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Abstract: A variety of agrochemicals, especially fertilizers, are applied indiscriminately by farmers
across trapezoidal landscapes to increase productivity and satisfy the rising food demand. Around
one-third of the populace in developing nations is susceptible to zinc (Zn) deficiency as a result of
their direct reliance on cereals as a source of calories. Zinc, an essential micronutrient for plants,
performs several critical functions throughout the life cycle of a plant. Zinc is frequently disregarded,
due to its indirect contribution to the enhancement of yield. Soil Zn deficiency is one of the most
prevalent micronutrient deficiencies that reduces crop yield. A deficiency of Zn in both plants and
soils results from the presence of Zn in fixed forms that are inaccessible to plants, which characterizes
the majority of agricultural soils. As a result, alternative and environmentally sustainable methods are
required to satisfy the demand for food. It appears that the application of zinc-solubilizing bacteria
(ZSB) for sustainable agriculture is feasible. Inoculating plants with ZSB is likely a more efficacious
strategy for augmenting Zn translocation in diverse edible plant components. ZSB possessing plant
growth-promoting characteristics can serve as bio-elicitors to promote sustainable plant growth,
through various methods that are vital to the health and productivity of plants. This review provides
an analysis of the efficacy of ZSB, the functional characteristics of ZSB-mediated Zn localization, the
mechanism underlying Zn solubilization, and the implementation of ZSB to increase crop yield.
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1. Introduction

The majority of soils around the world are lacking in plant nutrients, especially
micronutrients, and this deficiency leads to the low productivity of agricultural products.
Insufficient nutrition and hunger are the two most serious threats to millions of people in
poor countries. The use of important nutrients in soil is regarded as an integral component
of agriculture in advanced nations. The nutrition of plants is a crucial aspect of improving
general cultivation, including the standard of plant products [1]. Micronutrients such as
manganese (Mn), molybdenum (Mo), iron (Fe), boron (B), chloride (Cl), copper (Cu), and
zinc (Zn) are essential for livestock, plants, human growth, and development. However,
shortages of these nutrients have been recorded in different parts of the world, including
Australia, Pakistan, Afghanistan, China, Brazil, Turkey, Africa, Iran, the United States, Iraq,
and India, ultimately impacting the soil system and, hence, crop productivity [2].

One of the important elements for optimal plant growth is Zn. Zinc plays an important
role in various growth and metabolic aspects, including photosynthesis, sugar synthesis,
protein synthesis, fertilization and seed formation, growth regulation, disease resistance,
etc. All these processes are hampered by Zn deficiency, which ultimately reduces the
productivity potential of crop plants [3]. Both humans and animals need a significant
amount of Zn; thus, there is a great likelihood that human health will be impacted in
regions where crops are frequently deficient in Zn. This is proven by the fact that fertility
issues have become more prevalent in people of these regions over the past few years, and
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because the result is much stronger in animals. An absence of pasture, along with poor
animal nutrition, affects the regularity, resulting in animal conception irregularities. By
examining the quantity of microminerals in feed and fodder samples, numerous studies
were carried out to determine the prevalence of micromineral shortages in animals. One
element that has been discovered to be severely lacking in several Indian geographic regions
is Zn [4]. Although there is more than enough Zn in the soil to support crop growth, plants
are not able to uptake it, due to the presence of inaccessible Zn fragments. Numerous
factors influence Zn’s availability in the soil, including soil texture, pH, soil phosphorus,
and meteorological conditions. Exogenous usage of Zn in the form of fertilizers is also
unorthodox, due to its quick transformation into inaccessible components and buildup
in the soil [5]. Therefore, there is a dire need for some exogenous strategies that can
increase the availability and accessibility of Zn to the plants for their optimal growth
and development.

Recently, various techniques have been used to reduce Zn deficiency in host plants.
Among these, the application of chemical fertilizers is a costly and unsustainable approach,
making crops susceptible to illnesses and, over time, reducing the soil’s fertility. Moreover,
indiscriminate fertilizer use has polluted the soil and water, endangering both human
health and plant life. Therefore, the interest of researchers is focused on the use of eco-
friendly and economic tools which can improve the availability of nutrients (especially
Zn) without harming the environment. The use of Zn-solubilizing bacteria (ZSB) is a
low-cost alternative technique for Zn biofortification, providing the optimal sustainable
approach to environmentally friendly farming. Because microorganisms must exist for Zn
solubilization, enhancing the capacity of microbes to solubilize many different insoluble Zn
components can be efficiently used to boost the bioavailability of Zn in crops [2]. ZSB found
in the rhizospheric hub, as well as in interior plant tissues, demonstrate their ability to
solubilize Zn in many different kinds of ways [6]. ZSB-mediated plant growth is generally
a consequence of possibly “direct” or “indirect” plant growth-related strategies. ZSB
may affect the plant hormone concentration in plants, as well as improve the acquisition
of crucial micronutrients via the accumulation of organic acids and enzymes through
direct processes. The uptake of nutrients aided by ZSB may frequently include Zn, Fe,
P, N, and K. The indirect mechanism characteristic includes the generation of secondary
metabolites, specifically antifungal metabolites, followed by antibacterial chemicals, which
might mitigate plant damage caused by phytopathogens (such as soil fungi and bacteria) [7].
Additionally, ZSB have the ability to modulate soil properties, which further enhance the
availability of Zn to the plants [8].

Keeping in view the above facts, the current review focuses on the magnitude of Zn
deficiency, as well as its availability in the soil and its impact on growth and productivity
of plants. Moreover, the study discussed the underlying mechanism of Zn solubilization by
ZSB, which could be a sustainable approach to improve the bioeconomy of food crops by
increasing their quality and productivity.

2. Zinc Bioavailability in Soil

The concentration of Zn in the soil majorly depends on the physicochemical properties
of the soil. The major edaphic factors affecting the availability of Zn include pH and redox
conditions, content of organic matter, total Zn concentration, and microbial activities in the
soil. The activity of Zn is the soil has a direct relationship with increasing proton activity;
therefore, the solubility of Zn will always be inversely proportional to the soil pH [9]. For
example, the solubility and mobility of Zn were reported to be higher in acidic soil than
in alkaline, indicating that the pH of the soil is an important factor for Zn availability [10].
Similarly, soil amended with organic matter displayed higher mobility of metals, including
Zn, further revealing the impact of soil properties of Zn availability [11]. The amount of Zn
present in the soil can be determined through the geochemical composition, as well as the
deterioration, of the primary rock (Table 1). The production and consumption of Zn-rich
goods, as well as contamination from the environment, may alter the composition of the
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parent rock. The Zn content of the Earth’s crust is 78 mg/kg, varying among the parent
rocks. Zn concentration, for instance, ranges from 40 to 120 mg/kg in magmatic rocks, 10 to
25 mg/kg in dolomites, 15 to 30 mg/kg in sandstones, and 80 to 120 mg/kg in sedimentary
rocks and limestones [12].

Table 1. List of Zn mineral ores in soil.

Mineral Zn Complexed Zn Adsorbed Zn

Smithsonite (ZnCO3) Manure Zn-CaCO3
Sphalerite (ZnS) Organic Zn-MgCO3

Zincite (ZnO) Residues Zn-FeO
Franklinit (ZnFe2O4) Zn-MnO

Wellemite (Zn2SiO4) Hopeite [Zn3(PO4)2·4H2O]

3. Effectiveness of Zn Fertilizers in Soil

Understanding the cause of Zn scarcity can help in planning appropriate actions to
increase soil fertility and crop productivity. The use of various fertilizers, the selection
of which is determined by their cost, simplicity, economic compatibility, administration
method, and environmental acceptability, is now the most prevalent option used to address
Zn shortages. Zn fertilizers are often divided into three categories, namely inorganic,
natural organic, and synthetic chelate complexes [4]. ZnO, ZnCO3, ZnSO4, Zn3(PO4)2,
and ZnCl2 are examples of inorganic Zn sources. The most efficient, readily available,
and least expensive fertilizer applied through soil or foliar is Zn sulfate heptahydrate
(ZnSO4·7H2O) [2]. Organic Zn fertilizers are composed of a range of ingredients, the
most common of which are Zn phenolate, Zn-EDTA, and Zn lignosulfonate. Fertilizers
such as zincated urea, zincated super, and boronated super have demonstrated long-term
effectiveness in increasing soil fertility and lowering plant micronutrient deficiency, when
paired with micronutrients. Farmers use organic fertilizers less frequently, due to their
inefficiency and budgetary issues [13]. To overcome these challenges, scientists are working
toward advancing the development of biofertilizers that could increase the soil’s soluble
Zn concentration without harming the environment [4].

4. Physiological Functions of Zn in Plants

Zinc needs to be present in minute but important amounts for numerous essential plant
physiological pathways to function properly. Zinc is a structural constituent or regulatory
cofactor of many different enzymes and proteins involved in various metabolic pathways
in plants; for instance, in photosynthesis and carbohydrate metabolism, protein as well as
auxin metabolism, the maintenance of membrane integrity, pollen formation, and resistance
to pathogen attack [12,14,15]. Because Zn is required for the activity of a wide range of
enzymes, Zn shortages therefore impair protein, carbohydrate, and auxin metabolism,
as well as reproductive activities [12,14]. Zinc plays a vital role in maintaining cellular
membrane integrity, by modulating the detoxification of reactive oxygen species [16]. More-
over, Zn-deficient plants are more susceptible to root infections like Fusarium graminearum,
due to greater leakage of carbon-containing chemicals into the rhizosphere [12]. Zinc also
safeguards plants against oxidative stress by increasing the activity of antioxidant enzymes
such as SOD (superoxide dismutase), POD (peroxidase), CAT (catalase), APX (ascorbate
peroxidase), and GR (glutathione reductase) [17]. Furthermore, Zn aids in pollination by
influencing the pollen tube development [12]. Zn is also required for the maintenance of
living membranes and is also linked to membrane phospholipids as well as sulfhydryl com-
ponent groups [15]. It can also form tetragonal compounds with cysteine polypeptide chain
residues, protecting proteins and lipids from oxidative damage [18]. Zn deficiency in plants
is associated with the disruption of normal enzyme action, which, for instance, inhibits
photosynthesis, as Zn is a cofactor of carbonic anhydrase, boosting the fixation of CO2 in
the chloroplast and consequently the Rubisco enzyme’s carboxylation capabilities [18]. Fur-
thermore, a deficiency of Zn ions produces a variety of irregularities in the development of
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plants, e.g., dwarfism, chlorosis, and, more specifically, spikelet sterility [15]. Additionally,
Zn deficiency has an adverse effect on the quality of harvested crop products, infection
induced by pathogen attacks, and plant susceptibility to various abiotic stresses [12].

5. Zinc-Solubilizing Bacteria (ZSB) as a Biofertilizer

Biofertilizer is defined as a substance containing microorganisms that are living and,
when applied to seed, plant surfaces, or soil, colonize the rhizosphere or the plant and
facilitate development through boosting the intake, along with the accessibility, of essen-
tial nutrients for the host plant [19,20]. Microbial inoculants have various advantages
over chemical alternatives. They are environmentally friendly and sustainable sources
of renewable nutrients necessary for soil health and life [21,22]. They also have negative
effects on various agricultural diseases that help the plants to resist unfavorable circum-
stances [19]. In accordance with the ability, they have to acquire nutrients from the soil, fix
atmospheric nitrogen, drive nutrient solubilization, and function as biocontrol agents [23];
therefore, various microbiological species are being widely exploited to serve as effective
natural fertilizers.

ZSB can help to overcome Zn shortages by turning insoluble Zn into soluble Zn,
improving its availability and the efficiency of its uptake by host plants. The selection and
inoculation of ZSB, either in pure form or in combination with inexpensive insoluble Zn
substances, would reduce the expense of manufacturing the agricultural product [1]. A
number of microbes have also been shown to serve an important role with regard to the
solubilization of potassium (K), phosphorus (P), iron (Fe), silicates, and Zn in plant roots.
Khan et al. [24] reported that Zn-mobilizing plant growth promoting rhizobacteria (PGPR)
significantly improved total biomass, harvest index, yield, and Zn content in rice grains, and
reduced the symptoms of Zn deficiency. Rehman et al. [25] reported a higher efficacy of ZSB,
i.e., Pseudomonas sp., in improving the productivity of wheat plants. Abaid-Ullah et al. [26]
qualitatively and quantitatively selected 9 out of 50 ZSB on a variety of insoluble Zn ores,
including Zn(CO3)2, ZnO, Zn(PO4)3, and ZnS, and recorded the higher bioavailability
of Zn in ZSB-inoculated ores. Among the ZSB, Serratia liquefaciens, S. marcescens, and
B. thuringiensis FA-2, FA-3, and FA-4 strains outperformed and improved the Zn uptake in
grains by 68%, 57% and 46%, respectively. When PGPR strains are inoculated into various
plant species, they have been demonstrated to boost the availability and uptake of Zn [19].
In a nutshell, ZSB can increase the bioavailability of Zn to crops by making it soluble, from
both organic and inorganic pools of total soil Zn.

6. Roles of ZSB in the Biofortification of Crop Plants
6.1. Mechanism of Action

Insoluble zincate formation as a result of Zn fertilizer applications is a severe threat to
the plant–soil system. Zinc-solubilizing bacteria can be employed as an alternative to Zn
supplements, as they can convert insoluble forms of Zn into soluble forms. Moreover, they
can improve plant growth and development by breaking down complex Zn molecules into
simpler forms, thereby boosting the quantity of Zn accessible to the plants. The capacity of
PGPR to dissolve metal salts is critical, because it allows plants to use the mobilized forms.
PGPR uses a range of mechanisms to solubilize nutrients in soil; for example, acidification
through the production of organic acids, exchange reactions, the manufacturing of metal
chelating molecules known as “siderophores” or “chelated ligands”, and the involvement
of an oxidation–reduction system [4,27] and gluconate or gluconic acid derivatives that
consist of 2-keto-gluconic acid and 5-keto-gluconic acid [2], as well as many other organic
acids produced by PGPR, are likely the mechanisms by which Fe and Zn are mobilized [28].
Acidification is the most prevalent method that ZSB choose to improve the solubilization
and bioavailability of Zn. Sindhu et al. [6] observed that biofertilizer varieties featuring
Pseudomonas sp., Agrobacterium sp., and Azospirillum lipoferum released insoluble Zn as a
result of the production of the chelating agent ethylenediaminetetraacetic acid, thereby
making the Zn accessible to rice. Moreover, ZSB also produce organic acids in the soil,
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which act as a reservoir for Zn cations, leading to the lowering of the soil pH around
them [29]. The synthesis of gluconate, or derivatives of gluconic acid, such as 2-keto-
gluconic acid, 5-keto-gluconic acid, and many other organic acids, by ZSB are likely key
components in the procedure of Fe and Zn absorption [4]. Yadav et al. [30] reported that
the transformation of insoluble forms of Zn compounds to soluble forms is achieved by
Bacillus species through the secretion of organic acids, proton extrusion, and the synthesis
of chelating ligands; also, ZSB produces gluconic acid and 2-ketogluconic acid, which are
the primary acids that regulate Zn solubilization.

6.2. Chelation of Zn by Siderophore

Zn-chelating substances raise Zn’s bioavailability in the root rhizosphere and are
released by the roots of plants and ZSB. The ZSB release a variety of compounds that
bind to Zn2+ to lessen their interaction within the soil [5]. Siderophores are potent soluble
Zn-binding chelating agents. These substances are tiny, high-affinity molecules that are
released by bacteria, fungi, and plants. Because of low Zn solubility at high pH levels,
these substances are formed by a variety of bacteria, including those that respond to Zn
deficiency, which often occurs in neutral to alkaline pH soils. Kumar et al. [31] have
identified siderophore-producing microorganisms from the rhizosphere that are members
of the following genera: Bradyrhizobium, B. megaterium, P. aeruginosa, Pseudomonas, Serratia,
and Streptomyces. Verma et al. [32] identified Bacillus altitudinis C7 and Pseudonocardia alni
M29 as major siderophore producers, which exhibited the potential ability to solubilize
Zn. Similarly, Bhatt and Maheshwari [33] reported that Bacillus megaterium, a ZSB, was
able to enhance plant growth through siderophore production. Similarly, Serratia sp. and
Acinetobacter sp. were also observed to be siderophore-producing ZSB by Othman et al. [34].

6.3. Molecular Mechanism of Zn Uptake and Translocation in Plants

Genomes of plants are made from a vast array of genes which exhibit accurate se-
quences of expression, in accordance with the absorption and transportation of Zn. This
mechanism guarantees that all tissues, particularly the edible portions, acquire an adequate
quantity of essential nutrients needed to maintain the essential functions of the cell. Certain
genes, particularly those belonging to the ZIP family, were recently identified in plants
and are essential for the transportation and build-up of Zn [35]. Elevated or decreased Zn
concentrations affect the way these particular genes show themselves. Various plants were
discovered to have upregulated expressions of ZIP family genes during a Zn shortage [6].
Ajeesh Krishna et al. [36] reported 16 ZIP transporters in different plant parts of rice, com-
prehending the mechanics of Zn transport. A significant influx transporter was found
in the plasma membrane of rice, ZIP-OsZIP9, demonstrating its role in Zn uptake [37].
Deshpande et al. [38] reported that the TaZIP family of genes are essential for the uptake and
movement of Zn in different parts of wheat. Similarly, the expression of TaZIP transporters,
including TaZIP3, TaZIP5, TaZIP6, TaZIP7, and TaZIP13, were elevated in the shoot and root
of wheat during Zn deficiency [39].

The details of ZSB’s role in improving the growth and productivity of host plants are
listed in Table 2.

Table 2. List depicting the mode of action of various ZSB in various host plants.

S. No. Name of ZSB Host Plants Mode of Action References

1.
Pantoea dispersa, P. agglomerans,

Pseudomonas fragi,
Rhizobium sp., and E. cloacae

Triticum aestivum
Increased shoot dry weight

and Zn uptake and accelerated
the bioavailability of Zn.

[40]

2. Bacillus sp. Zea mays

Promoted root and shoot
length, dry and fresh weight,

transpiration rate, and
chlorophyll content.

[41,42]
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Table 2. Cont.

S. No. Name of ZSB Host Plants Mode of Action References

3. Bacillus sp. Oryza sativa

Higher photosynthetic rate,
transpiration rate, stomatal
conductance, and carbonic
hydrase activity, as well as

reduced electrolytic leakage.

[43]

4. Trichoderma harzianum and
Bacillus amyloliquefaciens Triticum aestivum

Upregulated the expression of
ZIP transporters, caused more
plant growth, and improved

Zn fortification.

[44]

5. Bacillus aryabahttai Oryza sativa Improved plant biometrics,
especially grain yield. [45]

6.

Ralstonia picketti, Pseudomonas
aeruginosa, Klebsiella

pneumoniae and
Burkholderia cepacia

Oryza sativa
Increased Zn biofortification,

growth, and Zn bioaccessibility
to the plants.

[46]

7. Burkholderia and Acinetobacter Oryza sativa

Improved dry matter
production, the number of

panicles, grain and straw yield,
and Zn uptake.

[47]

8.

Ochrobactrum intermedium,
Paenibacillus polymyxa, Bacillus

cereus, Stenotrophomonas
maltophili, Streptomyces, and

Arthrobacter globiformi

Cicer arietinum

Increased availability of Zn,
increased nitrogen (N) and P

content in grain, and increased
Zn content in shoot, roots,

and grains.

[48]

9. Burkholderia cepacia and
Acinetobacter baumannii Zea mays Improved plant height, root

length, and Zn uptake. [49]

10. Pseudomonas and Bacillus spp. Zea mays
Higher plant growth and
increased N, K, Mn, and

Zn uptake.
[50,51]

11. Pseudomonas protegens Cicer arietinum Enhanced shoot and root
growth as well as Zn uptake. [52]

12.

Pantoea sp., Klebsiella sp.,
Brevibacterium sp., Klebsiella sp.,
Acinetobacter sp., Alcaligenes sp.

NCCP-650, Citrobacter sp.,
Exiguobacterium sp., Raoultella

sp., and Acinetobacter sp.

Triticum aestivum Improved dry weights, fresh
weights, and Zn acquisition. [53]

13. Exiguobacterium aurantiacum Triticum aestivum

Increased nutritional quality of
seeds by enhancing the

accumulation of Zn, Fe, N, P,
and K.

[54]

14. Enterobacter cloacae Oryza sativa

Upregulated the expression of
ZIP genes and increased the
accumulation of Zn in root

and shoot.

[55]

15. Neisseria, Staphylococcus cocci,
Escherichia coli, and Bacillus sp. Vigna radiata

Improved plant growth
attributes including root and
shoot length and fresh and

dry weight.

[56]
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Table 2. Cont.

S. No. Name of ZSB Host Plants Mode of Action References

16. Bacillus altitudinis Cicer arietinum Improved growth attributes
and higher Zn uptake. [57]

17. Enterobacter sp. Cicer arietinum Improved yield, bioavailability
of Zn, and grain quality. [58]

18. Bacillus aryabhattai Triticum aestivum,
Glycine max

Reduced soil pH, increased the
production of total organic

acid, and improved soil
enzymatic activities.

[59]

19.
Acinetobacter calcoaceticus,
Bacillus proteolyticus and
Stenotrophomonas pavanii

Zea mays Higher Zn content and plant
dry weight. [60]

20. Serratia sp. Zea mays
Increased peroxidase,

superoxide dismutase, catalase,
and polyphenol activity.

[61]

21. Streptomyces spp. Glycine max
Increased root and shoot

length, dry weight of plants,
and number of pods.

[62]

22. Bacillus spp. Triticum aestivum
Enhanced nutrient use efficacy,

growth, yield, and Zn
biofortification.

[63]

6.4. Zn-Assisted Biofortification

The role of ZSB in the amendment of synthetic Zn fertilizers in the soil and their
transformation into an inaccessible substance, known as a Zn compound, exacerbates the
problem of Zn immobility from soil to plant system, and this issue is capable of being
solved by using ZSB inoculants [6]. The use of ZSB as a bioinoculant is an affordable way
of biofortifying food crops with Zn. Moreover, the utilization of ZSB, which has several
plant growth-promoting qualities, represents an innovative approach towards generating
sustainable bio-fortified crops [6]. ZSB, living in the rhizosphere, colonized the host plants
effectively, allowing their functioning as a supplementary partner of the plant root, for the
improved absorption of nutrients, by solubilizing the complex or unavailable form of Zn
in soils [64]. Rhizobacteria are widely recognized microorganisms that live and colonize
in the rhizosphere and exhibit a variety of plant-growth-related characteristics, including
phosphate and potassium solubilization, exopolysaccharide and siderophore production,
phytohormones synthesis (gibberellins, auxin cytokinins, etc.), and HCN production [65].
According to previous research, various strains of ZSB have been reported to play vital roles
in Zn biofortification of some food crops. For instance, Burkholderia cepacia improved growth,
grain yield, dry weight, and Zn acquisition in rice [66], Bacillus altitudinis in chickpea [48,67],
B. tequilensis in wheat [62,68], and Pseudomonas spp. in tomato [69]. Similarly, B. aryabhattai,
as well as B. subtilis, enhanced cob dry weight, cob length, and grain yield in maize
plants [70], R. tropici and B. subtilis improved dry matter and grain yield in common
bean [71], and Pseudomonas plecoglossicida, as well as Brevibacterium antiqunum, increased
plant height, dry biomass, and productivity of pigeon pea [67]. Moreover, Zn-solubilizing
endophytes acted as biofortifying agents, to improve Zn localization in the eatable part
of rice as well as chickpeas [57] and wheat [25]. Some ZSB, such as Bacillus sp. [72],
Pantoea dispersa, Pseudomonas fragi, Enterobacter cloacae, Pantoea agglomerans, Rhizobium sp.,
Acinetobacter, and Burkholderia have all been employed effectively as bio-inoculants for
bacteria-assisted biofortification [6,73].
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6.5. ZSB as a Stress Alleviator

Extrinsic factors that have an adverse effect on growth and development of plants are
commonly referred as “stresses” [74,75]. Signals from stress, including drought, heat,
salinity, herbivory, and pathogens, are known to be perceived and responded by all
plants [76–78]. Plant existence against diverse abiotic and biotic challenges is based on
their timely preparedness in modifying their inherent tolerance mechanisms to mitigate
the effects of environmental stresses [79–81]. However, under severe stressed conditions,
plants are not able to overcome these unfavourable circumstances; therefore, exogenous
stress-alleviative and eco-friendly strategies are required (Figure 1). Because of the varied
roles of PGPR, including ZSB, they are widely used to decrease abiotic stresses produced
by climate change [82]. ZSB has the ability to make plants resistant to certain abiotic
stressors; therefore, improving the density of ZSB in the plant rhizosphere could be an
effective alternative approach to increase the growth and productivity of host plants [24].
Barnwal et al. [83] reported that Arthrobacter protophormiae, as well as Dietzia natronolimnaea,
improved salt tolerance, whereas Bacillus subtilis increased the drought resilience in wheat
plants by modifying the levels of phytohormone. Jha and Subramanian, in [84], when
investigating rice plants treated with Pseudomonas pseudoalcaligenes and Bacillus pumilus,
recorded a higher expression of stress-related genes and an increased level of osmoprotec-
tants under salinity-stressed conditions. Potato plants inoculated with Methylobacterium
sp. displayed an increased number of lateral roots and leaves, a higher rosette diameter
and improved tolerance against salinity and different fungal pathogens [85]. The activity
of different antioxidant enzymes (superoxide dismutase, catalase, and peroxidase) was
upregulated in ZSB-inoculated wheat plants and, thereby, displayed better resistance to salt
stress. Pseudomonas fluorescens- and P. poae-boosted growth of petunia plants under drought
and low-nutrient environments [86]. Pseudomonas fluorescens and Bacillus subtilis negated
the effects of salinity by enhancing the accumulation of proline (an active osmolyte) [87].
On the same line, Orozco-Mosqueda et al. [88] revealed that Pseudomonas sp. protected
tomato plants against salt stress. El-Esawi et al. [89] reported that Azospirillum lipoferum
reduced the negative effects of salt stress by modulating osmolytes synthesis, antioxidant
enzymes, and the expression of stress-related genes in chickpea.
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protected tomato plants against salt stress. El-Esawi et al. [89] reported that Azospirillum 
lipoferum reduced the negative effects of salt stress by modulating osmolytes synthesis, 
antioxidant enzymes, and the expression of stress-related genes in chickpea.  
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Besides abiotic factors, plants are exposed to a wide range of biotic agents, including
microorganisms such as viruses, viroids, bacteria, fungus, nematodes, etc., which can cause
biotic stress and ultimately, reduce agricultural productivity (Figure 1). ZSB exhibit diverse
direct and indirect mechanisms to suppress the diseases caused by various pathogens, such
as the synthesis of secondary metabolites, antioxidants, hormones, cell wall-degrading
enzymes, etc. [76,90]. Many ZSB produce antagonistic low-molecular-weight chemical
molecules known as antibiotics, which are highly effective in inhibiting phytopathogen
growth. For example, Bacillus sp. have the ability to produce antibiotics like polymyxin,
circulin, and colistin [76]. Ali et al. [91] reported that B. subtilis synthesized surfactins,
fengycin, and iturin, whereas Pseudomonas aeruginosa, P. stutzeri, P. fluorescens, and P. putida
produced phenazine, rhamnolipids, pyochelin, violacein, and pyoverdines, which were effi-
cient against different fungal phytopathogens. Research conducted by Fernandez et al. [92]
showed that Pseudomonas fluorescens produced two different kinds of S-type bacteriocins, i.e.,
colicin and tailocins, which are phage-tail-like bacteriocins. The synthesis of lytic enzymes,
like protease, chitinase, cellulase, b-1,3-glucanase, etc., is linked to the fact that some ZSB
have inhibitory effects, in opposition to phytopathogens [93]. Several studies have proven
that rhizospheric bacteria produce lytic enzymes that break down the cell wall of plant
root pathogens, for instance Rhizoctonia solani and Fusarium oxysporum, thereby leading to
cell death [91]. Cheng et al. [94] reported the inhibitory properties of Bacillus megaterium,
B. cereus, and Bacillus sp. against maize rot pathogen. Non-pathogenic PGPR organisms
found in soil not only stimulate plant development but can also cause systemic resistance,
known as induced systemic resistance (ISR). Many plants develop systemic resistance (both
SAR—systemic acquired resistance—and ISR) to various biotic stresses as a result of PGPR,
which defends against pathogen attacks [95]. Pseudomonas putida and Bacillus subtilis PGPR
strains imparted systemic resistance in Vigna radiata grown under disease-prone environ-
ments [96]. Bacillus amyloliquefaciens improved tomato plants’ susceptibility to yellow leaf
curl virus disease by upregulating the expression of pathogenesis-related (PR) genes and
improving the activity of b-1,3 glucanase, phenylalanine ammonia lyase, peroxidase, and
polyphenol oxidase, as well as chitinase in the leaves [97]. In a nutshell, soil rhizobacteria
have the potential to mitigate the impact of various environmental constraints (abiotic and
biotic) in a sustainable manner (Table 3).

Table 3. Differential ability of ZSB in mitigating the impact of abiotic and biotic stresses in various
crop plants.

Stress ZSB Plant Mechanism of Action References

Salinity

Bacillus amyloliquefaciens B-16 Triticum aestivum L.
Increased uptake and

translocation of potassium
and calcium.

[98]

Bacillus pumilus and
Pseudomonas pseudoalcaligenes Oryza sativa

Improved chlorophyll,
carotenoids, and antioxidant

enzymes activity.
[99]

Pantoea agglomerans R1 and
Pseudomonas fragi R4 Phaseolus vulgaris

Higher chlorophyll, carotenoid,
and osmoprotectants levels,
and improved antioxidative

enzymes activity.

[100]

Bacillus spp. Triticum aestivum L.
Increased plant growth

parameters and Zn content in
shoots as well as grains.

[101]

Drought
Bacillus spp. Zea mays

Improved physiological and
biochemical traits, alongside

reduced antioxidant
enzyme activity.

[102]

Azotobacter Zea mays Enhanced plant growth. [103]
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Table 3. Cont.

Stress ZSB Plant Mechanism of Action References

Heavy metals

Serratia spp. Zea mays
Improved plant growth

parameter and antioxidant
enzyme activity.

[104]

Lysinibacillus spp. Zea mays L.
Increased chlorophyll a and b,

proline, total phenol, and
ascorbic acid content.

[105]

Burkholderia vietnamiensis and
Burkholderia seminalis Oryza sativa

Induced the production of
indole acetic acid (IAA) and

the solubilization of potassium
and phosphate.

[106]

Serratia sp. Zea mays
Enhanced shoot length, root

length, and total
chlorophyll content.

[107]

Temperature

Stenotrophomonas Zea mays

Increased carbohydrates,
auxins, and chlorophyll

contents, and imparted heat
stress resilience.

[108]

L. fusiformis and L. sphaericus Zea mays

Improved lignin content, cell
viability, osmolytes (proline,
glycine betaine, and soluble
sugars) accumulation, total

phenols and
1-aminocyclopropane-1-

carboxylic acid (ACC) contents,
and upregulated the

antioxidant defense system.

[109]

Disease

Bacillus sp. and Bacillus cereus Oryza sativa

Suppressed the growth of
Pyricularia oryzae and Fusarium

moniliforme, and increased
the yield.

[110]

T. lixii Solanum lycopersicum Reduced Fusarium wilt and
early blight severity. [111]

B. pumilus Oryza sativa Inhibited fungal growth and
reduced brown spot disease. [112]

7. Conclusions and Future Aspects

Current agricultural practices heavily depend on chemical fertilizers to boost crop
output, prioritizing macronutrients and neglecting micronutrients like Zn. This imbalance
leads to Zn deficiencies in plants, ultimately affecting their growth and productivity. Efforts
to address this issue through fortification and supplementation are expensive and labor-
intensive, thereby limiting their success. A promising alternative to overcome this problem
is the use of ZSB, in order to reduce the use of commercial fertilizers. The present review
discusses the role of ZSB in improving Zn bioavailability in soil and its uptake by plants.
ZSB supplementation enhances growth, as well as yield, and biofortifies the crops with
Zn in an effective, economical, and eco-friendly manner. ZSB not only addresses Zn
deficiencies but also improves the uptake of other essential nutrients like phosphorus,
nitrogen, potassium, and iron under adverse environmental circumstances. Moreover, ZSB
regulates plant pathogenic microorganisms, contributing to overall soil health and fertility.
Concisely, the inoculation of ZSB can be used as an environment-friendly approach for
improving plant development and soil health in sustainable agriculture. However, more
research work is required for the isolation and identification of suitable ZSB species that can



Bacteria 2024, 3 25

provide maximum benefit to the host by improving the grain Zn content, thereby fighting
against hidden hunger.
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