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Abstract: De Sitter solutions play an important role in cosmology because the knowledge of unstable
de Sitter solutions can be useful in describing inflation, whereas stable de Sitter solutions are often
used in models of the late-time acceleration of the Universe. Einstein—-Gauss—Bonnet models are
actively used as both inflationary models and dark energy models. To modify the Einstein equations,
one can add a nonlinear function of the Gauss—Bonnet term or a function of the scalar field multiplied
on the Gauss—Bonnet term. The effective potential method essentially simplifies the search and
stability analysis of de Sitter solutions, because the stable de Sitter solutions correspond to the
minima of the effective potential.
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1. Introduction

It is well-known that one can add the Gauss—Bonnet term to the Hilbert-Einstein
Lagrangian of General Relativity, and this does not change the equations of motion. On the
other hand, this term, when multiplied by some nonconstant function of a scalar field,
modifies the equations of motion. Additionally, models with a non-linear function of the
Gauss—Bonnet term can be rewritten in the equivalent form, which includes a scalar field
without a kinetic term.

The cosmological models with the Gauss—-Bonnet term are motivated by string the-
ory [1-8] and are actively used for describing of both the early Universe evolution [9-24]
and the current dark energy dominated epoch [5-7,25-30].

Note that these studies of the Universe’s evolution are characterized by the quasi
de Sitter accelerated expansion of the Universe. Therefore, it is important to have an
effective method to sear the de Sitter solutions and for the study of their stability. For the
Gauss-Bonnet model with the standard scalar field, such a method has been proposed
in [31]. This is a generalization of the effective potential method [32,33]. In this paper, we
generalize this method on a model with nonlinear functions of the Gauss—Bonnet term. We
also consider the case of a phantom scalar field and show that, in this case, the situation is
more difficult.

2. Models the Gauss-Bonnet Term

Let us consider the model with the Gauss-Bonnet term, described by the following ac-
tion:

5= / dx/ =g [UR — S8"0,40,p — V — G|, (1)

where the functions U(¢), V(¢), and F(¢) are double differentiable ones, ¢ is a constant,
R is the Ricci scalar and G is the Gauss—Bonnet term,

G = R? — 4R,y R" + R;yapRMF.
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Note that the action

s = [dx/=gW(g), @)

where W(G) is a double differentiable function, can be rewritten in the following form [8,27]:

s = [t/ =3 [W(9)(G - ¢)+ W(@)], ©

where a prime denotes the derivatives with respect to ¢. Varying action (3) over ¢, one gets

¢ = G and the initial W(G) model. Therefore, action (1) with ¢ = 0 describes W(G) models.
In the spatially flat Friedmann-Lemaitre-Robertson-Walker metric with

ds? = —dt* +a*(t) (dx% +dx3 + dx%), 4)

one obtains the following evolution equations:

6H2U + 6HU'¢ = %q‘;z +V +24H3F'§, ®)
4(U—4HF)H = — c¢* —2U +2HU + 8H* (F — HF), (6)
o +3cH — 6(F +2H2 U’ + V' + 24H2F (H + H?) = 0, @)

where H = i/a is the Hubble parameter; dots and primes denote the derivatives with
respect to the cosmic time and the scalar field ¢, respectively. At c = 1, these equations
have been investigated in many papers (see, for example, [11,31]).

To find de Sitter solutions with a constant ¢ in the model (2), we substitute ¢ = ¢ 5
and H = Hys into Equations (5) and (7). A de Sitter solution does not depend on the value
of ¢, so we obtain the same results as in the case ¢ = 1 considered in [31]:

Vv
HZ _ _Vds
ds 6ud5 (8)

and ) )
P BUys (2U}gVas — VigUys)
dS - 2 7
2Vds

)

where A5 = A(¢ys) for any function A. Therefore, for arbitrary functions U(¢) and V(¢)
with V;sUys > 0, we can choose F(¢) such that the corresponding point becomes a de
Sitter solution, with the Hubble parameter defined by Equation (8). We always choose that
Hys > 0.

3. Stability of de Sitter Solutions

To analyze the stability of a de Sitter solution, we transform Equations (6) and (7) into
the following dynamical system:

¢ =1,
2

L {ZH (3B +4F'V' — 6u” —6cu]¢—z%x

Y =208 acFHy)
+ [12H2[(2U" + 3¢) F' + 2U'F"] — 96F'F"H* — 3(2U” + )U'[9?},
1

H =1 ey {8c (u’ - 4F’H2) Hy

(10)

—25—2 (4F’H2 _ u’)X n (SF”HZ —2u" — C) Cle}r
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i = -

where

B= 3(4H2F’ - u’)2 tel, (11)

u2 4/ AR !/
x:W[24HF—12Hu+V] (12)
In the case ¢ = 0, the last equation is essentially simplified:

_ 24H*F' — 12H*U' + V'

H
6(U’ — 4H2F')

(13)

At a de Sitter point system (10) is

$=0, =0, H=0,

that corresponds to X5 = 0.
In Reference [31], the effective potential has been proposed for cosmological models

with the Gauss—Bonnet term:
uz 2
Ve = —7+§P- (14)

Using Equation (8), we obtain

2 u’.u, VU3
dezgpdls_z ds d5+ ds—ds

Vd S de S

= Viss(¢as) =0, (15)

therefore, de Sitter solutions correspond to extremum points of the effective potential V.
To investigate the Lyapunov stability of a de Sitter solution, we use the following

expansions:

H(t) = Hys +eHi(t) - ¢(t) = das +ep1(t), () = epr(t), (16)
where ¢ is a small parameter. Therefore,

X =e(XyHy + Xop1) + O(e2), (17)
where
X = g% =i - é‘}?u%z(uésvds — VasUas),
X = gi; e Viz (;Fa/llsvdzs — 2UgsUysVas + Vélsuﬁs)-
=Pds ds

The functions Hj (t), ¢1(t), and ¢y (t) are connected by Equation (5):

_ Vésuds - uéISVdS

Hi(t) 2U;5Vys

(Has¢r(t) — ¢1(1)). (18)

This expression does not depend on the value of c and coincides with the corresponding
expression obtained in Reference [31].

Substituting (16)—(18) into Equation (10) in the first order of ¢, we obtain the following
system of two linear differential equations:

¢1 =1, (19)

2
|2} Vs — 6UlUas Vs +3VisUssVas — 6(UisVas — VisUas)?| /6T Vg

— , 20
3UysVisBas ! 2Uygs ¥ 20)
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where

3 2
ds

This system can be rewritten in the matrix form:

o\ _ [ An An $1
<¢1>_<A12 Azz)(%) 22

where
i 0, 1
A= V2 Viii($as)
eff
T UuBs - OHas

The general solution of system (22) has the following form
¢1 = cne M epe M, (23)
1 = cpe M+ ope M, (24)

where c;; are some constants. Solving the characteristic equation:

_ ViV (¢as)
det(A — A1) = A2 — 3Hygh + —= SLT00 (25)
UisBas

we obtain the following roots:

A= — DHyg 4| 2H2, — Vis V" (pas) (26)
== — 5Hus gMas = g Veff $as) -

A de Sitter solution is stable if the real parts of both A_ and A, are negative. We

consider the case Hys = % > 0, hence, Re(A_) < 0.

In the case of a positive Uyg, we see that Byjg > 0 for ¢ > 0 and the condition
Re(A4) < 0is equivalent to Ve’} f(‘f’ds) > 0. In the cases ¢ > 0 and ¢ = 0, a de Sitter solution
is stable if Vg/}f(%s) > 0 and unstable if Vef}f(qbds) <0.

In the case ¢ < 0, we see that B;s can be negative. Therefore, in this case, the de Sitter
solution is stable if the Ve’} £ (¢4s)Bas > 0. Therefore, the main result of Reference [31] can
be generalized on the case ¢ = 0 without any correction, whereas the condition should be
changed to Ve/} f(des)Bds > 0 in the case of ¢ < 0, which corresponds to a phantom scalar
field ¢.

4. Conclusions

In this paper, we consider de Sitter solutions in models with the Gauss-Bonnet term,
including W(G) models. We show that the effective potential proposed [31] for model with
the Gauss-Bonnet term, multiplied on a function of the scalar field, can be used in W(G)
models as well. To find de Sitter solutions in a W(G) model, we rewrite the action of this
model in the form (3) and construct the corresponding effective potential V,ss. A stable
de Sitter solution corresponds to Ve///f £ (¢as) > 0, where the values of the scalar field at the

de Sitter point ¢,5 are determined by the condition V/ £ f((l’ds) = 0. Examples of de Sitter

solutions in W(G) gravity models and in more complicated models with the L(R + G)
function in the action are given in [34].

Note that the effective potential provides a useful tool for the construction of infla-
tionary scenarios in models where the Gauss—Bonnet term is multiplied to a function of
the scalar field [24,35,36]. We plan to generalize this approach to inflationary scenarios in
W(G) models.
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