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Abstract: Next-Generation Sequencing (NGS) is used as a diagnostic strategy for identifying pathogenic
genetic variants in children and adults. However, the analysis is complex, requiring specialized
bioinformaticians, and it can take weeks to finalize one study. This has been a limiting factor for the
application of NGS in the screening of populations for rare genetic diseases. In this work, we show
two case studies, where we applied an Al-driven bioinformatics framework in a diagnostic and a
preventive scenario, respectively. The Al analysis was accurate and substantially faster than using
conventional bioinformatics tools. Our results support the concept that Al-driven bioinformatics
is a scalable solution for rendering accurate results and enabling a more widely available genetic
screening for rare diseases.
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1. Introduction

Whole Exome Sequencing (WES) using Next-Generation Sequencing (NGS) is a clini-
cally accepted diagnostic technology for the identification of pathogenic genetic variants in
children and adults [1]. Finding gene-function-disruptive variants (SNPs and INDELs) in
sequences is fundamental in determining the cause of the genetic disease and for genetic
counselling consultations. Additionally, the application of this method at the pre-conception
stage can also enable parents to make informed decisions regarding the possible birth of
children with a particular genetic disease. Databases such as ClinVar and OMIM have
been accumulating information on an ever-increasing number of new pathogenic vari-
ants [2]. In these databases, gene-disease associations have also been growing over time,
leading to more than eight thousand having been already reported [3]. Public and private
healthcare facilities are beginning to use these data as a front-line tool over conventional
techniques to diagnose pediatric rare genetic diseases [1,4]. However, the analysis of WES
using bioinformatics is complex and requires specialist skills and training, hence it can
take several weeks from sample to diagnosis [5]. The relative complexity associated with
the high labor intensity is a substantial bottleneck in the field, leading to a heavy cost in
human resources. This has been a limiting factor for the screening and prevention of rare
diseases in the general population. Artificial Intelligence (Al) is considered to be a solution
for automating complex analysis and decision-making [6]. In this work, we present two
case studies where we applied an Al-driven bioinformatics framework in a diagnostic and
a preventive scenario, respectively.
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2. Methodology
2.1. Clinical Samples and Sequencing

Saliva samples were collected in DNA /RNA saliva collection tubes (GeneFix™, Iso-
helix) using the commercial ExoMart and SureMart kits from MolMart Ltd., Manchester,
United Kingdom. Relevant clinical data were submitted by the referring clinician into
the MolMart online form for kit activations (https://molmartgenomics.com, accessed on
27 October 2022). WES was performed by NGS using the Illumina platform. The exome
library was prepared with Agilent’s SureSelect V6+UTR-post kit.

2.2. Bioinformatics

Variant Calling Files (VCF) were generated from FASTQ files using a standard bioin-
formatics pipeline [7,8]. BWA (Burrows—Wheeler Alignment Tool) software version 0.7.12
and reference human genome version hg38 were used for read mapping and alignment.
Variant calling and variant annotation of genetic modifications was made using GATK
(Genome Analysis Toolkit) software version 3.4.0 and SnpEff version 4.1, respectively. The
MolMart Artificial Intelligence Analyst (MAIA) was used for pathogenic gene variant
candidate identification and ranking on the clinical observations of the Variant Calling Files
(VCE). Clinical observation matching and pathogenic scoring were performed by MAIA,
considering both experimental evidence on databases and sequence predictions.

3. Results

We applied an Al-driven bioinformatics framework to analyze two case studies, one a
diagnostic (Case Study 1) and the other a preventive scenario (Case Study 2).

3.1. Case Study 1

An 8-month-old infant was referred for genetic testing with hypotonia, delayed de-
velopment, hepatosplenomegaly and strabismus. We applied Al-driven bioinformatics
on the sequenced exome containing about 114,000 gene variants, taking into account the
clinical phenotype (Figure 1). From all gene variants, the Al took ~5 s to identify a total
of 757 putative pathogenic variants, where only 15 had high-scoring matches on disease
database annotations that related to the clinical observations. Furthermore, the top-ranked
variant (Figure 1) was the one chosen by independent molecular geneticists as causative of
the phenotype by manually checking in the OMIM and ClinVar databases.
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Figure 1. Overview of the bioinformatics analysis pipeline and final outcome on case study 1.
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3.2. Case Study 2

In this case, we screened a healthy couple at the pre-conception stage for their potential
risk of having a child affected by a genetic disease. We applied Al-driven bioinformatics on
the male and female exomes containing about 112,000 and 113,000 gene variants, respec-
tively (Figure 2). The Al took ~12 s to identify six putative pathogenic gene variants that
can be transmitted from both males and females. From these, only one raised some concern
based on strong gene—disease association evidence, with an estimated probability of 23% of
having a child with mannose binding deficiency.
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Figure 2. Overview of the bioinformatics analysis pipeline and final outcome on case study 2.

4. Conclusions

The case studies shown here demonstrate that Al-driven bioinformatics analysis is
substantially faster than conventional bioinformatics tools and platforms. Furthermore,
our results support the concept that Al-driven bioinformatics is an accurate and scalable
solution which can make population-wide genetic screening for rare diseases possible.
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