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Abstract: The recently deployed Sentinel 2 satellite constellation produces images in 13 wavelength
bands with a Ground Sampling Distance (GSD) of 10 m, 20 m, and 60 m. Super-resolution aims to
generate all 13 bands with a spatial resolution of 10 m. This paper investigates the performance of
DSen2, a proposed convolutional neural network (CNN)-based method, for tackling super-resolution
in terms of accuracy and uncertainty. As the optimization problem for obtaining the weights of a
CNN is highly non-convex, there are multiple different local minima for the loss function. This results
in several possible CNN models with different weights and thus implies epistemic uncertainty. In this
work, methods to quantify epistemic uncertainty, termed weighted deep ensembles (WDESen2) and
its variants), are proposed. These allow the quantification of predictive uncertainty estimates and,
moreover, the improvement of the accuracy of the prediction by selective prediction. They involve a
consideration of deep ensembles, and each model’s importance can be weighted depending on the
model’s validation loss. We show that weighted deep ensembles improve the accuracy of prediction
compared to state-of-the-art methods and deep ensembles. Moreover, the uncertainties can be linked
to the underlying inverse problem and physical patterns on the ground. This allows us to improve
the trustworthiness of CNN predictions and the predictive accuracy with selective prediction.

Keywords: inverse problems; uncertainty quantification; deep ensemble methods; physics-informed
ML; Bayesian inference

1. Introduction

Satellite images of multiple spectral bands acquired from various satellites, such as
MODIS, VIIRS, ASTER, Worldview-3, and Sentinel 2, have different spatial resolutions.
The resolution varies by a factor of 2–6 based on the instrumentation. This work focuses
on the Sentinel 2 satellites, but the proposed methods for super-resolution, WDESen2 and
its variants, are not limited to Sentinel 2 data. The constellation consists of two satellites
that capture images of the Earth’s surface, where each point on the surface is observed
for a period of 5 days. Each image contains information from 13 spectral bands, some of
which partially overlap, ranging from ultraviolet/visible to infrared. Band B10 is used
for atmospheric corrections and was therefore omitted in the data used for this study.
The bands are available in several different resolutions: bands B2, B3, B4, and B8 have
a GSD of 10 and will be referred to as the A bands; B5, B6, B7, B8a, B10, and B11 have
a GSD of 20 m and will be referred to as the B bands; while bands B1 and B9 have a
GSD of 60 m and will be referred to as the C bands. The data can be used in various
applications, such as hydrology and water resource management [1–3]. Even though
there are reasons for the different spatial resolutions, such as storage and transmission
bandwidth restrictions, often it is desirable to have all bands available at the highest
spatial resolution. The problem of bringing all bands to a GSD of 10 m can be called
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super-resolution. In the work of Lanaras et al. [4], the authors demonstrated that a CNN-
based super-resolution method obtained higher accuracy for all super-resolved bands
compared to state-of-the-art algorithms. State-of-the-art algorithms for the super-resolution
of multi-spectral satellite data can be divided into three types: pan-sharpening per band,
as reviewed in [5,6]; inverting an explicit imaging model, as demonstrated in [7,8], with a
reduced-rank method applied for Sentinel 2 data in [9]; and machine learning approaches,
such as [4]. The approaches in the second category are often based on the reformulation
of super-resolution as a convex optimization problem by re-projecting each image in a
subspace determined by the corresponding algorithm, such as in [9]. These methods rely
on linear sensing model assumptions and are computationally expensive, as the super-
resolution of each image requires a separate optimization. While being computationally
more efficient, the CNN-based approach of [4] also better preserves spectral characteristics,
achieves a favorable computational speed when run on GPUs, and is globally applicable for
Sentinel 2 data without retraining. Thus, our work focuses on the DSen2 method from [4],
which combines the information of the bands with lower and higher resolutions for super-
resolution. The method relies on the assumption of the self-similarity of the upsampling
process. This means that upsampling from 20 m to 10 m GSD is assumed to have the
same mapping as upsampling from 40 m to 20 m GSD. Based on this assumption, in this
work we address the features in B bands that cannot be super-resolved by exploiting the
correlation between the bands with higher and lower resolutions. This is achieved in two
ways: firstly, by studying extensions of the DSen2 method that predict uncertainty, such
as WDESen2, and secondly, by studying the kernel of the inverse problem inherent to the
proposed super-resolution method. Specifically, predictive uncertainty is evaluated with
deep ensembles, as proposed in [10], and based on the success of weighted versions of
deep ensembles for classification problems, as in [11,12], we propose a novel method of
weighted deep ensembles for super-resolution. Uncertainty quantification (UQ) methods
in DL usually distinguish between epistemic, or model, uncertainty and aleatoric, or data,
uncertainty [13]. However, there is an ongoing debate as to whether these two types of
uncertainty can be disentangled [14]. Adopting this perspective, we aim at explaining
the obtained predictive uncertainties by the underlying physics, i.e., the inverse problem
model. Here, we interpret the predictive uncertainties that arise by experimentally relating
them to the kernel of the forward operator through projection onto the kernel of the inverse
problem model. A different technique based on the generalized kernel has been applied
in tomographic image reconstruction to detect hallucinations [15]. Moreover, we evaluate
the uncertainties and kernel obtained by selective prediction, which has been applied in
classification [16] and regression [17] problems for DL methods.

2. Methods

In this section, a brief introduction to Bayesian methods for uncertainty quantification
in CNNs is given, followed by a short overview of deep ensembles as a Bayesian method
and the extension thereof for super-resolution that is proposed in this work, WDESen2.
Thereafter, the architecture and pipeline for the proposed method and its relation to the
underlying inverse problem are described in detail.

2.1. Bayesian Methods for Uncertainty Quantification in Deep Neural Networks
2.1.1. Bayesian Methods and Deep Ensembles

We denote as y ∈ Y the space of the predictions and x ∈ X the inputs. In Bayesian
approaches for uncertainty quantification in CNNs, instead of obtaining a single set of
weights θ for the CNN by optimizing a given loss function, the aim is to obtain a posterior
distribution of weights, p(θ|D), given the training data D = (X, Y) [18]. In the following,
we give an outline of deep ensembles interpreted as a Bayesian method. Given the posterior
distribution, a predictive distribution can be obtained by marginalization over the weights:

p(y|x, D) =
∫

p(y|x, θ)p(θ|D)dθ.
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Since the posterior distribution, p(θ|D), is intractable, it is common to either approxi-
mate it with a distribution or apply sampling methods [13]. Deep ensembles, as introduced
in [10], can be interpreted as a sampling method [18]. The approach consists in training
a number N ∈ N of ensemble members that are CNNs, fθi : X → Y. Due to the non-
convexity of the optimization problem for obtaining the weights and the stochastic gradient
descent methods, this results in N different sets of weights, (θi(D))N

i=1. Then, the posterior
distribution [18] is assumed to be approximated by

p(θ|D) ≈ 1
N

N

∑
i=1

δ(θ = θi). (1)

The resulting prediction of the deep ensemble (DE) is the mean of the predictions,

ŷDE(x) =
1
N

N

∑
i=1

fθi (x) (2)

and the epistemic uncertainty is given by the variance of the predictions,

σ̂DE(x)2 =
1
N

N

∑
i=1

fθi (x)2 − ŷDE(x)2. (3)

2.1.2. Utilizing the Loss-Weighted Deep Ensembles

In the following, we introduce an extension of deep ensembles, weighted deep en-
sembles, which assign weight to the prediction by the validation loss of each ensemble
member. This approach implicitly approximates the posterior distribution in (1) with
weights (wi(θi, V))N

i=1 attributed to each network in the ensemble, as illustrated in Figure 1.
The weights wi = w(θi, V) depend on the validation loss and validation data V and the
weights of each ensemble member:

p(θ|D) ≈
N

∑
i=1

wiδ(θ = θi). (4)

Correspondingly, the prediction of the weighted deep ensemble (WDE) is given by the
weighted mean,

ŷWDE(x) =
N

∑
i=1

wi fθi (x) (5)

and the predictive uncertainty by the variance with respect to the distribution (4),

σ̂WDE(x)2 =
N

∑
i=1

wi fθi (x)2 − ŷWDE(x)2. (6)

2.1.3. Derivation of Ensemble Weights: Contribution Ratio Control

As shown in previous work, there are many possibilities for computing the weights
(wi)

N
i=1. We chose to compute the weights such that the contribution ratio can be controlled

by a hyperparameter. The weights depending on the parameters θi and the validation loss
Lθi = Lθi (V) are defined as

wi(θi, V) =

(
1

Lθi +
rLmax−Lmin

1−r

)/( N

∑
j=1

1

Lθj +
rLmax−Lmin

1−r

)
∀i ∈ {1, . . . , N},

where Lmax(V) and Lmin(V) are the maximum and the minimum validation loss, respec-
tively. The above definition ensures that the ensemble member with the lowest validation
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loss is weighted as the most important, i.e., has the highest weight. Moreover, the weights
satisfy the following conditions:

min((wi)
N
i=1)

max((wi)
N
i=1)

= r ∈ (0, 1) 0 < wi(θi, D) < 1 ∀i ∈ {1, . . . , N},
N

∑
i=1

wi(θi, D) = 1.

The last two conditions ensure that (4) is a probability distribution, and the first
condition allows one to determine the ratio of contribution, r, a hyperparameter that we
fixed at 0.5 in our experiments.

Figure 1. Architecture and pipeline of the KWDESen2 and VWDESen2 methods with N ensem-
ble members.

2.2. Architecture of a Weighted Deep Ensemble for the Super-Resolution of Satellite
Data: WDESen2

The weighted deep ensemble (WDESen2) architecture and its extensions, shown in
Figure 1, use the architecture of the DSen2 network [4] as a backbone. By ensembling
and weighting the predictions, WDESen2 improves the predictive accuracy compared to
DSen2. The selective prediction applied to the predictive uncertainties from WDESen2,
which are given as variances according to (6), is referred to as variance-based WDESen2
(VWDESen2). The selective prediction applied on the kernel projection is referred to as
kernel-based WDESen2 (KWDESen2). The proposed methods are described below. The
ensemble members of WDESen2 are the DSen2 networks that super-resolve the B and
C bands to 10 m GSD. For this, two networks are used: a CNN, S×6, which performs
the 6× super-resolution of the C bands from 60 m to 10 m GSD, and another CNN, Ψθ ,
which performs the 2× super-resolution of the B bands from 20 m to 10 m GSD. As the 6×
resolution network training procedure is structurally the same as that of the 2× resolution
network, we restrict ourselves to describing the latter. For training a CNN to super-resolve
the B bands, there do not exist ground-truth data with a 10 m GSD for the B bands. In order
to generate training data, we followed the approach of [4]. The A bands and B bands
are downsampled to 20 m and 40 m GSD, respectively. For each band and patch of size
W/2× H/2, the linear downsampling operator, DS : RW×H → RW/2×H/2, is given below
in Figure 2.
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Figure 2. The DS : RW×H → RW/2×H/2 operator. Here, W and H are the width and the height of
a patch.

Then, the downsampled 40 m GSD and 20 m GSD B and A bands are used as inputs,
and the 20 m GSD B bands can be used as targets in the training procedure. Based on the
assumption of the self-similarity of super-resolution from 40 m GSD to 20 m GSD compared
with that from 20 m GSD to 10 m GSD, the resulting network can then be used for 2× super-
resolution from 20 m to 10 m GSD. We let yA ∈ R4×W×H , where W × H is the patch-size,
and yB ∈ R6×W/2×H/2, where W/2×H/2 is the patch-size, denote the observed intensities
for the A and B bands, respectively. The DSen2 method for 2× super-resolution is given by

Ψθ : R4×W×H ×R6×W/2×H/2 → R6×W×H ,

(yA, yb)→ xB,

where the B bands, as depicted in Figure 1, are upsampled to the same resolution as the A
bands with bi-linear interpolation. The associated linear operator, M : RH/2×W/2 → RH×W ,
is applied to each B band.

By retraining N times on the same data splits with the `1 loss, due to the stochasticity
of the training procedure, we obtain N different CNNs, as shown in Table 1. As visualized
in Figure 1, the prediction of WDSen2 is composed of a weighted mean, according to (5),
and the corresponding variance (6).

The predictions of WDESen2 are post-processed using two different methods, kernel-
and variance-based partial prediction, which will be described in the following. For 6×
super-resolution to have the same dimension inputs in the CNN Ψθ , the B and C bands are
upsampled. However, this implies that there is no ground truth with which to compare
the predictions.

2.2.1. Kernel Component Exploration

For training, the B band inputs, yB ∈ R6×W/2×H/2 of Ψθ , are given by applying a
composition of M and DS, MDS : RW×H → RW×H , as in Figure 1, band-wise to the
training labels xB ∈ R6×W×H . Thus, Ψθ aims to reconstruct xi

B from yi
B = MDSxi

B and the
other bands, where xi

B is one of the B bands at 20 m GSD. As DS : RW/2×H/2 → RW×H

has a higher input dimension than output dimension, the composition MDS, depicted
in Figure 3, has a non-trivial kernel. Recall that the kernel of a linear map A : E → F is
defined as N (A) := {x ∈ E|u(x) = 0}. Thus, given an input yi, different super-resolved
solutions xi may exist depending on the effect of correlation. In order to analyze the kernel
component of the super-resolved bands, we use the projection operator PN (MDS) on the
kernel N (MDS):

PN (MDS) = I − (MDS)† MDS : RW×H → RW×H ,

where (MDS)† is the Moore–Penrose inverse of MDS [19], and this projection is approxi-
mated by a truncated singular value decomposition of MDS. The projection is computed
individually per patch and band, as shown on the left-hand side of Figure 4.
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Figure 3. The composition of the DS and M operators, MDS : RW×H → RW×H .

Figure 4. Kernel projection on the mean prediction (left) vs. variance (right) of WDESen2. The vari-
ance map visualizes the pixel-wise epistemic uncertainty of WDESen2 with 30 ensemble members.
The patch was from the tropical data.

2.3. Evaluation of the Predicted Variance and Kernel Projection of the Predictions of WDESen2

In order to utilize the predicted variance of WDESen2 and the kernel projection,
as described in Section 2.2.1, we perform selective prediction, as introduced for classification
in [16] and applied to DL for regression problems in [17]. The general idea of selective
prediction is to make the model abstain from giving a prediction if the uncertainty surpasses
a specific threshold. We apply selective prediction to pixel-wise variances, i.e., uncertainties,
from WDESen2 and pixel-wise values of the kernel projection. The first method, variance-
based WDESen2 (VWDESen2), as visualized in Figure 5, abstains from predicting pixels that
have the highest variance. In order to maintain comparability between different methods,
we withdraw 5% of the pixels from the mean prediction of WDESen2. The second method
is based on the underlying inverse problem, kernel-based WDESen2 (KWDESen2), where
the 5% of the pixels from the mean prediction that have the highest values in the kernel
projection of the prediction are withdrawn from the prediction.

2.4. Dataset Splits

In Table 1, the dataset splits for the training, validation, and test datasets are listed.
Inference at test time is performed on patches of two images of size 20× 20 km2. The 2×
super-resolution methods are trained and evaluated individually on the “Tropical landscape”
and “Mountains landscape” datasets, as these have different spectral characteristics.
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Figure 5. A and B ground-truth bands (top), variance-based withdrawal (bottom left) and variance
map (bottom right) for VWDESen2.

Table 1. Data splits for the training, validation, and test datasets. Regarding the images used for
inference at test time, the first image will be referred to as “Tropical data” and the second image as
“Mountain data”.

Images Split Patches

Tropical landscape/farmlands 1 Training
Validation
Test

87%
8.5%
4.5%

6500, 64× 64
723, 64× 64
289, 64× 64

Mountains landscape 9 Training
Validation
Test

89.5%
10%
0.5%

58,500, 64× 64
6500, 64× 64
289, 64× 64

3. Results
3.1. Linking Uncertainties and Physical Patterns on the Ground

Figure 4 visualizes the kernel projections on the mean predictions and the uncertainty
of WDESen2. Pixels of high variance correspond to pixels that have high values in the
kernel projections. This indicates a possible relation between pixels where the predictions
of the ensemble members diverge and the projection onto the kernel of MDS. Moreover,
comparing Figure 4 to the ground truth shows that the pixels of high variance and the
pixels with higher values in the kernel projections correspond to the physical patterns
shown in Figure 6.

Figure 6. The A and B bands of the patch used in Figure 4.
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3.2. Selective Prediction: Improving Accuracy with Uncertainty and Kernel Projections

Figures 7–9 enable one to compare the predictions of WDESen2, KWDESen2, and
VWDESen2 with those of deep ensembles, where the predictions are given by (2) and the
variance by (3). Selective prediction, as in Section 2.3, was applied to deep ensembles
DESen2, resulting in a variance-based DESen2 method (VDESen2) and a kernel-based
DESen2 method (KDESen2). Table 2 shows that removing the most uncertain 5% of the
total number of pixels could significantly reduce the band-wise RMSE by up to 15% for
VDESen2, and removing the pixels with a high value in the kernel projection could reduce
the band-wise RMSE by 7% for KDESen2. Moreover, Figures 7–9 show that weighted deep
ensembles with and without selective prediction were more accurate in terms of band-wise
RMSE than deep ensembles and the baseline model from [4]. Moreover, Figures 8 and 9
indicate that, depending on the dataset, 10–15 ensemble members obtained better accuracy
compared to smaller ensembles.

Figure 7. Band-wise RMSE of different deep ensemble methods (DESen2, KDESen2, VDESen2,
WDESen2, KWDESen2, and VWDESen2). Each ensemble was composed of 30 members, and the
baseline of DSen2 corresponds to 1 ensemble member. The RMSE was computed over 300 patches of
tropical data.

Figure 8. Band B11’s RMSE for different numbers of ensemble members on tropical satellite data.
For a given number of ensemble members n ∈ {1, . . . , 30}, a deep ensemble with n networks was
randomly chosen from the 30 trained models, and this was averaged over 10 times in order to avoid
the bias from the network sampling. The results were averaged over the patches.
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Figure 9. Band B11’s RMSE for different numbers of ensemble members on mountain satellite data.
For a given number of ensemble members n ∈ {1, . . . , 14}, a deep ensemble with n networks was
randomly chosen from the 14 trained models, and this was averaged over 10 times in order to avoid
the bias from the network sampling. The results were averaged over the patches.

Table 2. RMSE of the bicubic method, DSen2 baseline, deep ensemble of DSen2 (DESen2), weighted
deep ensemble of DSen2 (WDESen2), weighted deep ensemble of DSen2 with kernel-based pixel with-
drawal (KWDESen2), and weighted deep ensemble of DSen2 with variance-based pixel withdrawal
(VWDESen2). All deep ensembles had 30 networks. The RMSE was computed over 300 patches of
the tropical image.

B5 B6 B7 B8a B11 B12 Average

RMSE

Bicubic 93.2 105.1 124.6 133.6 105.4 94.8 109.4

DSen2 44.5 54.3 58.9 60.2 62.5 53.0 55.5

DESen2 35.7 43.6 50.8 52.8 55.1 45.8 47.3

WDESen2 34.6 42.6 50.1 52.4 54.4 45.5 46.6

KWDESen2 30.9 39.4 46.2 48.3 49.7 38.2 42.1

VWDESen2 28.7 37.6 44.0 46.0 48.0 35.8 40.0

4. Conclusions

This work showed that by utilizing uncertainties in predictions, accuracy and inter-
pretability can be improved compared to when other methods for the super-resolution of
satellite data, specifically Sentinel 2 data, are applied. The first proposed method, weighted
deep ensembles (WDESen2), improved the accuracy compared to state-of-the-art methods
and at the same time provided predictive uncertainties. In the second proposed method,
VWDESen2, selective prediction was applied to the uncertainties and yielded a lower RMSE
compared to state-of-the-art methods. Moreover, the variance could be visually related to
the projection onto the kernel of the underlying inverse problem and physical patterns on
the ground. The corresponding pixels could be interpreted as being hard to super-resolve,
as the withdrawal of such pixels led to a higher accuracy, resulting in the third proposed
method, KWDESen2.
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