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Abstract: For Convolutional Neural Networks (CNNs), Depthwise Separable CNN (DSCNN) is
the preferred architecture for Application Specific Integrated Circuit (ASIC) implementation on
edge devices. It benefits from a multi-mode approximate multiplier proposed in this work. The
proposed approximate multiplier uses two 4-bit multiplication operations to implement a 12-bit
multiplication operation by reusing the same multiplier array. With this approximate multiplier,
sequential multiplication operations are pipelined in a modified DSCNN to fully utilize the Processing
Element (PE) array in the convolutional layer. Two versions of Approximate-DSCNN (A-DSCNN)
accelerators were implemented on TSMC 40 nm CMOS process with a supply voltage of 0.9 V. At a
clock frequency of 200 MHz, the designs achieve 4.78 GOPs/mW and 4.89 GOP/mW power efficiency
while occupying 1.16 mm2 and 0.398 mm2 area, respectively.

Keywords: application-specific integrated circuits; approximate multiplier; CMOS; convolutional
neural network; depthwise separable convolution; processing element

1. Introduction

In today’s age of technological development, Artificial Intelligence (AI) has become seam-
lessly integrated into society. In the past, AI computing relied on high-performance cloud
computing, in which data is transmitted to a high-performance server for remote processing
before being returned to their origin. Multiple penalties are incurred with this process; latency
is a major concern and affects the ability of the local device to make timely decisions.

Therefore, the current development of the IC industry in AI is gradually moving
toward the direction in which edge devices can operate independently. The design devel-
opment of such devices is moving towards lower power consumption, higher throughput,
and a smaller area. Amongst various reasons for this development are portable devices;
higher power dissipation impacts the longevity of battery-operated devices, further limiting
practical applications. This is why low-power chips are significant.

To address these issues, the improvement of the design of the PE as one of the basic
elements in a CNN accelerator needs to be considered. This centers around the utilization
of a configurable systolic array [1]. Although dataflow efficiency is enhanced through this
approach, the fundamental computations within the PE remain unchanged. The domi-
nant aspect in the PE’s basic computations is the multiplication operation, affecting area,
latency, and power. This is where the incorporation of approximate computation methods
using approximate multipliers becomes crucial for enhancing the PE design. However, the
utilization of approximate multipliers may introduce other drawbacks to the overall net-
work, including accuracy degradation and increased delay. This is where the contributions
of this work come into play. A novel A-DSCNN architecture is proposed, integrating a
new approximate multiplier, which seamlessly integrates into a modified DSCNN. In the
implemented A-DSCNN, accuracy is maintained while efficiency is improved.
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This paper is mainly motivated by the above and implements a new hardware ar-
chitecture dedicated to the CNN model. The method of further optimizing the circuit in
this paper is to reduce the circuit’s power consumption while limiting precision loss by
simplifying and improving the architecture using approximate calculation methods.

Section 2 summarizes the background of CNN and DSCNN. Section 3 discusses the
proposed DSCNN. The main contribution of this work is to propose a DSCNN employing a
multi-mode approximate multiplier to reduce the number of computations and parameters.
Then, through data scheduling and optimizing computations, the timing of the proposed
A-DSCNN is further improved. Section 4 introduces this paper’s experimental method and
performance results. Upon completion of the hardware implementation, it is benchmarked
against other CNN hardware designs. Analysis of the results is detailed towards the end of
this Section. Finally, Section 5 reviews the architecture and ideas proposed in this paper.

2. Related Works
2.1. Convolutional Neural Network (CNN)

A CNN consists of convolution layers, pooling layers, fully connected layers, and
flattened layers. Compared with multi-layers neural networks, also known as multilayer
perceptrons, CNN has fewer parameters. Another prominent feature of a CNN is that it
can retain the location information of the image. In general, an image will have a certain
degree of correlation between adjacent pixels.

2.2. Approximate Neural Networks

In this section, the focus is on introducing approximate arithmetic circuits employed
in neural networks. The main objective is to explore the application of various approximate
circuits or algorithms within neural network models. By utilizing these approximate
circuits, it is anticipated that overall performance can be optimized while minimizing
hardware requirements. This research direction holds significant growth potential, as it
aims to reduce hardware complexity and associated costs while ensuring the integrity of
the Neural Network remains intact.

Karnaugh map simplification is utilized by [2–4] for the implementation of digital
circuitry that performs approximate arithmetic within a tolerable range. Using newer logic
units or adders with improved architectures is proposed by [5,6]. The former proposes a
Lower-Part-OR Adder architecture, while the latter reorganizes different adders through
re-grouping modules coupled with design changes to optimize dataflow. Approximate
arithmetic operators for Multiply-Accumulate (MAC) operators, which encompass the
critical path of CNN models, are introduced by [7]. The high speed of N-way paths is
leveraged by the proposed accelerator architecture. An approximation is implemented
through hardware architecture improvements by [8,9].

The data flow of CNN processing and the energy efficiency achieved using a 2D
systolic array architecture were discussed in [10]. An accelerator named Eyeriss for CNN
was proposed in this paper, which optimized the data flow between each PE. However, the
data flow of Eyeriss restricted the PE of diagonal input data feature sharing and the lateral
way of weight kernel sharing.

Additionally, the Run Length Compression proposed in [10] also resulted in additional
power consumption. Next, a priority-driven CNN accelerator optimized for a 3 × 3 weight
kernel was proposed in [11], where the modules were designed to work in parallel, fully
utilizing the kernel and input image data. In this work, there was no need to design
additional specific circuits, since weight sharing was unnecessary. As a result, power
consumption and the chip area were reduced.

In [12], a unique approximation operation method was proposed. The approximate op-
eration was initially performed through sampling to determine the location of the value that
the pooling layer may retain. Selective convolution was performed by merging the pooling
and convolutional layers, reducing redundant convolution operations. However, since
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this method required pre-processing the data, it was necessary to consider the penalties
incurred from the additional encoder.

2.3. Depthwise Separable Convolution (DSC)

Another type of architecture that improves upon a CNN is Depthwise Separable
Convolution (DSC). To reduce the high computational complexity required by CNN, Google
utilizes a novel computational structure in MobileNet, aiming to decrease the computational
cost of a CNN model [13].

MobileNet is a faster CNN architecture and a smaller model incorporating a new
convolutional layer known as DSC. Due to their compact size, these models are particularly
suitable for implementation in mobile and embedded devices. This approach primarily
divides the original convolution into two separate parts: Depthwise Convolution (DWC)
and Pointwise Convolution (PWC), enabling a reduction in computational requirements
without compromising the underlying structure.

The difference between DSCNN and conventional CNN lies in the approach of the
DWC. In DWC, the convolution kernel is split into a single-channel form, as illustrated in
Figure 1. For each channel of the input data, a filter of size k is established, and separate
convolution operations are performed on each channel without altering the depth of the
input feature image. However, this process imposes a limitation on the expansion of the
feature map’s size, thereby restricting the dimensionality of the feature map. Consequently,
using PWC becomes necessary to combine the outputs of the DWC and generate a new
feature map.

Figure 1. Illustration of Depthwise Convolution (DWC).

PWC essentially represents a 1× 1 convolution, as illustrated in Figure 2, and its operational
method is similar to traditional convolution. The kernel size in PWC is 1 × 1 × M, where the
parameter M corresponds to the number of channels in the previous layer of the DWC.

Subsequently, PWC combines the feature maps from the previous step along the depth
dimension, generating new feature maps based on the number of kernels. The output of
both operations is equivalent to that of a conventional convolutional layer.

PWC serves two primary purposes: firstly, it enables DSCNN to adjust the number
of output channels, and secondly, it consolidates the output feature maps from DWC.
The preference for DSCNN over conventional CNN arises from its significant reduction
in computational requirements and parameters, resulting in improved computational
efficiency. While a slight decrease in accuracy can be expected with DSCNN, the deviation
remains within an acceptable margin.
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Figure 2. Illustration of Pointwise Convolution (PWC).

As shown in Figure 3, the number of parameters and calculations of conventional CNN
is Dk × Dk × M × N and Dk × Dk × M × N × DF × DF, respectively. Meanwhile, the
number of computations and parameters in a DSCNN, which comprises both depthwise con-
volution and pointwise convolution, is Dk × Dk × M + M × N and Dk × Dk × M × DF×
DF + M × N × DF × DF. By simplifying the aforementioned equations, the ratio of param-
eters and computations in a DSCNN compared to a conventional CNN can be estimated in
Equation (1).

DSCNN
Conventional CNN

=
1
N

+
1

Dk2 (1)

The main objective of this work is to have conventional CNN replaced by DSCNN as
the primary architecture to reduce the number of computations and parameters, thereby
significantly decreasing power consumption.

Subsequently, introductions to some related papers are provided. In [14], an accelerator
design for reconfigurable DSCNN is proposed. However, it is plagued by low hardware
utilization rates and timing delays encountered during each feature map reconstruction.

In [15], an adaptive row-based dataflow of a unified reconfigurable engine for DSC
is proposed. However, due to its reconfigurable nature, it suffers from low hardware
utilization and energy efficiency.

An architecture for energy-efficient convolutional units for DSC is presented in [16].
This architecture implements array-based PE to optimize the workloads of PWC and DWC.
The paper also introduces a reconfigurable multiplier array with a 2n coefficient to optimize
data reads. Nevertheless, challenges are encountered regarding low hardware utilization
and energy efficiency due to the proposed configurable multiplier array. Furthermore, the
paper primarily focuses on optimizing PWC, resulting in a lower utilization rate of the PE
during DWC and leading to timing and hardware reuse issues.

The framework known as DSCNN is utilized in most of the aforementioned reviewed
papers, aiming to enhance overall performance compared to conventional CNN. However,
in some papers, the original characteristics of DSCNN are disregarded due to the complex
design of layer optimization in neural networks. As a result, a new DSCNN architecture is
proposed in this work for neural network image recognition. It involves the combination of
DSCNN with the approximate operation method and implementing a complete hardware
architecture on the ASIC.
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Figure 3. The parameter and computation in (a) Conventional Convolutional Neural Network, and
(b) Depthwise Separable CNN.

3. Proposed Method

The proposed method, A-DSCNN, will be discussed in this section.

3.1. Multi-Mode Approximate Multiplier

The multi-mode approximate multiplier proposed in this paper is depicted in Figure 4.
The original multiplier circuit is divided into two blocks using a control signal alternating
between two operation modes. This paper’s image and weight input data are partitioned
into two parts: the MSB part and the LSB part. Mode-0 is employed to compute the LSB,
while Mode-1 is utilized for the MSB.

The MSB portion takes precedence in this work, as it plays a more critical role in
the computation. Conventional multiplication is employed for this part, ensuring that no
subsequent errors are introduced. On the other hand, the LSB portion utilizes an encoder to
calculate the LSBs and divides the value into two-digit groups. Considering only the larger
even-numbered bits as the new value reduces the computational complexity from 8-bit
to 4-bit. Since the proposed approximate multiplier matches this 4-bit computation, the
existing hardware can be repurposed by adding control signals. This results in a reduction
in chip area and power dissipation, thereby achieving lower power consumption.
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Figure 4. Approximate multiplier’s operation.

The operation of the approximate multiplier involves dividing it into the MSB and LSB
parts using a control signal. For the LSB part, the control signal is set to 0, activating Mode-0
of the multiplier for calculations. Conversely, for the MSB part, the control signal is set to 1,
initiating Mode-1 for calculations. Since the same internal circuitry is utilized, the same
multiplier hardware array can be reused. A shift register is employed to output the bits
correctly to perform two consecutive 4-bit × 4-bit multiplications. Consequently, compared
to a conventional multiplier, the proposed multiplier offers reduced power consumption
and occupies less area.

To ensure the functionality and identify potential errors in the multipliers, the designs
of both the approximate and standard multipliers undergo synthesis and mapping to the
specific process technology, namely TSMC CMOS. This allows for gate-level simulations to
be conducted.

To verify the performance of the multipliers, random numbers are generated and used
to test both the approximate and standard multipliers. The results of these multiplications
are compared to the ideal multiplication results, as expressed in Equation (2) [17]. This com-
parison helps evaluate the accuracy and reliability of the multipliers under consideration.

RMSE =

√
∑k

m=n=1[Pm,n(actual)− Pm,n(ideal)]2

k
(2)

where k random numbers are used, with m multiplicands and n multipliers generating
P(actual) products through the approximate or standard multiplier circuits, compared
to the ideal product P(ideal). The multiplication operations are carried out using signed
integers 12 bits to match the truncation performed by the approximate multiplier. For
this specific evaluation, k is set to 10,000, and it has been observed that the errors do not
significantly increase for higher values of k, but a large computation resource is required
for the circuit simulation.

Table 1 summarizes the comparison between the approximate multiplier and the
standard multiplier. Under the random number test, the multiplication error for the
approximate multiplier is found to be 1.2% higher than that of the standard multiplier.
These results confirm that the approximate multiplier can be successfully integrated into
the CNN architecture.
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Table 1. Comparison of Approximate Multiplier and Standard Multiplier.

Mode-0/1 Standard Multiplier

Number of Bits 12
Input Pattern Random Numbers (k = 10, 000)

RMSE 19,259.06 19,017.31
Normalized 1.2% -

Maximum: 12 bits × 12 bits = 16,777,216 (4096 × 4096)
RMSE: Root Mean Square Error.

3.2. DSCNN with Multi-Mode Approximate Multiplier

The proposed approach involves scheduling Mode-1 and Mode-0 to operate sequen-
tially, utilizing the same multiplier, thereby creating a multi-mode approximate multiplier.
This multiplier is then integrated into a DSCNN, leading to novel hardware architecture
known as A-DSCNN. The implemented hardware incorporates the approximate computa-
tions mentioned earlier and employs a pipelined scheduling strategy, which is illustrated
in Figure 5 for a typical convolutional layer implemented in A-DSCNN.

Figure 5. Hardware structure of a convolutional layer in A-DSCNN (PE: Processing Element).

The operation of the convolution core is given as follows:

1. Initially, the image input and weight inputs are loaded from an off-chip memory by
the control unit and stored in the input buffer and weight buffer, respectively.

2. The encoder control determines whether the input buffer and weight buffer data
should undergo encoding, and accordingly, the reformatted data are obtained.

3. The reformatted data are then supplied to the convolution core in the A-DSCNN PE
array for computation.

4. The convolution control unit within the A-DSCNN PE array decides whether to
perform depthwise convolution and pointwise convolution, generating a new job.
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5. The newly created job comprises a set of instructions pipelined for processing.
6. After scheduling, individual instructions are sent to the multi-mode approximate

multiplier for computation. Control signals determine if the computed data need to
be shifted.

7. Once the computations are complete, the computed results are accumulated and sent
back to the output buffer to finalize the convolution operation.

Timing is often not considered in conventional DSCNN, as observed in [16]. As a
result, the operation process follows the same approach as conventional CNN, where the
system waits for the input to be read before proceeding to the next convolution step. To
address this timing issue, the computational steps are rescheduled to align with the new
pipelined strategy, in addition to splitting the original convolution operation into the DWC
and the PWC.

The timing sequence of the convolution operation is demonstrated with an example in
Figure 6, considering one convolution operation. In this example, since the kernel size is
3 × 3, it is necessary to read in nine values for each convolution operation. In reference
to [16], the MAC operation is not performed until the input is loaded onto the buffer. This
approach leads to a sequential execution, where each step waits for the completion of the
previous step before proceeding to the subsequent MAC step. Consequently, the overall
runtime performance is adversely affected.

Figure 6. Convolutional layer’s timing schematic of (a) Conventional DSCNN, and (b) Proposed
A-DSCNN.

To overcome this limitation, jobs are scheduled to pipeline instructions in the proposed
A-DSCNN approach, with the same MAC operation. With this method, computations can
commence as soon as the first input is read, reducing the number of clock cycles required
to complete the operation. As depicted in Figure 6, the number of cycles is reduced from
18 to 11 in comparison to conventional DSCNN [16]. Additionally, reusing hardware logic
units further reduces the area required for implementation.
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Before discussing the performance in the next section (Section 4), it is important
to mention the design trade-off associated with the proposed A-DSCNN. Implementing
the multi-mode approximate multiplier introduces overheads in the A-DSCNN, such as
including control blocks (‘Control’ in Figure 4) and dedicated scheduling. Therefore, it is
crucial to consider the timing of the A-DSCNN, as illustrated in Figure 6, when designing
the scheduling scheme. This is followed by determining the operation of control blocks.
The two-mode approximate multiplier offers a good compromise between accuracy, area
and timing, although it is also possible to have a three-mode approximate multiplier.

4. Performance Results

Considering the relatively large size of the VGG16 model [18], a modified version of
VGG (referred to as “VGGnet”) is employed as the initial hardware implementation for
performance analysis. The image classification task will be performed using the CIFAR-
10 dataset [19]. This modification is required to relax the requirement to perform the
simulations, especially the circuit-level simulations.

The hardware architecture is designed using structured Verilog HDL. The operating
frequency is set to 200 MHz during timing simulation, and the design is implemented
during the TSMC 40-nm CMOS process. The operating frequency and technology are
chosen to perform a compatible comparison with the existing work for benchmarking,
Table 2, although it can be implemented at a lower technology node and higher operating
frequency if desired. The table presents data on power consumption, area, and energy
efficiency from various reference papers. According to the summarized information in
Table 2, the proposed Approximate-DSCNN accelerators achieve approximately 20% higher
power efficiency compared to the works recently reported in papers [20,21]. Additionally,
the proposed accelerators occupy only 13% of the area of the design presented in [20]. It
is worth mentioning that the design described in [21] also utilizes the VGG16 model. The
entire hardware architecture is illustrated in the architecture diagram shown in Figure 7.

Table 2. Comparison of A-DSCNN with Recent Accelerators.

Performance
JSSCC16 TCAS19 ISCAS21 ISSCC23 Sensors23 A-DSCNN

(VGG16)
A-DSCNN
(VGGnet)

[10] [11] [16] [20] [21] (This Work)

Process 65-nm 65-nm 40-nm 40-nm 65-nm 40-nm
(post- (post- (post- (post- (post- (post-

silicon) layout) synthesis) silicon) synthesis) layout)
Frequency 200 MHz 200 MHz 100 MHz 200 MHz 62.5 MHz 200 MHz

Voltage 1.0 V 1.0 V 0.85 V 1.06 V - 0.9 V
Power 278 mW 72 mW 25.3 mW 704 mW 147.95 mW 486.81 mW 95.04 mW

Area (mm2) 12.25 3.98 1.03 (CONV) 8.70 - 1.16 0.398
Efficiency

(GOPs/mW) 0.24 1.25 3.13 4.0 4.08 4.78 4.89

Table 3 provides additional details about the modified VGGnet model for the hardware
implementation. With 7997 parameters, it is a smaller network with a slight accuracy
penalty that is used primarily for verification. With its parameters quantized to 12-Bit, the
total memory footprint of the network is 11.7 kB. Additionally, the VGG16 model presented
here is the same model found in [18] with the conventional convolutional layers replaced
with depthwise separable convolutional layers. This reduces the number of parameters to
20,595,585. The total memory footprint of the network is 29.46 MBs.

In CNN architectures, the primary components of the PE are the multipliers and
adders. This work focuses on key design considerations, including the proposed multiplier,
latency, hardware reuse, and reduction of redundant computations.
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Table 3. Model Architecture of VGG16 and Modified VGGnet.

VGG16 Modified VGGnet

{3 × 3 Conv, 64, ReLU} ×2 3 × 3 DSC, 8, ReLU
2 × 2 Max-pooling 3 × 3 DSC, 8, ReLU

{3 × 3 Conv, 128, ReLU} ×2 2 × 2 Max-pooling
2 × 2 Max-pooling 3 × 3 DSC, 16, ReLU

{3 × 3 Conv, 256, ReLU} ×3 3 × 3 DSC, 16, ReLU
2 × 2 Max-pooling 2 × 2 Max-pooling

{3 × 3 Conv, 512, ReLU} ×3 3 × 3 DSC, 32, ReLU
2 × 2 Max-pooling 3 × 3 DSC, 32, ReLU

{3 × 3 Conv, 512, ReLU} ×3 2 × 2 Max-pooling
2 × 2 Max-pooling Flatten, 128
Dense, 4096, ReLU Dense, 10, Softmax
Dense, 4096, ReLU
Dense, 10, Softmax

VGG16 convolutional layers are presented in the following format; Kernel, Filters, Activation Function multiplied
by the number of convolutional layers.

To facilitate low latency dataflow, both internal and external buffers must be employed.
Figure 7 highlights the necessary on/off chip buffers included in the design. When taking
into consideration the size of the input/output feature maps, the primary constraint on the
off-chip memory are the network parameters, as shown in Table 4. And as such, the size of
the network employed would be the key consideration.

Figure 7. The overall hardware architecture of A-DSCNN.
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Table 4. Size of Registers required for Internal Buffers.

Network Core Type
Size/Number of Values Buffer Size (kB)

Input Map Parameters Output Map Input Weight Output

VGG16
DSConv 8;8;256 68,096 8;8;256 16 532 16
Maxpool 4;4;512 - 2;2;512 8 - 4

Dense 1;4096 - 1;4096 4 - 4

VGGnet
DSConv 8;8;32 1344 8;8;32 2 1.31 2
Maxpool 16;16;16 - 8;8;16 4 - 2

Dense 1;128 - 1;10 0.125 - 0.00976
Sizes provided for the worst-case scenarios respectively.

The different on-chip buffers serve to reduce latency amongst the various cores. Table 4
contains a breakdown of the buffers used by the different cores, which is dictated by the
largest layers within the network that employ the specific cores.

By addressing these design considerations, the proposed A-DSCNN (VGGnet) achieves
significant savings in hardware resources, with a 53% reduction compared to conventional
DSCNN [16]. The area reported in [16] is only for its convolutional layer, Table 2. Further-
more, the energy efficiency is improved by 1.56 times, resulting in an accelerator design
with a smaller area and higher performance.

For the physical implementation of the chip, the Innovus software from Cadence [22]
is utilized to perform the Place and Route (PnR) process, generating the layout file of the
circuit. Other Electronic Design Automation (EDA) tools, such as VCS from Synopsys [23],
are employed for chip simulation and functional verification.

Figure 8 showcases the completed A-DSCNN (VGG16) accelerator layout, while
Table 5 outlines the specifications. With an operating frequency of 200 MHz, the accelerator
core area is 1.16 mm2. It operates at a 0.9 V supply voltage, resulting in power consumption
of 486.81 mW.

Table 5. Proposed A-DSCNN (VGG16) Acceletor Specification.

Performance Specifications

Process Technology TSMC 40-nm CMOS
Frequency 200 MHz

Voltage Supply 0.9 V
Chip Size 1.24 mm × 1.24 mm
Chip Area 1.54 mm2

Core Area 1.16 mm2

(Main: 78%, Register/Control: 22%)
Chip Power 486.81 mW

(Main: 90%, Register/Control: 10%)
Efficiency 4.78 GOPs/mW
Precision 4-bit/8-bit

The main components (convolutional, pooling, and dense layers) account for approxi-
mately 78% of the total area, while other components (registers and control units) make
up the remaining 22%. The main components contribute to around 90% of the total power
consumption, whereas other components (registers and control units) are responsible for
the remaining 10%. The breakdowns are also summarized in Table 5.
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Figure 8. A-DSCNN (VGG16) accelerator layout.

5. Conclusions

This paper introduces a novel architecture called A-DSCNN, which aims to enhance
the performance of CNN accelerators. The design’s key focus is replacing the conventional
multiplier with a newly proposed approximate multiplier. This multiplier employs a
mixed-precision algorithm to mitigate the negative effects of redundant computations. It is
integrated into the A-DSCNN architecture using a unique pipeline scheduling method.

To validate the effectiveness of the proposed A-DSCNN, VGG16 is employed as
the model, and the CIFAR-10 dataset is used for evaluation. The proposed design is
implemented on the TSMC 40-nm CMOS process, operating at a supply voltage of 0.9 V.

From Table 2, it can be concluded that both of the proposed A-DSCNN (VGG16,
VGGnet) accelerators have achieved superior power efficiency (GOPs/mW) and occupy
less area compared to the recently reported accelerators.
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Abbreviations
The following abbreviations are used in this manuscript:

A-DSCNN Approximate-DSCNN.
AI Artificial Intelligence.
ASIC Application Specific Integrated Circuit.
CIFAR Canadian Institute for Advanced Research.
CMOS Complimentary Metal Oxide Semiconductor.
CNN Convolutional Neural Network.
DSC Depthwise Separable Convolution.
DSCNN Depthwise Separable CNN.
DWC Depthwise Convolution.
EDA Electronic Design Automation.
HDL Hardware Descriptor Language.
IC Integrated Circuits.
LSB Least Significant Bit.
MAC Multiply-Accumulate.
MSB Most Significant Bit.
PE Processing Element.
PnR Place and Route.
PWC Pointwise Convolution.
ReLU Rectified Linear Unit.
TSMC Taiwan Semiconductor Manufacturing Company.
VGG Visual Geometry Group.
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