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Abstract: Mixing transformations in QFT are non-trivial, since they are connected with the issue of the
unitary inequivalence between Fock space for definite flavor fields and Fock space for definite mass
fields. This poses the problem of selecting the right (i.e., physical) representation for asymptotic mixed
fields. Here, we approach to the study of this inequivalence in the context of mixing of neutrinos. As a
test-bench for our investigation, we consider the weak decay of a uniformly accelerated proton within
the framework of the minimally extended SM. By relying on some core principles and predictions
of the theory, such as the general covariance, the conservation of the family lepton numbers in
the tree-level interaction vertices and the CP-symmetry violating effects in neutrino oscillations,
we conclude that the only way to keep the formalism internally consistent is by resorting to the
flavor representation.
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1. Introduction

In the context of canonical QFT, Haag’s theorem [1] in its modern form [2] states that,
given two different representations of the CCR, (H1, {Oi

1}) and (H2, {Oi
2}) (where H1/2

are the respective Hilbert spaces and {Oi
1/2} the sets of related operators in CCR), there

exists in general no unitary map U from H1 to H2 such that, for each O j
1 ∈ {Oi

1}, one

can write O j
2 = UO j

1U−1 ∈ {Oi
2}. The two representations are then said to be unitarily

inequivalent (notice that this problem does not arise at all in non-relativistic QM, where
Stone–von Neumann uniqueness theorem [3] guarantees that the representations of the
CCR are all unitarily equivalent to each other.). Beyond pure mathematical aspects, this
theorem features a number of physical phenomena [4], such as the spontaneous symmetry
breaking (where the same algebra describes both the normal and symmetry-broken phases)
and Hawking black-hole evaporation (for which inequivalent representations of the CCR
are associated to different observer’s perspectives, the static observer outside the black
hole on one hand, the radially free-falling observer on the other).

Recently, the pivotal rôle of inequivalent representations has been highlighted in
problems related to the quantization of superpositions of fields with different masses
(henceforth, we simply call these superpositions “mixing transformations” and the en-
suing fields “mixed” or “flavor fields”) [5]. Specifically, it has been shown that mixing
transformations at the level of ladder operators exhibit the structure of a rotation nested
into a Bogoliubov transformation. As a result, the vacuum for fields with definite flavors
becomes a condensate of particle–antiparticle pairs with definite masses, thus giving rise
to inequivalent flavor and mass Fock spaces. The question naturally arises as to which of
these two representations should actually be regarded as the physical one for asymptotic
mixed fields.
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Along this line, a clue to the solution has been provided through the study of weak
decay processes involving neutrinos. In particular, consider the inverse β-decay of a
uniformly accelerated proton, which in the frame of the laboratory reads [6]

p a−→ n + e+ + νe , (1)

where p, n, e+ and νe denote the proton, neutron, positron and neutrino, respectively,
while a stands for the magnitude of the proper acceleration. Aside from our specific goal,
we mention that this process also served as a theoretical proof of the necessity of Unruh
effect [7] for the general covariance of QFT [8]. Indeed, by switching to the rest-frame of the
proton and demanding the scalar decay rate (i.e., the decay rate over the proper time) to be
invariant, the conclusion that the proton must now interact with virtual leptons popping
out from Unruh thermal bath as

p + e− → n + νe , p + νe → n + e+ , p + e− + νe → n , (2)

is inevitably reached.
The decay (1) was originally addressed in [8,9] in a toy model with massless neutrino.

Attempts to embed neutrino mass and mixing were later carried out in [6,10,11] by con-
sidering a scenario with only two neutrino flavors. However, conflicting results on the
very nature of asymptotic neutrinos were achieved. Following [12], here we analyze the
inverse β-decay in the three-flavor description with neutrino oscillations and CP violation
effects. We compute the scalar decay rate in both the laboratory and comoving frames, and
compare the final results. By relying on some core principles of the theory, such as the
fulfillment of the general covariance and the conservation of the family lepton numbers
in the tree-level interaction vertices, we show that the only way to keep the formalism
internally consistent is by resorting to the flavor representation.

Throughout the work, we use natural units kB = h̄ = c = 1 and Minkowski metric
with the conventional time-like signature.

2. Methods

This section is devoted to set the stage for the computation of the proton decay
rate. Following [6,8,12], we describe the neutron n and proton p as excited and unexcited
states of a two-level quantum system, the nucleon. In order to account for the uniformly
accelerated motion of the proton, we assume that it moves along a Rindler trajectory (as far
as the momenta ke, kν of the positron and neutrino are much smaller than the proton and
neutron mass, mp, mn, one can assume that the emitted neutron keeps on moving along
the same Rindler trajectory of the ingoing proton. In what follows, we make use of this
approximation without affecting the overall validity of our considerations.).

For accelerations a small enough with respect to the masses of the intermediate bosons
W± and Z0, the interaction action can be described by a semiclassical Fermi-like effective
theory, i.e.,

ŜI =
∫

d4x
√
−g Ĵh,λ Ĵλ

l , (3)

where g is the determinant of the metric. Here, we have defined the (classic) hadron
current as Ĵh,λ = q̂(τ)uλδ(x)δ(y)δ(u− 1/a), where q̂(τ) = eiĤτ q̂(0)e−iĤτ is the monopole
operator, Ĥ is the nucleon hamiltonian and GF = |〈n|q̂(0)|p〉| is Fermi coupling constant.
The four-vector uλ represents the nucleon velocity along the Rindler trajectory, which is
parameterized by the condition u = 1/a, with u being a Rindler spatial coordinate. The
nucleon proper time τ is related to the coordinate time v by τ = v/a. On the other hand,
the quantum lepton current reads Ĵλ

l = ∑`=e,µ,τ

(
Ψ̂ν`γ

λΨ̂` + Ψ̂`γ
λΨ̂ν`

)
, where Ψ̂`(ν`)

is the
electron (neutrino) Dirac field of flavor `.

A remark is now in order. According to Pontecorvo’s pioneering works on two-flavor
mixing [13,14] and their extension to three generations [15], it is a well-established fact
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that neutrinos weakly interact with charged leptons in flavor eigenstates |ν`〉, which are
superpositions of mass states |νj〉 (j = 1, 2, 3) via PMNS matrix U ≡ U(θ12, θ23, θ13, δ),
where θ12, θ23 and θ13 are the three mixing angles and δ the CP violating phase (see [12] for
the explicit expression of U). Notice that this is mandatory to obey the conservation of the
family lepton numbers in the (tree-level) interaction vertices. In the next Section, we shall
see how to take advantage of this feature in exploring the flavor-mass controversy.

3. Results and Discussion

Let us now give computational details. Firstly, we analyze the inverse β-decay in
the laboratory frame, where the accelerating source provides the proton with the missing
energy to convert into a neutron, a positron and an electron neutrino according to (1). We
then study the process from the point of view of an observer comoving with the proton
(see (2)). As commented above, in this case the proton at rest is allowed to decay due to the
interaction with electrons and antineutrinos in Unruh thermal bath.

3.1. Laboratory Frame

By making use of the S-matrix formalism, the (tree-level) scalar decay rate for the
process (1) takes the form [12]

Γ ≡ 1
T ∑

σe ,σν

∫
d3kν

∫
d3ke

∣∣A∣∣2 (4)

= |Ue1|4 Γ1 + |Ue2|4 Γ2 + |Ue3|4 Γ3

+
(
|Ue1|2 |Ue2|2 Γ12 + |Ue1|2 |Ue3|2 Γ13 + |Ue2|2 |Ue3|2 Γ23 + c.c.

)
,

where σe(ν) is the electron (neutrino) polarization, T is the nucleon proper time and we have
denoted byA the transition amplitudeA = 〈n| ⊗ 〈e+, νe|ŜI |0〉 ⊗ |p〉. U`,i (` = {e, µ, τ}, i =
{1, 2, 3}) represents the generic element of PMNS matrix, while the explicit expressions of
Γi and Γij are given in Equations (19) and (20) of [12].

At this stage, we notice that, due to the asymptotic occurrence of flavor oscillations, the
total decay rate also gets non-trivial contributions from the processes p a−→ n + e+ + νµ(τ).
By adding up the three rates, in the laboratory frame we finally obtain [12]

Γlab = |Ue1|2 Γ1 + |Ue2|2 Γ2 + |Ue3|2 Γ3 . (5)

3.2. Comoving Frame

In the comoving frame, the evaluation of the decay rate is contingent upon the quan-
tization of lepton fields in the Rindler–Fulling scheme, which is the procedure of quanti-
zation pertaining to a uniformly accelerated observer in Minkowski spacetime. Bearing
in mind that the proton can absorb (emit) a particle of Rindler frequency ω from (toward)

the thermal bath with probability nF(ω) = (eω/TU + 1)
−1
(

ñF(ω) = 1− nF(ω)
)

, where
TU = a/2π is Unruh temperature [7], the decay rate for the three process (2) is

Γ = |Ue1|4 Γ̃1 + |Ue2|4 Γ̃2 + |Ue3|4 Γ̃3 (6)

+
(
|Ue1|2 |Ue2|2 Γ̃12 + |Ue1|2 |Ue3|2 Γ̃13 + |Ue2|2 |Ue3|2 Γ̃23 + c.c.

)
,

where Γ̃i and Γ̃ij are defined as in Equations (39) and (40) of [12].
Once again, the necessity to account for flavor oscillations requires us to consider

also the following extra channels: p + e− → n + νµ(τ) , p + νµ(τ) → n + e+ and
p + e− + νµ(τ) → n. Therefore, the total decay rate in the comoving frame becomes [12]

Γcom = |Ue1|2 Γ̃1 + |Ue2|2 Γ̃2 + |Ue3|2 Γ̃3 . (7)
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Clearly, since we are dealing with a scalar quantity, we expect that Γlab = Γcom. This
has been explicitly proved in [6,12] (at least in the realistic approximation of small neutrino
mass differences), showing that Γi = Γ̃i , Γij = Γ̃ij, for all i, j. We thus find that the use of
flavor states is consistent with the general covariance of the theory. Actually, we point out
that the same conclusion would be reached by working in the mass representation [11],
forcing us to look for some other criterion to discern between flavor and mass states.

In this vein, let us consider as a test-bench the description of CP symmetry violat-
ing effects in neutrino oscillations, which are predicted by the SM and have also been
measured using long-baseline neutrino and antineutrino oscillations observed by the T2K
experiment (see [16] and references therein). Such effects can be quantified by introducing
the so-called Jarlskog invariant J, which is defined by Im

[
UδiU∗γi

U∗δjUγj

]
≡ J ∑λ,k εδγλ εijk,

where δ, γ, λ = {e, µ, τ} and i, j, k = {1, 2, 3}. Obviously, since this is the unique phase-
independent measure of CP violation that we can build from PMNS matrix, all CP violating
observables are expected to depend on it.

In order to feature the flavor–mass dichotomy via the study of CP violation, we
consider the scattering matrix Ŝweak for a generic charged-current weak interaction with an
outgoing neutrino (the specific case of the inverse β-decay is recovered by simply equating
Ŝweak to ŜI given in Equation (3)). To quantify CP violation, we assume that the neutrino,
emitted for instance with flavor e, undergoes oscillation and is detected after a certain
distance with flavor µ. By working in the asymptotic flavor basis, the transition amplitude
for this process is

Aνe ,νµ = out〈νµ, . . . |Sweak
(
ψ̄νe . . .

)
| . . . 〉in , (8)

where the dotted spaces must be filled with the other fields/states involved in the interac-
tion. After implementing the mixing transformation on both the neutrino field and state,
we are led to the following expression for the decay rate

Γνe ,νµ ∼ |Aνe ,νµ |
2 = |Uµ1|2|Ue1|2|A1|2 + |Uµ2|2|Ue2|2|A2|2 + |Uµ3|2|Ue3|2|A3|2 (9)

+
(

U∗µ1 Ue1 Uµ2 U∗e2A1A∗2 + U∗µ1 Ue1 Uµ3 U∗e3A1A∗3 + U∗µ2 Ue2 Uµ3 U∗e3A2A∗3 + c.c.
)

,

where we have omitted the sum over polarizations and the integration over momenta to
streamline the notation.

Let us now focus on the mirror-symmetric interaction (Parity transformation) and
swap particles with antiparticles (Charge conjugation). By evaluating the decay rate Γν̄e ,ν̄µ

for this process, we can finally quantify CP asymmetry as

A(e,µ)
CP ≡ Γνe ,νµ − Γν̄e ,ν̄µ = 4 J

{
− Im[A1A∗2 ] + Im[A1A∗3 ] − Im[A2A∗3 ]

}
. (10)

As expected, this quantity is non-vanishing and proportional to the Jarlskog invariant
J. On the other hand, it is quite unclear how to reproduce such a result if working with
asymptotic mass states. In fact, as shown in [12], in that case, one would trivially get
ACP = 0, hinting that the mass representation is inconsistent with the prediction of CP
violation in neutrino oscillations.

4. Conclusions

Understanding the very nature of asymptotic neutrinos is a challenging, but fundamen-
tal task, given their abundance in the universe and their unparalleled rôle in investigating
physics at all energy scales [17]. Waiting for experimental hints, in this work we have
approached this study from a purely theoretical perspective. By analyzing the weak decay
of a uniformly accelerated proton within the framework of the SM, we have shown that a
generally covariant formalism consistent with (i) the conservation of the family lepton num-
bers in the interaction vertices, (ii) the phenomenologically observed neutrino oscillations
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and (iii) the related CP symmetry violation can be formulated, provided that asymptotic
neutrinos are described through flavor states.

Clearly, further questions need to be answered. First, we have developed computations
up to the leading order in neutrino mass differences. To strengthen our claim, the exact
calculation should be performed. Nevertheless, we expect that higher order terms do not
spoil the overall validity of our result, although some novel effects might appear. For
instance, in [18], it has been argued that Unruh distribution for mixed fields acquires extra
terms that break down its thermal nature. It would then be interesting to explore the
interplay of this exotic behavior of Unruh effect with our findings. Special focus is also
deserved by the study of inertial effects on the oscillation probability formula, given their
intimate connection with gravity-induced corrections. More work is inevitably required in
these and other directions.
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