantics, . . . ; ideally, one would like an answer for each
of them. In this note, we show that IPC is indeed categorical with respect to most of these
semantics.2

The next section presents the various semantics to which our results apply. We contrast
the familiar algebraic semantics with a notion of set-based semantics, of which Kripke, Beth,
and topological semantics are instances. Our main reference for IPC semantics will be
the article [8]—BH19 in what follows—which surveys and compares a great variety of
intuitionistic semantics. We largely follow the notation and terminology in BH19 and refer
to that article for technical notions not explained here.

Section 3 presents our main result (Theorem 3.6), a fact about algebraic interpretations
of the connectives, which turns out to entail categoricity with respect to all set-based seman-
tics (in our sense): only the standard interpretations are consistent with `IPC. In Section 4,
we consider Carnap’s question for some fragments of IPC. Section 5 concludes with discus-
sion and open issues.

The propositional language will (with a few exceptions at the end) be generated by

ϕ := p | ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ (p ∈ Prop)

where Prop is a denumerable set of propositional variables. So, ¬ϕ := ϕ → ⊥. The proof-
theoretically defined (for example, by means of a natural deduction system) single-conclusion
consequence relation

`IPC

in this language is assumed to be familiar, as well as standard intuitionistic Kripke seman-
tics, for which `IPC is sound and complete. Similarly for classical consequence, `CPC.

2. Algebraic vs. Set-Based Semantics

To set the stage, we first consider Carnap’s question in the context of the most well-
known semantics for intuitionistic logic: Kripke semantics.

2.1. Carnap’s Problem for Kripke Semantics

Start with a partially ordered set (a poset) F = (X,≤). The semantic values of the
formulas will be upsets: sets U ⊆ X such that x ∈ U and x ≤ y implies y ∈ U; let Up(F )
be the set of upsets. For U ⊆ X, let U↑ = {y ∈ X : ∃x ∈ U x ≤ y} ∈ Up(F ). We write
x↑ = {x}↑.

A valuation on F is a function v from Prop to Up(F ). For each v, semantic values are
assigned according to the standard truth definition in Kripke semantics:

(1) a. [[p]]v = v(p)
b. [[⊥]]v = ∅
c. [[>]]v = X
d. [[ϕ ∧ ψ]]v = [[ϕ]]v ∩ [[ψ]]v
e. [[ϕ ∨ ψ]]v = [[ϕ]]v ∪ [[ψ]]v
f. [[ϕ→ ψ]]v = {x ∈ X : ∀y ≥ x(y ∈ [[ϕ]]v ⇒ y ∈ [[ψ]]v)}

= {x ∈ X : x↑ ∩ [[ϕ]]v ⊆ [[ψ]]v}

One easily verifies that [[ϕ]]v ∈ Up(F ) for all ϕ. Next, we have the corresponding semantic
consequence relation:

ψ1, . . . , ψn |= ϕ iff for all F and all valuations v on F ,
⋂n

i=1[[ψi]]v ⊆ [[ϕ]]v

The (soundness and) completeness theorem for intuitionistic propositional logic relative to
Kripke semantics then says that

|= = `IPC
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It makes sense to say that (1) interprets the connectives (over F ), according to what we
shall call the standard (Kripke) interpretation IFst , which is the following function from the
signature {⊥,>,∧,∨,→} to corresponding functions on Up(F ): for U, V ∈ Up(F ),

(2) a. IFst (⊥) = ∅
b. IFst (>) = X
c. IFst (∧)(U, V) = U ∩V
d. IFst (∨)(U, V) = U ∪V
e. IFst (→)(U, V) = {x ∈ X : x↑ ∩U ⊆ V}

Just as the standard truth functions can be said to give the meaning of the connectives
according to classical two-valued semantics, IFst gives the meaning of the connectives (over
F ) according to Kripke semantics. Carnap asked if the classical meaning is determined
by the classical consequence relation `CPC. When compositionality is assumed, this is
the question of whether there are other truth functions than the standard ones, which
interpret the connectives in a way that is still consistent with `CPC. The answer is no:
`CPC is categorical with respect to two-valued semantics. Now, we ask the same about IPC
and Kripke semantics. Are there other interpretations, in addition to IFst , which are also
consistent with `IPC?

We can make this precise as follows: given a poset F , an intuitionistic interpretation of
the connectives is a function IF from {⊥,>,∧,∨,→} to corresponding functions on Up(F ),
from which we calculate the semantic values of the formulas as before: [[p]]I

F
v = v(p),

[[⊥]]IFv , [[>]]IFv ∈ Up(F ), [[ϕ ∧ ψ]]I
F

v = IF (∧)([[ϕ]]IFv , [[ψ]]I
F

v ), etc. IF is consistent with a
consequence relation ` if

ψ1, . . . , ψn ` ϕ implies that for all v,
⋂n

i=1[[ψi]]
IF
v ⊆ [[ϕ]]I

F
v

So, IFst is consistent with `IPC. Do any other interpretations of the connectives (over F ) also
have this property? This is Carnap’s question for intuitionistic propositional logic, relative
to Kripke semantics.

Note that the classical interpretation IFc , which only differs from IFst in that IFc (→)(U, V) =
(X−U) ∪V, is of course also consistent with `IPC (indeed with `CPC). However, it is not
an intuitionistic interpretation: IFc (→) does not map upsets to upsets. That semantic values
are upsets is a crucial ingredient in Kripke semantics.

We shall see that the answer to Carnap’s question about Kripke semantics is a resound-
ing no. Indeed, it turns out that categoricity with respect to Kripke semantics is an instance
of a much more general result.

2.2. A Hierarchy of Semantics for IPC

BH19 organizes a number of well-known semantics for IPC in the following hierarchy:

(3) Kripke < Beth < Topological < Dragalin < Algebraic

We have already looked at Kripke semantics. At the other end, algebraic semantics uses
Heyting algebras, i.e., algebras of the form

A = (A,⊥A,>A,∧A,∨A,→A)

where the reduct (A,⊥A,>A,∧A,∨A) is a bounded lattice, and, in addition, the following
equations hold:3

(4) a→ a = 1
a ∧ (a→ b) = a ∧ b
(a→ b) ∧ b = b
a→ (b ∧ c) = (a→ b) ∧ (a→ c)
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The partial order ≤A is defined as usual:

(5) a ≤A b iff a ∧A b = a

An algebra A of this signature can be taken to interpret propositional formulas: for each
valuation v : Prop→ A, a semantic value

[ϕ]Av

in A is assigned to each formula ϕ: [p]Av = v(p), [⊥]Av = ⊥A, [>]Av = >A, [ϕ ∧ ψ]Av =
[ϕ]Av ∧A [ψ]Av , etc.

The consequence relation `IPC is consistent with each Heyting algebra A: if ψ1, . . . , ψn
`IPC ϕ, then for all v, [ψ1]

A
v ∧A . . . ∧A [ψn]Av ≤A [ϕ]Av . That is, consistency is soundness,

but for consequence, not just validity (this proves to be crucial; see Section 3.2). BH19 is
mainly concerned with classes of algebras (or other interpretations) with respect to which
`IPC is sound and complete. However, when we are interested in categoricity, completeness
plays no role, as we shall see.

A characteristic of algebraic semantics is that no assumptions are made about the
domain of the algebras; it can be any non-empty set. The semantics to the left of ‘Algebraic’
in (3), on the other hand, are all what we shall call set-based semantics, which means,
among other things, that over a domain X, semantic values of formulas are subsets of X.
Before giving the details, let us explain what the strict order in (3) means.

Each semantics in (3) ‘produces’ Heyting algebras. For example, on a poset F = (X,≤),
Kripke semantics produces the algebra

(6) Up(F ) = (Up(F ), IFst (⊥), IFst (>), IFst (∧), IFst (∨), IFst (→))

= (Up(F ), ∅, X,∩,∪, IFst (→))

That is, the standard Kripke interpretation IFst of the connectives on Up(F ) yields a Heyting
algebra. Similarly, the standard interpretation of the connectives in Beth semantics yields,
on each poset F , a Heyting algebra (this time over a subset of Up(F ); see Section 2.4). Now,
Kripke < Beth means that every Heyting algebra produced in Kripke semantics can also
be produced in Beth semantics but not vice versa: there are Heyting algebras produced
by Beth semantics that are not isomorphic to Up(F ) for any F . Similarly for the other
semantics in (3); all these facts are proved in BH19.

2.3. Set-Based Semantics

The following definition is not completely precise but suffices for our purposes.4

Definition 2.1 (set-based semantics).
1. A set-based semantics for IPC is a class S of structures of some given type. For X 6= ∅,

let S(X) be the class of structures in S with domain X. Furthermore, S associates with
each structure in S(X) a set SVS (X) of subsets of X (but we drop the subscript S
whenever feasible): the set of possible semantic values (over X) of formulas, according
to S .

2. An S-valuation on X is a map v : Prop→ SV(X).
3. An S-interpretation on X is a function I from {⊥,>,∧,∨,→} to corresponding op-

erations on SV(X). I and v recursively associate with each formula ϕ a seman-
tic value [[ϕ]]Iv, as usual:5 [[p]]Iv = v(p), [[⊥]]Iv = I(⊥), [[>]]Iv = I(>), [[ϕ ∧ ψ]]Iv =
I(∧)([[ϕ]]Iv, [[ψ]]Iv), etc.

4. I is consistent with a consequence relation `, if ψ1, . . . , ψn ` ϕ implies that for all
S-valuations v,

⋂n
i=1[[ψi]]

I
v ⊆ [[ϕ]]Iv.

5. Each S-interpretation I over X produces (and can be identified with) an algebra

S(X)I = (SV(X), I(⊥), I(>), I(∧), I(∨), I(→))
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6. There is an S-interpretation Ist such that S(X)Ist is a Heyting algebra and Ist(∧) is set
intersection. Ist is called a standard S-interpretation.

Fact 2.2. Standard S-interpretations are unique.

Proof. Let I1 and I2 be standard S-interpretations. Since I1(∧) = I2(∧) = ∩, and S(X)I1

and S(X)I2 have the same domain, it follows by (5) that ≤S(X)I1 = ≤S(X)I2 = ⊆. More-
over, since bounded lattices can also be defined in terms of the properties of their partial
orders, this shows that the reducts of S(X)I1 and S(X)I2 to {⊥,>,∧,∨}, both assumed to
be bounded lattices, are identical. Furthermore, in all Heyting algebras:

(7) a ∧ x ≤ b iff x ≤ a→ b

Since S(X)I1 and S(X)I2 are Heyting algebras with the same domain, this entails that for
all Z, U, V ∈ SV(X):

U ∩ Z ⊆ V ⇔ Z ⊆ I1(→)(U, V)⇔ Z ⊆ I2(→)(U, V)

This, in turn, entails that I1(→) = I2(→), and, hence, that S(X)I1 = S(X)I2 , i.e., I1 = I2. 2

One often thinks of the elements of X as worlds or states. Kripke semantics, as presented
in Section 2.1, with the pertaining notions of (standard) interpretation and of consistency with a
consequence relation, is a set-based semantics in the sense of Definition 2.1: S is the class of
posets, and, for each F = (X,≤) ∈ S(X), SV(X) = Up(F ), and S(X)Ist = Up(F ).

Carnap’s question for set-based semantics is just as for Kripke semantics: Are there
S-interpretations other than the standard one that are also consistent with `IPC? Let us
look at some more examples.

2.4. Nuclear Interpretations

The concept of nuclear semantics, introduced in [9], covers several well-known seman-
tics for IPC, including Kripke and Beth semantics. If A is a Heyting algebra, a nucleus on A
is a map j : A→ A with the following properties (omitting the superscript A):

(i) a ≤ ja (inflationarity)
(ii) jja ≤ ja (idempotence)
(iii) j(a ∧ b) = ja ∧ jb (multiplicativity)

It easily follows that ≤ in (ii) can be replaced by =, and that we have:

(iv) a ≤ b implies ja ≤ jb (monotonicity)

We say that a ∈ A is fixed, if it is a fixpoint of j, i.e., if ja = a. Note that 1A is always fixed,
as is every element of the form ja, but it is possible to have 0A < j0A. Let Aj be the set of
fixed elements of A and consider the following algebra:

(8) Aj = (Aj, j0A, 1A,∧Aj ,∨Aj ,→Aj )

where ∧Aj is ∧A restricted to Aj, and similarly for →Aj , but, for a, b ∈ Aj, a ∨Aj b =def

j(a ∨A b). The next result is well known (BH19, section 3.2).

Theorem 2.3. If A is a Heyting algebra and j is a nucleus on A, then Aj is a Heyting algebra.

Now recall from (6) the Heyting algebras of the form Up(F ), where F = (X,≤).
When j is a nucleus on this algebra, Bezhanishivili and Holliday call (F , j) a nuclear frame.
They show how familiar poset-based semantics for IPC can be recast as semantics over
nuclear frames. The truth definition for the standard interpretation is then as in (9) below,

where v : Prop→ Up(F )j, and, for readability, we have written [[ϕ]]
F ,j
v rather than [[ϕ]]

IF ,j
st

v :
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(9) a. [[p]]F ,j
v = v(p)

b. [[⊥]]F ,j
v = j∅

c. [[>]]F ,j
v = X

d. [[ϕ ∧ ψ]]
F ,j
v = [[ϕ]]

F ,j
v ∩ [[ψ]]

F ,j
v

e. [[ϕ ∨ ψ]]
F ,j
v = j([[ϕ]]F ,j

v ∪ [[ψ]]
F ,j
v )

f. [[ϕ→ ψ]]
F ,j
v = {x ∈ X : x↑ ∩ [[ϕ]]

F ,j
v ⊆ [[ψ]]

F ,j
v }

More generally, an arbitrary nuclear interpretation (over F ) is a map IF ,j as in
Definition 2.1:3, with semantic values [[ϕ]]I

F ,j
v calculated as specified there.6

Example 2.4 (Kripke semantics). Given F , let jK be the identity function on Up(F ); it
is obviously a nucleus on Up(F ). So, (intuitionistic) Kripke frames are nuclear frames of
the form (F , jK) (or simply F ), and the standard Kripke interpretation IF ,jK

st is now as in
(9), with j = jK. These are exactly the usual truth conditions in Kripke semantics for
intuitionistic logic.

In general, then, a Kripke interpretation on F is a nuclear interpretation of the form
IF ,jK .

Example 2.5 (Beth semantics). There are several versions of Beth semantics, but here we
follow BH19: a Beth frame is a poset F (rather than a tree), and a path is chain C in F closed
under upper bounds: if x is an upper bound of C, then x ∈ C. So, the nuclear setting
applies without change. Let, for U ∈ Up(F ),

(10) jBU = {x ∈ X : every path through x intersects U}

One verifies that jB is a nucleus on Up(F )—the Beth nucleus—and the standard Beth interpre-
tation IF ,jB

st is as in (9) with j = jB. Thus, it differs from the standard Kripke interpretation
only in the semantic values of disjunctions and in that propositional atoms (and, hence, all
formulas) are evaluated as fixed upsets.

In general, we define a Beth interpretation on F to be any nuclear interpretation of the
form IF ,jB .

Example 2.6 (Dragalin semantics). Dragalin generalized Beth semantics by considering a
more general notion of a path, called a development by Bezhanishvili and Holliday. Each
x ∈ X is a associated with a set D(x) of subsets of X satisfying certain conditions. Dragalin
proved that

jDU = {x ∈ X : every development in D(x) intersects U}

is a nucleus on Up(F ), so Dragalin semantics is an instance of nuclear semantics. The im-
portance of this kind of nuclear semantics is seen from the result in [9] that every complete
Heyting algebra can be realized as the set of fixed upsets of a nuclear frame of the form
(F , jD) (this does not hold for Beth semantics).7

Just as before, one has the standard Dragalin interpretation and a notion of an arbitrary
Dragalin interpretation.

We have now seen three main kinds of nuclear semantics, that is, set-based semantics
as in Definition 2.1, where S is some class of nuclear frames, and for ((X,≤), j) ∈ S ,
SV(X) = Up((X,≤))j. For example, Beth semantics can be identified with the class SB of
nuclear frames (F , jB), and Beth interpretations on (X,≤) are SB-interpretations on X.

Since S(X)
IF ,j
st

= Up(F )j is always a Heyting algebra (Theorem 2.3), `IPC is sound

with respect to any nuclear semantics. The next semantic framework for IPC is not strictly
nuclear but almost.
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2.5. Topological Interpretations

Topological semantics is the oldest formal semantics for IPC, going back to [10,11]. Let
Ω(X) be a topology on X, i.e., Ω(X) is its set of opens.8 Then Ω(X) = (Ω(X), ∅, X,∩,∪,→)
is a (complete) Heyting algebra, with

U → V = int((X−U) ∪V)

where int is the interior operation: for Y ⊆ X,

int(Y) =
⋃{U∈ Ω(X) : U ⊆ Y}

So, topological semantics is a set-based semantics as in Definition 2.1, with S as the
class of topological spaces, or some subclass thereof, and SV(X) = Ω(X). By the above,
the standard topological interpretation of the connectives on Ω(X), IΩ(X)

st , is given by

(11) a. IΩ(X)
st (⊥) = ∅

b. IΩ(X)
st (>) = X

c. IΩ(X)
st (∧)(U, V) = U ∩V

d. IΩ(X)
st (∨)(U, V) = U ∪V

e. IΩ(X)
st (→)(U, V) = int((X−U) ∪V)

We can now say that a topological interpretation on X is a map IΩ(X) from {⊥,>,∧,∨,→} to
corresponding functions on Ω(X), and the semantic values of formulas under IΩ(X) and
v : Prop→ Ω(X) are calculated as usual.

If F = (X,≤) is a poset, the Alexandroff topology on X has Ω(X) = Up(F ), and it is
easy to see that int((X−U) ∪V) = {x ∈ X : x↑ ∩U ⊆ V}, so Kripke semantics in effect is
topological semantics with the Alexandroff topology.

In general, the open sets themselves need not be upsets of a partial order. However, a
theorem of Dragalin states that Ω(X) is always isomorphic to the fixed upset algebra of
some nuclear frame; indeed relative to a Dragalin nucleus jD (see BH19, Theorem 4.23 for a
proof). This shows that Topological ≤ Dragalin in the hierarchy (3).

In fact, [9] proved that every nuclear frame (F , j) is equal to a frame (F , jD) with the
same poset and the Dragalin nucleus (Theorem 4.25 in BH19). This shows that Dragalin
semantics (with S as the class of Dragalin frames) and nuclear semantics (with S as the
class of nuclear frames) are equivalent (in terms of producing Heyting algebras). So, in (3),
one can replace Dragalin with Nuclear.

3. Carnap Categoricity

`IPC is sound and complete for all the semantics (classes of nuclear frames or topo-
logical spaces) discussed in the preceding section—relative, of course, to what we are here
calling the standard interpretations of the connectives. However, our interest is not com-
pleteness but categoricity. For each particular semantics S mentioned above, we defined
the notion of a (local) S-interpretation of the connectives and described how semantic
values relative to such an interpretation are computed for each formula.

We also specified, in each case, the standard S-interpretations. These are all consistent
with `IPC. However, could there be other S-interpretations that are also consistent with
`IPC?

Definition 3.1 (categoricity in set-based semantics). A consequence relation ` in the propo-
sitional language is (Carnap) categorical with respect to a set-based semantics S if, for every
structure in S , the only S-interpretation on that structure’s domain consistent with ` is the
standard interpretation. If ` is associated with a particular logic L, we also say that L is
categorical (with respect to S) when ` is.
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What about algebraic semantics? In Section 2.2, we noted that any algebra of the
signature {⊥,>,∧,∨,→} could be taken as an interpretation of the connectives. It is also
reasonable to say that Heyting algebras are the standard interpretations. This leads to two
distinct Carnap style questions about algebraic semantics.

First, we could ask: why Heyting algebras? The answer may seem obvious, but, to
even formulate the question in a non-trivial way, we need to specify a larger class of
algebras from which the Heyting algebras are singled out by consistency with `IPC.

Second, we can follow the pattern from set-based semantics: Given a standard ‘semantic
algebra’ A (normally a Heyting algebra), we can define what it would mean for other
algebras with domain A to be consistent with a consequence relation `. Then, we ask
whether, among such algebras, only A fits the bill relative to our favored consequence
relation. In the case of set-based semantics, however, consistency with ` was defined in
terms of intersection (of the semantic values of the premises) and the subset relation. These
are not available for algebras whose domains are not sets of sets. Instead, we take A itself
to provide the required meet operation and partial order.

3.1. Algebraic Interpretations

The syntax algebra of propositional logic is a term algebra with countably many gen-
erators, which means that for any algebra A of the same signature, every map v from
propositional atoms to A extends to a unique homomorphism to A. However, it would
make no sense to let every algebra of that signature be a putative interpretation of the
connectives. Interpretations are relative to a semantics, and a semantics needs a notion of
truth, or of entailment. We could of course stipulate that [ϕ]Av = 1A means that ϕ is true
in A under v. However, nothing can be done with that stipulation unless we know more
about the role of 1A. For example, why not 0A instead?

On the other hand, we want to make as few assumptions as possible. Without further
ado, we propose the following.

Definition 3.2. A = (A, 0A, 1A,∧A,∨A,→A) is an algebraic interpretation if ≤A defined by
a ≤A b⇔ a ∧A b = a is a partial order.

Then, we define consistency with a consequence relation ` as follows.9

Definition 3.3. An algebraic interpretation A is consistent with `, if, whenever ψ1, . . . , ψn `
ϕ holds, we have for all A-valuations v and all c ∈ A, that if c ≤A [ψi]

A
v for i = 1, . . . , n,

then c ≤A [ϕ]Av . In particular, if ` ϕ, then for all v and all c ∈ A, c ≤A [ϕ]Av .

Thus, if ` has theorems, A has a unique largest element (which under minimal further
assumptions must be 1A), but not all consequence relations have theorems; see Section 4.
We have:

Fact 3.4. Let A be an algebraic interpretation.

(i) A is consistent with `IPC iff A is a Heyting algebra.
(ii) A is consistent with `CPC iff (A, 0A, 1A,∧A,∨A,′A ) is a Boolean algebra, where a′A :=

a→A 0A.

Proof. Apart from the new terminology, this is essentially well-known; for the record we
indicate the proof. (i): We already know that Heyting algebras are consistent with `IPC.
In the other direction, suppose A is consistent with `IPC. Since `IPC >, we have for all
c ∈ A (and all v) , c ≤A [>]Av = 1A, so 1A is the unique largest element. Moreover, for all
a, c ∈ A, since ⊥ `IPC p, we obtain (choosing an A-valuation v such that v(p) = a) that if
c ≤A [⊥]Av = 0A, then c ≤A [p]Av = a. Thus, with c = 0A, we have for all a ∈ A, 0A ≤A a.

Next, the commutativity, associativity, and idempotence of ∧A and ∨A follow easily
from the corresponding IPC-consequences. For example, to show that for all a, b, c ∈ A,
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(a) a ∨A (b ∨A c) = (a ∨A b) ∨A c

we take v such that v(p) = a, v(q) = b, and v(r) = c, and use that p∨ (q∨ r) `IPC (p∨ q)∨ r.
By consistency with `IPC, a∨A (b∨A c) = [p∨ (q∨ r)]Av ≤A [(p∨ q)∨ r]Av = (a∨A b)∨A c.
Similarly, (a ∨A b) ∨A c ≤A a ∨A (b ∨A c), so, since ≤A is assumed to be a partial order,
(a) follows.

Similarly for the absorption equations (dropping superscripts) a ∧ (a ∨ b) = a and
a∨ (a∧ b) = a, as well as the equations (4) involving→. For example, that (a→ b)∧ b = b
follows from the fact that (p→ q) ∧ q `IPC q and q `IPC (p→ q) ∧ q. This shows that A is
a Heyting algebra.

(ii): The right-to-left direction is well known. Moreover, if A is consistent with `CPC,
the defining equations of Heyting algebras are still valid. It only remains to show that
a ∧ a′ = 0 and a ∨ a′ = 1. The first is a consequence of a ∧ (a→ b) = a ∧ b and the fact that
a ∧ 0 = 0. The second identity is the Law of Excluded Middle. 2

3.2. Categoricity

To deal with the second kind of algebraic categoricity issue, we proceed in analogy
with Definition 2.1.

Definition 3.5 (A-interpretations).
1. Let A be an algebraic interpretation. An A-interpretation is a map I from the signature to

appropriate functions on A. We let

AI =(A, I(⊥), I(>), I(∧), I(∨), I(→))=(A,⊥AI ,>AI ,∧AI ,∨AI ,→AI )

and may identify I and AI .
2. An A-valuation is a map v : Prop→ A. I and v recursively assign a value [ϕ]AI

v to each
formula ϕ as usual.

3. AI is A-consistent with ` if whenever ψ1, . . . , ψn ` ϕ, we have for all A-valuations
v and all c ∈ A that c ≤A [ψ1]

AI
v ∧A . . . ∧A [ψn]

AI
v implies c ≤A [ϕ]AI

v . Thus, A is
consistent with ` as in Definition 3.3 if A is A-consistent with `.

In general, AI need not be an algebraic interpretation, even if it is consistent with
`IPC. However, matters of consistency with consequence relations are decided by A, not
AI . WhenA is a Heyting algebra, a strong conclusion aboutAI follows, as we now show.10

Theorem 3.6. If A is a Heyting algebra, and AI is A-consistent with `IPC, then AI = A.

Proof. Let A be a Heyting algebra, and suppose that AI is and A-interpretation which is
A-consistent with `IPC. First,

(b) ∧AI = ∧A

Since p ∧ q `IPC p and p ∧ q `IPC q, we have, for a, b ∈ A and v such that v(p) = a and
v(q) = b, a ∧AI b = [p ∧ q]AI

v ≤A [p]AI
v = a, and, similarly, a ∧AI b ≤A b, so a ∧AI b ≤A

a ∧A b. Moreover, since p, q `IPC p ∧ q, we also have, by the definition of A-consistency,
that a ∧A b ≤A a ∧AI b. This proves (b). Note that it also follows that ≤AI = ≤A. However,
since we do not (yet!) know that AI is a Heyting algebra, in fact not even that the reduct
of AI to {⊥,>,∧,∨} is a bounded lattice,11 we cannot reason as in the proof of Fact 2.2
to directly conclude that A and AI are identical. Instead, we reach this conclusion using
A-consistency with `IPC, in the following steps.

First, reasoning as in the beginning of the proof of Fact 3.4 (i), we see that ⊥AI is the
≤AI -smallest element of A, and >AI the ≤AI -greatest. Thus,
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(c) ⊥AI = 0A and >AI = 1A.

We now claim:

(d) a→AI b ≤A a→A b

To see this, take v with v(p) = a and v(q) = b. Since p, p → q `IPC q, we have [p]AI
v ∧A

[p → q]AI
v ≤A [q]AI

v , i.e., a ∧A (a →AI b) ≤A b. Now recall (7), i.e., that a ∧A x ≤A b iff
x ≤A a →A b. So, (d) follows. The next claim follows by a special case of (7): a ≤ b iff
a→ b = 1 (from (7) with x = 1, since a ∧ 1 = a).

(e) For every A-valuation v, [ϕ]AI
v ≤A [ψ]AI

v iff [ϕ→ ψ]AI
v = 1A.

We are now able to show:

(f) ∨AI = ∨A

Take a, b ∈ A. From p `IPC p ∨ q and q `IPC p ∨ q, we obtain, with a suitable valuation,
that a ≤A a ∨AI b and b ≤A a ∨AI b; hence, a ∨A b ≤A a ∨AI b. It remains to show
a ∨AI b ≤A a ∨A b. Take a valuation v such that v(p) = a, v(q) = b, and v(r) = a ∨A b.
We claim

[p→ r]AI
v = 1A

Since a ≤A a ∨A b, that is, [p]AI
v ≤A [r]AI

v , this follows by (e). Similarly, [q → r]AI
v = 1A.

Now, since

p→ r, q→ r, p ∨ q `IPC r

we have [p → r]AI
v ∧A [q → r]AI

v ∧A [p ∨ q]AI
v ≤A [r]AI

v , that is, [p ∨ q]AI
v = a ∨AI b ≤A

[r]AI
v = a ∨A b. This proves (f). Finally:

(g) →AI =→A

By (d), we only need to check that for a, b ∈ A, a→A b ≤A a→AI b. Suppose x ≤A a→A b.
By (7), x ∧A a ≤A b. Let v be such that v(p) = x, v(q) = a, and v(r) = b. Then, we have
x ∧A a = [p ∧ q]AI

v ≤A [r]AI
v = b, so by (e), [p ∧ q→ r]AI

v = 1A. Now use the fact that

p, p ∧ q→ r `IPC q→ r

By consistency, x = x ∧A 1A ≤A [q→ r]AI
v = a→AI b. We have shown that for all x ∈ A,

x ≤A a →A b implies x ≤A a →AI b. Letting x = a →A b, we have a proof of (g). This
concludes the proof of the theorem. 2

Theorem 3.6 is our main categoricity result, as will be seen from the corollaries in the
next subsection. Fact 3.4 is unsurprising, but it does show why Heyting algebras (Boolean
algebras) are exactly the right choice for intuitionistic (classical) logic. An interesting class
of algebras in this connection are the Dummett algebras defined in BH19. If H is a Heyting
algebra and j a nucleus on H, the Dummett algebra D(H, j) of the same signature is the
same as the Heyting algebra of the fixpoints Hj, except that

(12) a→j b =def a→ jb

Dummett algebras need not be Heyting algebras—Bezhanishvili and Holliday give a
simple example—but they, of course, qualify as algebraic interpretations.12 BH19 proves
the following.

Theorem 3.7 ([8], Theorem 3.25). `IPC ϕ iff ϕ is valid in all Dummett algebras.
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This result shows how consequence, rather than validity, is crucial for our story about
the meaning of the connectives. We need to be able to conclude from ψ `IPC ϕ that, for all
v, [ψ]Av ≤A [ϕ]Av ; it is not enough to know that, for all v, [ψ→ ϕ]Av = 1A. By the above and
Theorem 3.6, non-Heyting Dummett algebras are not consistent with `IPC, even though
they validate all IPC theorems.

3.3. Application to Set-Based Semantics

Let S be a set-based semantics as in Definition 2.1, and let I be an S-interpretation
over X, which is consistent with `IPC. The algebra S(X)Ist of the standard interpretation is
a Heyting algebra, and the algebra S(X)I corresponding to I is an S(X)Ist-interpretation
in the sense of Definition 3.5. Both algebras have the domain SV(X), and valuations in
the set-based sense are identical to valuations is the algebraic sense. So, clearly, we have,
for every formula ϕ,

[[ϕ]]Iv = [ϕ]
S(X)I
v

Since ∧S(X)Ist is intersection, and ≤S(X)Ist is the subset relation, it follows that S(X)I is
S(X)Ist-consistent with `IPC. Thus, by Theorem 3.6, S(X)I = S(X)Ist , that is, I = Ist. We
have proved the following (see Definition 3.1).

Corollary 3.8. IPC is (Carnap) categorical with respect to every set-based semantics. In par-
ticular, the only Kripke interpretation of the connectives consistent with `IPC is the standard
interpretation, and similarly for Beth interpretations (indeed all nuclear interpretations), topological
interpretations, etc.

Remark 3.9. The Carnap categoricity of CPC with respect to classical possible worlds
semantics, proved in [5], is a special case of the result for IPC, since on posets that are sets
of isolated points, IPC and CPC coincide. In more detail: suppose W is any non-empty
set (of ‘worlds’), and IW an interpretation of the connectives over W—i.e., IW assigns to
each connective a function on P(W) of appropriate arity—which is consistent with `CPC.
The upsets of the poset F = (W, {(x, x) : x ∈ W}) are exactly the subsets of W. Thus,
IF = IW is in fact a Kripke interpretation, in the sense of Example 2.4, which is consistent
with `CPC, hence with `IPC. By the Corollary, IF is standard, and so IW is standard. That
is, IW(⊥) = ∅, IW(∧) is intersection, IW(∨) is union, and IW(→)(U, V) = (W−U) ∪ V
(so IW(¬) is complement).

Similarly, letting F be a single reflexive point ({x}, {(x, x)}), the categoricity of CPC
with respect to classical two-valued semantics, mentioned in Section 1, also follows from
Corollary 3.8: in this case, the interpretation functions are truth functions, and the truth
values 0 and 1 correspond to the upsets ∅ and {x}.

The remark underscores the local character of our main result: Corollary 3.8 holds for
each single structure in S .

Again, the absence of non-standard interpretations of the connectives consistent
with `IPC depends crucially on the fact that we require consistency for consequence, not
just validity. In fact, Wesley Holliday found a counter-example (p.c): a non-standard
Kripke interpretation of the connectives which validates all IPC theorems.13 With his kind
permission, we present the example here.14

Example 3.10 (Holliday). Let Ω(X) be any topological space. We will define a topological
interpretation IΩ(X) as in Section 2.5, such that (a) if `IPC ϕ, then for all valuations v
on Ω(X), [[ϕ]]I

Ω(X)

v = X, but (b) IΩ(X) 6= IΩ(X)
st . This gives a generic topological counter-

example. For more concreteness, we can start with a Kripke frame F = (X,≤) and let
Ω(X) be the Alexandroff topology described in that section. Kripke semantics is essentially
topological semantics on Alexandroff spaces, and it is easy to see that the counter-example
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then becomes a non-standard Kripke interpretation IF ,jk (Example 2.4) which validates all
theorems of IPC.

For this example, it is easier to use ¬,∧,∨,→ as primitive connectives. (11-a) is then
replaced by

(11-a)′ IΩ(X)
st (¬)(U) = int(X−U)

Recall the closure operation cl, the dual of int: cl(Y) is the smallest closed set (set whose
complement is open) containing Y. An easy calculation shows

(13) [[¬¬ϕ]]
IΩ(X)
st

v = int(cl([[ϕ]]I
Ω(X)
st

v ))

and thus

(14) [[¬¬¬ϕ]]
IΩ(X)
st

v = int(X− int(cl([[ϕ]]I
Ω(X)
st

v )))

Now define IΩ(X) as follows.

(15) a. IΩ(X)(∧)(U, V) = int(cl(U)) ∩ int(cl(V))

b. IΩ(X)(¬)(U) = int(X− int(cl(U)))

c. IΩ(X)(→)(U, V) = IΩ(X)(¬)(IΩ(X)(∧)(IΩ(X)(¬)(U), V))

d. IΩ(X)(∨)(U, V) = IΩ(X)(¬)(IΩ(X)(∧)(IΩ(X)(¬)(U), IΩ(X)(¬)(V)))

Thus, we are putting double negations in front of negated formulas and the conjuncts of
conjunctions, whereas → and ∨ are defined classically from ∧ and ¬. Clearly, IΩ(X) is
non-standard: for example, just find a space with open sets U, V such that int(cl(U)) ∩
int(cl(V)) 6= U ∩V.

Now consider the following negative translation of classical into intuitionistic proposi-
tional logic:

(16) a. g(p) = p
b. g(ϕ ∧ ψ) = ¬¬g(ϕ) ∧ ¬¬g(ψ)
c. g(¬ϕ) = ¬¬¬g(ψ)
d. g(ϕ→ ψ) = ¬(g(ϕ) ∧ ¬g(ψ))
e. g(ϕ ∨ ψ) = ¬(¬g(ϕ) ∧ ¬g(ψ))

Using well-known facts about negative translations, it is not hard to show that

(17) |=CPC ϕ iff `IPC g(ϕ).15

Finally, observe that IΩ(X) interprets a formula ϕ just as g(ϕ) is standardly interpreted in
topological semantics. In other words, for each topological valuation v we have:

(18) [[ϕ]]I
Ω(X)

v = [[g(ϕ)]]
IΩ(X)
st

v

This is proved by a straightforward inductive argument, using the standard topological
truth definition and (13)–(16). Thus, if `IPC ϕ, then `CPC ϕ, hence `IPC g(ϕ) by (17), and so,

for any topological valuation v, [[g(ϕ)]]
IΩ(X)
st

v = X, which by (18) entails that [[ϕ]]I
Ω(X)

v = X.
That is, IΩ(X) validates all IPC theorems.16

On the other hand, it is easy to see that IΩ(X) is not consistent with `IPC. For example,
one can have [[p]]I

Ω(X)

v = [[p→ q]]I
Ω(X)

v = X, while [[q]]I
Ω(X)

v 6= X.

Remark 3.11. It may be worth noting that, by contrast, categoricity facts about classical
modal logic (see [6]) only require validating all theorems. This is precisely because it is
classical. If L is a modal logic, ψ1, . . . , ψn `L ϕ means by definition that `L ψ1∧ . . .∧ψn → ϕ.
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Thus, if it holds for all v that [[ψ1 ∧ . . . ∧ ψn → ϕ]]
(X,F)
v = X, we can conclude, by the fact

that ∧ and→ are standard (which, as we saw in Remark 3.9, follows from Corollary 3.8),
that

⋂n
i=1[[ψi]]

(X,F)
v ⊆ [[ϕ]]

(X,F)
v .

4. Some Fragments of `IPC

Every intermediate logic (logic between IPC and CPC) is categorical with respect to
set-based semantics as per Corollary 3.8, but it is natural to ask about the categoricity of
logics weaker than IPC. Here, a logic/consequence relation ` is weaker if it is a proper subset
of `IPC. In this section, we look at one class of such logics. Consider any standard natural
deduction axiomatization of `IPC. For Φ ⊆ {⊥,>,∧,∨,→}, let LΦ be the propositional
language with connectives in Φ, and let `Φ be the consequence relation obtained by deleting
the rules for the connectives left out.17 Now one can ask if the results corresponding to
Theorem 3.6 hold for `Φ. We look at a few illustrative cases.

4.1. `∧
It should be clear that the correspondent of Theorem 3.6 holds for `∧, but a quick

look at the details is instructive. Thus, an algebraic interpretation is an algebra A = (A,∧A)
such that a ≤A b ⇔ a ∧A b = a is a partial order, and A is consistent with ` just as in
Definition 3.3. Similarly, the notion of an A-interpretation, and of such an interpretation
being A-consistent with `, is as in Definition 3.5 (restricted to L∧).

Clearly, the standard algebraic interpretations are meet semi-lattices (`∧ has no theo-
rems, so a largest, or smallest, element need not exist). An algebraic interpretation need
not be a meet semi-lattice,18 but consistency with `∧ singles out the meet semi-lattices;
see below.

A set-based semantics S for `∧ is as in Definition 2.1: the (trivially unique) standard
interpretation S(X)Ist is a meet semi-lattice in which Ist(∧) is intersection.

Fact 4.1. (i) A is consistent with `∧ iff A is a meet semi-lattice.
(ii) If A is a meet semi-lattice, and AI is A-consistent with `∧, then AI = A.
(iii) `∧ is categorical in every set-based semantics.

Proof. (i): For the left-to-right direction, use the fact that p `∧ p ∧ p, p ∧ p `∧ p, p ∧ q `
q ∧ p, p ∧ (q ∧ r) ` (p ∧ q) ∧ r, (p ∧ q) ∧ r ` p ∧ (q ∧ r), and that ≤A is anti-symmetric.

(ii): As in the proof of (b) in the proof of Theorem 3.6, using that p ∧ q `∧ p, p ∧ q `∧ q,
and p, q `∧ p ∧ q.

(iii): As in the proof of Corollary 3.8. 2

4.2. `>∧→
In contrast with the preceding example, this is an interestingly large fragment of `IPC =

`⊥>∧∨→.19 Algebraic interpretations, consistency, A-interpretations, and A-consistency are
just as before. The standard algebraic interpretations are called Brouwerian semi-lattices ([15]),
or implicative semi-lattices ([16]): (A,>A,∧A) is a meet semi-lattice with >A as largest
element, and→A satisfies the four axioms in (4) (which use only ∧,→, and 1). There does
not have to be a smallest element.20

Set-based semantics S for this language are defined as before, and standard interpreta-
tions are again unique.

Fact 4.2. (i) A is consistent with `>∧→ iff A is a Brouwerian semi-lattice.
(ii) If A is a Brouwerian semi-lattice, and AI is A-consistent with `>∧→, then AI = A.
(iii) `>∧→ is categorical in every set-based semantics.

Proof. (i): For the left-to-right direction, the relevant inequalities (hence identities) are all
provable in `>∧→.
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(ii): Again, the corresponding parts of the proof of of Theorem 3.6 work: (b), half of (c), (d)
(which depends on (7), which holds in Brouwerian semi-lattices), (e) (likewise, note that 1A

is used), and (g). The `IPC-consequences used in the proof all hold for `>∧→.

(iii): As in the proof of Corollary 3.8.

4.3. `∨
This logic does not exactly fit the previous format, but we can say that an algebraic

interpretation A = (A,∨A) is one where a ≤A b ⇔ a ∨A b = b is a partial order. Then,
we define: A is consistent with `, if, whenever ψ1, . . . , ψn ` ϕ holds, we have for all A-
valuations v and all c ∈ A, that if c ≤A [ψi]

A
v for i = 1, . . . , n, then c ≤A [ϕ]Av . The standard

interpretations are the join semi-lattices.
We can define A-interpretations, and A-consistency with ` (almost) as before. How-

ever, now the proof of (f) in the proof of Theorem 3.6 no longer works, since it depends on
facts about→. Indeed, categoricity fails: we can find a non-standard Kripke interpretation
of ∨ that is consistent with `∨.

Fact 4.3. (i) A is consistent with `∨ iff A is a join semi-lattice.
(ii) There is a non-standard Kripke interpretation consistent with `∨.

Proof. (outline) (i): For the left-to-right direction, we use that p ∨ p `∨ p, p `∨ p ∨ p,
p ∨ q `∨ q ∨ p, p ∨ (q ∨ r) `∨ (p ∨ q) ∨ r, and (p ∨ q) ∨ r `∨ p ∨ (q ∨ r). (Note that these
are single-premise consequences, so lower bounds are not needed.)

(ii): Using the derivability facts of `∨ listed above, it is not hard to verify:

(19) ψ1, . . . , ψn `∨ ϕ iff there is ψi such that each atom in ψi occurs in ϕ.

Now let F be any poset such that there is a nucleus j on Up(F ) which is not the identity,
and let IF (∨)(U, V) = j(U ∪V). Using (19) and the monotonicity of j, it is easy to see that
IF is consistent with `∨, but IF is not the standard Kripke interpretation.21 2

Interestingly, we have here a failure of categoricity in a set-based semantics for a weak
sublanguage of L⊥>∧∨→, a failure which disappears when more connectives are added.
Note that this is another illustration of the asymmetry between ∧ and ∨. Note also that
although `∨ is a fragment of both `IPC and `CPC, the failure of categoricity occurs in a
set-based semantics but not in classical two-valued semantics. Indeed, the introduction
and elimination rules for ∨ uniquely fix the standard truth table for ∨.22

4.4. `∧∨ and `¬∧∨
The logic `¬∧∨ is another interesting fragment of `IPC. Since implication is missing,

we use ¬ in place of ⊥ (see note 21). However, conjunction is present, so the definitions of
algebraic interpretations, consistency, A-interpretations, and A-consistency are just as before,
in both cases. The standard algebraic interpretations are distributive lattices in the case of `∧∨,
and pseudo-complemented distributive lattices in the case of `¬∧∨: pseudo-complementation
means that for each a ∈ A, the maximum of {b : a ∧ b = 0} belongs to A.23

The distributive lattices consistent with `∧∨ need not be bounded, for example, any
linearly ordered set is consistent with `∧∨; note that this logic has no theorems. Pseudo-
complemented distributive lattices are bounded.

The relevant facts about distributivity and pseudo-complementation are easily seen to
be derivable in the respective logics, and we have:

Fact 4.4. (i) A is consistent with `∧∨ iff A is a distributive lattice.
(ii) A is consistent with `¬∧∨ iff A is a pseudo-complemented distributive lattice.

However, as in the case of `∨, there seems to be no way to prove categoricity for ∨ in
these logics, at least not along the lines we have tried so far.
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(20) Open problem
Are the logics `∧∨ and (more interestingly) `¬∧∨ categorical for set-based semantics?

5. Discussion

We find it rather remarkable that IPC is Carnap categorical. Many scholars think that
the intuitionistic meaning of the connectives is best captured by the informal Brouwer–
Heyting–Kolmogorov explanation, and that the familiar formal semantics for which IPC is
sound and complete fail in various degrees to do justice to that explanation. For example,
the BHK explanation of the meaning of→ uses notions such as ‘proof’ and ‘construction’:
a proof of ϕ → ψ is a construction that takes any proof of ϕ to a proof of ψ. The usual
set-based semantics, such as nuclear semantics, involve no similar notions. Nor do they
rely on facts about verification or assertion, although one can argue quite convincingly,
as BH19 does building on Dummett and others, that some instances of nuclear semantics
represent such facts rather accurately.

5.1. Carnap’s Question and the Meaning of the Connectives

However, Carnap’s question, as we construe it here, is a model-theoretic question.
If you will, it is about the extension of the meaning of the connectives. Then, relative to
certain set-theoretic objects taken to be semantic values of sentences (the ‘extensional part’
of sentence meanings), there is nothing more to say about those extensions than how
they determine the semantic value of a complex sentence from the semantic values of its
(immediate) constituents. In set-based semantics for intuitionistic logic, the values are
certain subsets of some domain, so the connectives must be interpreted as functions on
those values. Moreover, what we find remarkable is that, in every set-based semantics as
defined here, regardless of how the appropriate semantic values are selected—for example,
by choosing a nucleus on the set of upsets of a poset or by choosing a topology—the
consequence relation `IPC uniquely fixes, among all the in-principle available options,
the functions interpreting the connectives on those values.

Interestingly, these facts are all explained by a single semantic result about Heyting
algebras, i.e., Theorem 3.6, which has nothing per se to do with subsets of domains.

Much less surprising is the fact that the class HA of Heyting algebras is exactly the right
choice: Fact 3.4. Still, facing the extensive literature on algebraic semantics for intuitionistic
logic, someone might naively ask: why Heyting algebras? Are there no other possible
algebraic interpretations? No: If you want to work with a class C of algebras—algebraic
interpretations in our sense—all of whose members are consistent with `IPC, then C ⊆ HA.
Indeed, HA is the largest such class, and similarly for `CPC and Boolean algebras.

These facts have nothing to do with completeness. To see this, define for each algebraic
interpretation A the semantic consequence relation |=A by

(21) ψ1, . . . , ψn |=A ϕ iff for all valuations v on A and all c ∈ A, c ≤A [ψi]
A
v for

i = 1, . . . , n implies c ≤A [ϕ]Av .

Thus, A is consistent with ` iff ` ⊆ |=A, and ` is sound and complete for a class C of algebras
iff ` ⊆ ⋂

A∈C |=A (soundness) and
⋂
A∈C |=A ⊆ ` (completeness). So, while it happens

to be true that HA is the largest class for which `IPC is sound and complete, it is also the
largest class for which `IPC is sound, by Theorem 3.6(i). Completeness is not needed to
single out HA.

Further, the abstract completeness of a logic, in the sense of its set of theorems (or its
consequence relation) being recursively enumerable, is irrelevant to categoricity. For exam-
ple, every intermediate logic is categorical with respect to set-based semantics, but there
are uncountably many intermediate logics, and, hence, uncountably many whose set of
theorems is not recursively enumerable.

Going beyond propositional logic, a concrete example of an incomplete logic that is
Carnap categorical (the meaning of the logical constants is fixed by the standard conse-
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quence relation) is the logic L(Q0), which is a classical first-order logic with the additional
quantifier ‘there are infinitely many’.24

5.2. Further Questions

Here are some final observations and open questions.25

1. One can weaken the logics `Φ defined in Section 4 by constraining the inference rules
in various ways. A case in point is [20], which studies a weaker logic in L¬∧∨, called
`F, with restrictions on the ∨E and ¬I rules. Among other things, distributivity no
longer holds.26 Holliday shows how `F can be seen as a neutral base logic, from which
intuitionistic logic, versions of the orthologic studied in [21], and classical logic, can be
obtained by suitable additions or changes to the rules or by corresponding constraints
in the algebraic or the relational semantics he provides for `F. Finding a non-standard
interpretation consistent with `F—if there is such an interpretation—might be easier
than finding one for `¬∧∨.

In the same spirit, we may ask whether there is a proper fragment of `IPC in the
language L⊥>∧∨→ that is Carnap categorical. If no such fragment exists, that would be a
new kind of functional completeness property of IPC.

2. Theorem 3.6 is an existence and uniqueness result: there is an interpretation consistent
with `IPC (namely, the standard interpretation), and it is in fact the only one. In the
proof-theoretic tradition, the existence and uniqueness of propositional connectives
is a well-established topic; see [12], Ch. 4, for a comprehensive overview. Here, the
existence and uniqueness is relative to a set of rules. For example, ∧ and ∨ are unique
relative to a natural deduction presentation of IPC, in the sense that if we introduce
new connectives ∧′ and ∨′, with the same rules as for ∧ and ∨, respectively, then
ϕ ∧ ψ is equivalent to ϕ ∧′ ψ, and similarly for ∨ and ∨′. Indeed, we only need the
introduction and elimination rules for these two connectives. With the notation from
Section 4, we have: ϕ ∧ ψ a`∧∧′ ϕ ∧′ ψ and ϕ ∨ ψ a`∨∨′ ϕ ∨′ ψ.
As Humberstone noted, and [22] spells out in detail, there is a difference between
∧ and ∨ here: while the former is implicitly definable in a precise sense, the latter,
although unique, is not. Došen and Schroeder-Heister explore connections to Beth’s
Definability Theorem.27

It is an intriguing question whether, and in that case how, their proof-theoretic notion
of implicit definability relates to our semantic notion of categoricity (which exhibits a
similar contrast between ∧ and ∨).

3. We have so far followed the lead of [5] and other papers in considering consequence
relations ` where the first argument is a (possibly empty) set of formulas and the
second is a formula; the SET-FMLA setting in the terminology of [12]. One could look
at other settings, such as FMLA (no premises), SET-SET, FMLA-FMLA, or SEQ-FMLA

(with a sequence of premises). As we have seen, the categoricity results would differ
significantly. We think SET-FMLA most naturally corresponds to intuitive ideas about
‘what follows from what’, but one would like a better argument for why the others
are less suitable. Alternatively, and less contentiously, an overview of what the results
would be in those settings.28

4. In all categoricity results (in our sense) that we are aware of, it is practically immediate
that any interpretation consistent with the relevant consequence relation ` must
interpret conjunction (∧) standardly. It is the other logical constants that need some
work (except for ⊥ if Ex Falso holds). However, one could argue that this is built into
our definition of consistency with ` in Definition 2.1: the intersection of the values of
the premises must be included in the value of the conclusion. This guarantees that
U ∩V ⊆ I(∧)(U, V); the converse inclusion is from single-premise ∧-elimination.
By contrast, the semantics for IPC presented in [24] might well be called a set-
based semantics, since the semantic values are sets of states, but it does not fit our
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Definition 2.1.29 The relevant class of structures is the class of complete, residuated
partial orders F = (X,≤), where completeness, as usual, means that least the upper
bounds (t) and greatest lower bounds (u) of all subsets of X exist. 30 Fine’s (standard)
interpretation of conjunction is as follows:

(22) [[ϕ ∧ ψ]]Fv = {x t y : x ∈ [[ϕ]]Fv and y ∈ [[ψ]]Fv }

x t y is thought of as the ‘fusion’ of x and y. Accordingly, ϕ is called an exact conse-
quence of ψ1, . . . , ψn if (for all F and v) t{x1, . . . , xn}∈ [[ϕ]]Fv whenever xi ∈ [[ψi]]

F
v ,

for i = 1, . . . , n. Fine shows that `IPC is sound and complete for this notion of seman-
tic consequence. Although Definition 2.1 does not apply here (since it intersects the
semantic values of the premises, rather than ‘fusing’ their members), one could well
raise the issue of categoricity with respect to Fine’s semantics. However, the results in
this note say nothing about that.

5. Another natural line of inquiry would be to investigate categoricity for intuitionistic
predicate logic. To what extent do the results of classical predicate logic ([5]) carry over?

We feel these issues deserve more thought but leave them for future work.
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Notes
1 Compositionality is by now an accepted requirement on formal semantics, but the idea was not around in 1943. The result as

stated presupposes that propositional atoms are treated as variables, as we do here. Otherwise, one would have to exclude by
stipulation the non-standard compositional interpretations making all sentences true, since these would also be consistent with
`CPC.

2 Most but not all: a semantics for IPC, to which our results do not apply, is given in Section 5.
3 There are several equivalent ways of defining Heyting algebras; see BH19, Section 2.1.
4 In earlier work we used ‘possible worlds semantics’ rather than ‘set-based semantics’, but this is potentially misleading. Indeed,

the elements of the domains in the structures in S need not have anything to do with worlds, or states, or possibilities. A more
accurate label, in view of clause 6 of the definition, would be intersective set-based semantics, but we find this too clumsy. An
example of a semantics for IPC where semantic values are sets but which is not set-based in our sense is mentioned Section 5.2:4.

5 We use [·]·v for semantic values in algebraic semantics, and [[·]]·v for values in set-based semantics.
6 BH19 lets valuations be functions v from Prop to Up(F ) (which they write as Up(X)) and then defines [[p]]F ,j

v = jv(p). Since the
standard interpretation of the connectives takes pairs of fixed upsets to fixed upsets, all semantic values belong to Up(F )j. So, we
obtain the same result by taking valuations to map propositional variables directly to fixed upsets, as done here.

7 A Heyting algebra A is complete if
∨A B exists for every B ⊆ A (and hence

∧A B also exists). The Heyting algebras exemplified in
this note are in fact complete, but this will not play a role for our purposes here.

8 So Ω(X) ⊆ P(X), ∅, X ∈ Ω(X), and Ω(X) is closed under finite intersections and arbitrary unions.
9 We are now in the framework that Humberstone [12] calls ≤-based algebraic semantics. The definition is suggested by his Remark

2.14.7(i).
10 Theorem 3.6 generalizes our original formulation of Carnap categoricity for IPC, and was suggested to us by an anonymous

referee, to whom we are most grateful.
11 It is easy to find examples of algebras A1, A2 of signature {⊥,>,∧,∨} such that A1 is a bounded lattice, A1 = A2, ∧A1 = ∧A2 ,

and ≤A1 =≤A2 , but ∨A2 is not the least upper bound operator.
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12 Dummett algebras have an interesting connection to a proposal in [13] to explain the significance of Beth semantics in terms of a
distinction between a formula being verified and assertible at a stage x (BH19, end of section 3.2)).

13 BH19 gives a simple example of a Dummett algebra that is not a Heyting algebra (just before Theorem 3.25), using the Beth
nucleus jB on Up(F ), where F is the poset {0, 1} with the standard order, so Up(F ) is {∅, {1}, {0, 1}} with the inclusion order.
However, this does not yield a non-standard Beth interpretation, since the non-standard interpretation of→ as in (12) does not
carry over to Up(F )jB = {∅, {0, 1}}.

14 The example was originally intended to show that the stronger notion of consistency is needed for the result in [5] about CPC; see
Remark 3.9. Here, we have adapted it to IPC.

15 g is similar to the Kolmogorov translation, say, G, which puts a double negation in front of all subformulas. One can show that if ϕ

is not an atom, `IPC g(ϕ)↔ G(ϕ). It is well known that `CPC ϕ⇔ `IPC G(ϕ), and since no atom is a theorem, (17) follows. [14]
is a survey of various negative translations.

16 Indeed, it validates all CPC theorems, by (17), and since the above argument in fact works for all valuations v : Prop→ P(X).
As Wesley Holliday pointed out, IΩ(X) evaluates complex formulas using the double negation nucleus, i.e., in the Heyting algebra
of regular open sets (sets U such that U = int(cl(U))), which is a Boolean algebra.

17 In most (all?) cases, `Φ turns out to be the restriction of `IPC to LΦ.
18 For example, let A = ({a, b},∧A), where (dropping superscripts) a ∧ a = a, b ∧ b = b, a ∧ b = b, b ∧ a = a. Then x ≤ y, i.e.,

x ∧ y = x, holds iff x = y, so ≤ is a partial order, but ∧ is not commutative in A.
19 We skip the brackets and commas when writing `Φ.
20 If we add ⊥ to the signature as the smallest element, we have negation, and contradictions, in the language, so e.g., (a→ a)→

⊥ = ⊥. The results corresponding to Fact 4.2 below still hold, by an easy addition to the proof.
21 This simple non-standard interpretation was suggested by Wesley Holliday, and replaces a more ad hoc construction than we

originally gave. Using another ad hoc construction, one can give a non-standard Kripke interpretation of ¬, which is consistent
with `¬, but we omit the proof of that here. Here, `¬ is defined with the two natural deduction rules

ψ ¬ψ
ϕ

[ϕ]
:
ψ

[ϕ]
:
¬ψ

¬ϕ

22 The rows 111, 101, 011, are fixed by p `∨ p ∨ q and q `∨ p ∨ q. The row 000 is fixed by p ∨ p `∨ p, which is an instance of
∨-elimination.

23 Here 0 is identified with a ∧ ¬a. The variety of pseudo-complemented lattices can also be defined by adding the following
equations to those for distributive lattices:

a. 0∧ a = 0
b. a ∧ ¬(a ∧ b) = a ∧ ¬b
c. a ∧ ¬0 = a
d. ¬¬0 = 0

See [17] for `¬∧∨, and [18] for `∧∨, or consult [19].
24 This was observed by the second author and is stated and generalized in [7]. The set of valid sentences in L(Q0) is not recursively

enumerable.
25 Questions and comments from several people inspired the remarks in this subsection, in particular from Wes Holliday for part 1

and from Johan van Benthem for part 2.
26 Holliday presents `F with a Fitch-style natural deduction system, where the added constraint becomes a requirement on the

Reiteration rule. `F is also extended to a first-order language with the quantifiers ∀ and ∃ (but without → and =). Failure
of distributivity is a characteristic of quantum logic, but Holliday argues that it also accords with certain facts about natural
language semantics, in particular facts about epistemic modals.

27 Humberstone [12], Chapter 4.35, proves a similar result for ∨: it is not uniquely characterizable by what he calls zero-premise rules.
See also the discussion in [23], pp. 110–114.

28 In fact, the solution proposed in Carnap [1] to the existence of non-normal interpretations was in effect to use the SET-SET

framework instead. This makes good sense for classical logic. However, for intuitionistic logic there is, as far we know, no
obviously correct candidate for the SET-SET version of IPC. For example, p ∨ q ` p, q is not valid in standard Beth semantics (since
we can have jb(U ∪V) 6⊆ U ∪V), although it holds in Kripke semantics.

29 We thank an anonymous referee for directing our attention to Fine’s semantics, which is based on partial orders, but where
semantic values are not upsets.
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30 Fine defines, for x, y ∈ X,

x → y = u{z ∈ X : y ≤ x t z}

and calls F residuated if it always holds that y ≤ x t (x → y). As pointed out in BH19 (Section 2.3), Fine’s frames are not complete
Heyting algebras but complete co-Heyting algebras. Fine argues that his semantics comes closer to the BHK interpretation of the
connectives than other formal semantics for IPC, in view of the clause (22) for conjunction, as well as the clause for implication:

[[ϕ→ ψ]]Fv = {t{x → f (x) : x ∈ [[ϕ]]Fv } : f is a function from [[ϕ]]Fv to [[ψ]]Fv }
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