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Abstract: Integrating photovoltaic (PV) systems plays a pivotal role in the global shift toward
renewable energy, offering significant environmental benefits. However, the PV installation should
provide financial benefits for the utilities. Considering that the utility companies often incur costs
for both energy and peak demand, PV installations should aim to reduce both energy and peak
demand charges. Although PV systems can reduce energy needs during the day, their effectiveness
in reducing peak demand, particularly in the early morning and late evening, is limited, as PV
generation is zero or negligible at those times. To address this limitation, battery storage systems
are utilized for storing energy during off-peak hours and releasing it during peak times. However,
finding the optimal size of PV and the accompanying battery remains a challenge. While valuable
optimization models have been developed to determine the optimal size of PV–battery systems,
a certain gap remains where peak demand reduction has not been sufficiently addressed in the
optimization process. Recognizing this gap, this study proposes a novel statistical model to optimize
PV–battery system size for peak demand reduction. The model aims to flatten 95% of daily peak
demands up to a certain demand threshold, ensuring consistent energy supply and financial benefit
for utility companies. A straightforward and effective search methodology is employed to determine
the optimal system sizes. Additionally, the model’s effectiveness is rigorously tested through a
modified Monte Carlo simulation coupled with time series clustering to generate various scenarios
to assess performance under different conditions. The results indicate that the optimal PV–battery
system successfully flattens 95% of daily peak demand with a selected threshold of 2000 kW, yielding
a financial benefit of USD 812,648 over 20 years.

Keywords: photovoltaic systems; battery storage; peak demand reduction; statistical modeling; time
series clustering; operational optimization; Monte Carlo simulations

1. Introduction

The move toward renewable energy is a response to growing environmental concerns
and the limited supply of non-renewable resources [1]. Photovoltaic (PV) systems are
becoming increasingly important in this shift because of their ability to use solar energy,
which is both abundant and environmentally friendly [2]. Considerable efforts are un-
derway to improve the PV technology. For instance, the authors of [3,4] have shown that
monolithic perovskite/silicon tandem solar cells recently achieved a certified efficiency
of 29.1%. Recent advancements have significantly improved PV module lifetimes and
their ability to perform optimally even in harsh environmental conditions [5]. Despite the
advancement in PV systems, they still present significant technological and economic chal-
lenges [6]. The installation of PV systems must yield financial benefits for utilities and meet
technical requirements. In most instances, utility companies incur costs for both energy
and peak demand. Therefore, PV installations must not only reduce the energy needed
but also reduce the peak demand. Energy requirements can be reduced whenever PV
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systems generate electricity, resulting in financial benefits for utility companies. However,
reducing peak demand with PV systems requires additional analysis, with consideration of
various factors. For example, during winter days, peak demand often occurs in the early
morning when there is negligible or no PV generation [7]. Consequently, on such days, PV
installations do not contribute to peak demand reduction. In addition, peak demand may
coincide with minimal PV generation during certain days in the spring and fall, limiting
the utility benefits.

Considering that peak demand charges are typically high, it is important to leverage
PV generation for peak demand reduction. To address this challenge, battery storage
systems, which have seen significant advancements in efficiency and capacity, can be
potentially useful [8]. By shifting energy from off-peak to peak hours, batteries can reduce
peak demand, thereby providing greater financial benefits for utility companies. While
the use of energy storage systems can aid in reducing peak demands and enhancing
financial benefits, it also introduces additional costs associated with battery installation and
energy losses during charging and discharging. Therefore, determining the optimal size of
PV–battery systems is critical to satisfy both technical and economic considerations. Many
studies have been conducted to identify the optimal size of grid-connected PV–battery
systems [9].

1.1. PV–Battery Optimal Sizing Approaches

The methodologies explored in the existing literature for optimizing PV–battery sys-
tems can be categorized, as in the following sections.

1.1.1. Single-Objective Optimization

Single-objective optimization focuses on optimizing a single aspect of the PV–battery
system, such as cost minimization, energy efficiency, or reliability [10]. The authors of [11]
developed a single-objective-function model to maximize energy savings in PV–battery
systems. Their findings suggested that residents could save 5% of their total electricity
load without storage and 14% with storage. The researchers in [12] formulated a model
for the economic assessment of residential PV systems with lithium-ion batteries. Their
analysis showed that optimal sizing can make these systems more affordable than PV
alone. In [13], a mixed-integer nonlinear programming optimization model was created
to optimize the operation and investment of PV–battery systems. The study revealed
that the temporal resolution of electrical load and PV generation profiles significantly
influences self-consumption and optimal system sizing. The authors of [14] proposed a
methodology for determining the optimal size of PV–battery systems, focusing on the
overall cost throughout the project lifetime. This approach, validated against realistic
test cases, provides an economic analysis to ensure the investment feasibility. While
single-objective optimization methods are effective in determining the optimal PV–battery
system, they might not adequately address other crucial aspects of PV–battery systems.
This narrow focus can result in solutions that may not be optimal when considering the
broader operational needs and challenges of PV–battery systems. To address this limitation,
multi-objective optimization approaches have been developed.

1.1.2. Multi-Objective Function Optimization

Multi-objective function optimization involves optimizing multiple objectives simul-
taneously, such as cost, efficiency, reliability, and environmental impact [15]. The authors
of [16] developed a multi-objective optimization model for PV and battery energy storage
systems, implemented using particle swarm optimization. The objectives included loss
minimization, voltage, and load ability improvement. The authors of [17] developed a
multi-objective optimization for grid-connected PV–battery systems, utilizing machine
learning techniques. The objective functions included minimizing energy bought from
the utility grid, maximizing the battery state of charge, and reducing carbon dioxide emis-
sions. In [18], a scenario-based multi-objective optimization for a rural PV–battery system,
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focusing on economic gains and grid interaction, was developed. Findings showed an
87% improvement in grid interaction smoothness, highlighting its effectiveness in various
scenarios and weather conditions. Similarly, Song, Guan, and Cheng [19] proposed a
multi-objective optimization strategy for home energy management systems, including
PV and battery energy storage, emphasizing the integration of sustainable energy sources
into the grid. However, a significant limitation shared by both single- and multi-objective
optimization methods is their lack of consideration for uncertainty. Real-world PV–battery
systems operate under a variety of uncertain conditions, including fluctuating solar irradi-
ance and changing load demands. The failure to incorporate these uncertainties into the
optimization models can limit the applicability and resilience of the proposed solutions
in real-word applications. To address this critical gap, stochastic and robust optimization
methods were typically utilized.

1.1.3. Stochastic Optimization

Stochastic optimization can be used to determine the optimal size and operation of
PV–battery systems under uncertain conditions [20]. By considering a range of possible
scenarios, such as varying levels of solar irradiance and changes in energy demand, this
method allows for the design of systems that are not only cost-effective but also resilient
to changes in environmental conditions and energy market dynamics [21]. The authors
of [22] employed a stochastic optimization approach to determine the optimal size of
the PV–battery system, focusing on minimizing system unavailability and cost. Based
on their findings, PV panel costs and efficiency significantly affect the optimal system.
Using stochastic optimization, the authors of [23] developed a model for sizing battery
storage integrated with PV systems, aiming to minimize the battery cost and grid energy
import. Their results indicated that combining financial and technical objectives is crucial
for achieving economically feasible PV–battery sizing. According to the authors of [24],
an integrated stochastic framework was developed to optimize the design and operation
of PV–battery systems. In that study, feed-in tariffs and unit costs played a major role in
determining PV–battery sizes. While stochastic optimization provides a robust framework
for dealing with uncertainties, these methods often require large numbers of data and
fitting the data into known probability distribution functions (PDFs) that can be complex
and computationally intensive [25].

1.1.4. Robust Optimization

On the other hand, robust optimization addresses uncertainty by establishing parame-
ter bounds. They are particularly useful when data are insufficient, or when probability
distributions are either unknown or fitting them is statistically insignificant [26]. Robust op-
timization is a new method in PV–battery optimization that constructs solutions to perform
effectively within a range of uncertainty, defined by intervals, ensuring consistency and
resilience against variations in input data and model parameters [27]. In [28], a two-stage
robust optimization model was presented for optimal sizing of PV systems with battery
units. It addresses PV generation and load uncertainties using polyhedral uncertainty
sets. The authors of [29] conducted robust optimization for grid-connected PV–battery
systems. It emphasized the importance of considering real-world uncertainties in system
design. The study demonstrated a trade-off between minimizing the levelized cost of
electricity mean and its standard deviation, using Pareto sets of optimized designs. While
robust optimization offers a pragmatic approach to managing uncertainty, it tends to yield
overly conservative solutions. Besides, accurately determining the appropriate uncertainty
bounds is challenging, which can significantly impact the efficiency and feasibility of the
optimized system.

Despite these optimization approaches providing valuable insights into optimizing
PV–battery systems, especially for grid-connected applications, a certain gap remains. Peak
demand has not been sufficiently integrated into existing optimization frameworks. This
oversight is particularly crucial considering that utility companies often incur substantial
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costs for peak demand. Recognizing this gap, this study proposes novel statistical models
aimed at comprehensively addressing the optimization of grid-connected PV–battery
systems, with a particular emphasis on peak demand reduction. The models enable utility
companies to design PV–battery systems capable of effectively flattening 95% of the daily
load demand profiles up to a predefined threshold. This threshold is determined by the
utilities, considering their operational capacity and risk management considerations.

The optimization process for PV–battery systems traditionally relies on historical
data, assuming the parameters determining the optimal configurations are deterministic.
However, key factors, such as demand and solar irradiance, are inherently uncertain, and
their variability significantly impacts the optimization process. Failing to consider such
uncertainties may compromise the effectiveness of the optimal PV–battery system, and
potentially lead to a non-optimal peak demand reduction, compromised utility benefits,
and even system instability [30]. Single- and multi-objective optimization problems have
often been approached by assuming deterministic data. Additionally, the challenges of
accurately determining appropriate uncertainty bounds in robust optimization, alongside
the complexities and computational intensities of fitting data into known PDFs in stochastic
optimization, highlight the limitations of the current methodologies. Recognizing the
critical importance of accounting for uncertainty in the optimization process and the
limitations associated with robust and stochastic optimization, this study utilizes a modified
Monte Carlo simulation. Traditional Monte Carlo simulations, which treat uncertain
parameters independently, may produce unrealistic scenarios. For example, they may
generate a winter load profile alongside a summer solar irradiance profile. To remedy
this, the modified Monte Carlo simulation employs time series clustering techniques to
recognize the complex interdependencies between solar irradiance and load demand. By
grouping similar demand and solar irradiance profiles into clusters and using conditional
probabilities between the load demand and solar irradiance clusters, more realistic scenarios
are generated.

In this study, actual demand and solar irradiance data from the City of Greensburg,
Kansas, USA, were collected to establish the methodology. Initially, a specific PV size was
selected, and modified daily load profiles were generated by subtracting the original load
from the PV generation for that PV size. The needed batteries were calculated for each day
to flatten the daily loads. Then, a range of battery sizes was chosen to calculate the updated
daily peak demands after PV–battery installation by taking advantage of the required daily
batteries. The updated peaks were then represented in histograms corresponding to each
PV–battery combination and fitted with appropriate PDFs. When the 95th percentile value
of a PDF matched the desired utility threshold, the corresponding PV and battery sizes
were considered optimal. Otherwise, new PDF parameters were determined to align the
95th percentile with the utility threshold. By iterating this process across various PV sizes,
we identified optimal combinations of PV–battery systems capable of flattening 95% of
daily peaks up to a certain demand threshold. A financial analysis was then conducted
to identify the most economically beneficial configurations. Finally, a modified Monte
Carlo simulation, coupled with time series clustering, was employed to rigorously test the
optimal system under various load and solar irradiance conditions. The proposed model
provides a practical and efficient approach for determining the optimal size of PV–battery
systems, specifically tailored for utilities connected to the grid and incurring peak demand
charges. The organizational flowchart of the simulation procedure in this study is shown
in Figure 1.

1.2. Contributions

The main contributions of this study can be summarized as follows:

1. Development of a novel statistical model. We introduce a new statistical model
specifically designed for optimizing PV–battery system sizes, with a primary focus on
peak demand reduction. This model addresses a critical gap in the current literature
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by considering both energy consumption and peak demand costs, which are essential
factors for utility companies.

2. Incorporation of a modified Monte Carlo simulation. The study utilizes a modi-
fied Monte Carlo simulation approach to generate realistic and varied operational
scenarios. This methodological innovation allows for a better understanding of PV–
battery system performance under diverse conditions, enhancing the robustness of
our optimization model.

3. Operational and financial analysis for utilities. By providing a method to effectively
flatten up to 95% of daily load demand profiles, the model offers a practical tool for
utility companies. It enables them to make informed decisions regarding the optimal
sizing of PV–battery systems, balancing technical feasibility with financial viability.
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2. Materials and Methods

This section provides an overview of the techniques used to determine the optimal
size of the PV–battery system.
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2.1. Data Collection and Assumptions

For this study, actual solar irradiance and load demand data were collected over three
years, from 2019 to 2021, for the City of Greensburg, Kansas, USA. The data were collected
on an hourly basis. Tax credits of 30% are available for PV–battery installation costs. In the
case of replacement batteries acquired after their lifetime, a tax credit is not available. It is
assumed that daily load demands are flattened up to a predefined threshold of 2000 kW.
Additionally, the quantity values utilized in this study are presented in Table 1.

Table 1. The quantity values used in this study.

PV Module (USD/W)
0.35

Inverter (USD/W)
0.04

Equipment (USD/W)
0.18

Overhead (USD/W) O&M (USD/kW) Transformer (USD)
0.1 15 150,000

Energy cost (USD/kWh) Power cost (USD/kW) Tax credit (%)
0.025 22 30

Initial battery (USD/kWh) Replacement battery
(USD/kWh) Project lifetime

150 100 20 years

Labor (USD/W) Discount rate Battery roundtrip efficiency
0.1 0.08 0.9025

Inverter coefficient Battery efficiency Battery utilization
1.2 0.95 0.7

2.2. PV–Battery System Component Model

This study examined a system comprised of silicon-based solar panels, inverters,
transformers, and batteries. The solar panels are responsible for converting solar energy
into electrical energy [31]. Considering a PV system with a size of X kW, the DC output
power of this PV system at any given hour, h, can be expressed by the equation [32]:

PV(h) =
X

1000
× I(h) (1)

where, PV(h) represents the DC output power of the PV system in kW at hour h, I(h)
denotes the solar irradiance in W/m2 at hour h, and 1000 is the solar constant in W/m2.

The inverters convert the DC electricity generated by the solar panels into AC electric-
ity. The performance of the inverter is modeled as follows [33]:

Pinv(h) = PV(h)·ηinv (2)

where, Pinv(h) represents the AC output power of the inverter and ηinv is the inverter efficiency.

2.3. Required Daily Battery Size

The primary task of the battery in the PV–battery system is to store excess energy
generated by the PV panels during peak sunlight hours and provide energy during periods
of high demand. To develop the proposed methodology, the first step was to calculate
the daily load demand after PV installation, referred to as modified daily load profiles.
Initially, a range of PV sizes, denoted from X1 to Xn kW, was considered. For a PV system
of X kW, the output AC power is given by Equation (2). We then generated the modified
daily load profiles by subtracting PV generation from the original load profile for each day.
For example, Figure 2 illustrates the original load, PV generation, and the modified load,
derived by subtracting PV generation from the original load for a PV size of 2000 kW on a
selected day in December 2020.
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After calculating the modified load profiles for PV sizes ranging from X1 to Xn for
all days, the next step involved determining the required daily battery sizes. These are
sizes that can effectively flatten the modified daily load profiles. This calculation assumes a
daily battery cycle, which means the battery charges and discharges within a day [7]. To
determine the required daily battery size, a horizontal line was drawn across the modified
daily load profile so that the area above the line was equal to the roundtrip efficiency
multiplied by the area below the line:

Area above the line = Area below the line × Battery roundtrip efficiency (3)

The lower area, corresponding to energy drawn for battery charging, was adjusted by
the battery charging efficiency and the battery utilization factor, leading to a needed battery
size of:

Needed battery size =
Area below the line × Battery efficiency

Utilization factor
(4)

This method ensures that the battery charges when the modified load is below this
line and discharges when above, while keeping the peak load at the line value. For instance,
Figure 3 illustrates the established horizontal line on the modified load profile for the day
depicted in Figure 2, with a PV size of 2000 kW. On this particular day, the horizontal line
was drawn such that the area above it equals 1994 kWh, which is the product of the area
under the line (2210 kWh) and the roundtrip efficiency (0.9025). Using Equation (4), we
determined that a battery size of 3000 kWh was needed to effectively flatten this particular
modified load profile. It is important to note that the inclusion of roundtrip efficiency in
the battery sizing algorithm realistically simulates battery losses. Hence, while battery
installation aims to reduce peak demands, operational losses may necessitate increased
energy purchases from the grid.

For a PV system of size X kW, we calculated the required daily battery sizes that
effectively flattened the modified daily load profiles for a duration of three years. However,
it is not feasible to select different battery sizes for a single system based on the needs
of different days. While choosing the largest battery size could flatten all daily load
profiles, this approach is economically inefficient. Consequently, the objective is to identify
an optimal battery size that can adequately flatten the load curve on most days, while
accepting the risk of inadequate flattening on a few days. As the PV–battery system is
connected to the grid, on these specific days, the demand shortage can be met by purchasing
power from the grid.
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2.4. Updated Peaks

Following the established methodology, we first calculated the required daily battery
sizes to flatten the modified load profiles for a given PV size of X kW for each day. The
subsequent step included calculating the updated daily peak demands after the integration
of a battery size of Y kWh into a PV system of size X kW. To achieve this, we selected battery
sizes ranging from Y1 to Ym as potential sizes for a PV system of size X. For a specific day,
if a selected battery size of Y kWh is greater than or equal to the needed battery size, then
this Y can effectively flatten the modified load profile for that day. In these instances, the
updated peaks for such days are equivalent to values of the horizontal lines identified in
the previous step. For example, as demonstrated in Figure 3, the needed battery size for the
depicted modified load demand was 3000 kWh for a PV size of 2000 kW. Figure 3 shows
the horizontal line at 1642 kW. If the selected battery capacity of Y kWh is greater than or
equal to 3000 kWh, the peak demand for that day remains at 1642 kW after integrating the
battery size Y kWh and PV size of 2000 kW.

Conversely, if the chosen battery size Y kWh is smaller than the needed battery size for
a specific day, it will not be sufficient to flatten the load profile for that day. In such cases,
to determine the updated peak demands, we drew two new horizontal lines. The first line
was positioned so that the area above it corresponded to the capacity of the selected battery
Y kWh. That means the area above the first line equals the product of the selected battery
capacity Y kWh, the roundtrip efficiency, and the utilization factor, all divided by the battery
efficiency. This area represents the discharging period of the battery. The first horizontal
line represents the updated daily peak demands following the integration of a battery with
a capacity of Y kWh into a PV system of size X kW. The second line was positioned such
that the area between it and the modified load profile equals the battery charging area
values divided by the battery roundtrip efficiency, denoting the battery charging area. For
example, Figure 4 demonstrates the application of the proposed methodology on the day
represented in Figure 2, with a PV system size of 2000 kW. With a smaller selected battery
size, such as 2000 kWh, we drew two new horizontal lines. The first line was positioned so
that the area above it reflects the discharging capacity of the battery.
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This was calculated as the product of the selected battery capacity (2000 kWh),
roundtrip efficiency, and utilization factor, all divided by the battery efficiency. This
first line, set at 1782 kW, indicates the updated peak demand for that day after integrating
the battery size 2000 kWh and PV size 2000 kW systems. The area above the first line,
corresponding to 1330 kWh, represents the energy discharged from the battery. Moreover,
the second line was drawn such that the area under it equals 1330 kWh, divided by a
roundtrip efficiency of 0.9025, resulting in 1473.68 kWh. This area signifies the energy
charged into the battery.

Following this methodology, for each PV system of size X kW paired with a battery capacity
of Y kWh, we calculated the updated peak demands across all data days. Initially, we selected a
starting PV size of X1 and a range of battery capacities from Y1 to Ym, computing the updated
daily peak demands for every PV and battery combination. This procedure was iteratively
conducted for additional PV sizes up to Xn. Afterward, a scaled histogram was generated for the
updated daily peak demand associated with each PV and battery combination. Consequently,
for PV sizes ranging from X1 to Xn and battery capacities from Y1 to Ym, a series of n × m scaled
histograms were produced. To determine the optimal PV–battery system, these histograms
provide the basis for the proposed statistical methodology.

2.5. Optimal PV–Battery Sizes

The proposed statistical methodology seeks to configure a PV–battery system capable
of efficiently flattening approximately 95 percent of the daily load profiles up to a certain
demand threshold. This approach incorporates a manageable level of operational risk.
Specifically, there is a probability that the system may not fully meet the highest 5 percent
of daily demand peaks. In these instances, it is anticipated that utilities will engage in
supplementary energy procurement from their primary power suppliers. This adoption of
a 5 percent threshold for demand exceedance is a strategic decision, rooted in detailed risk
assessment and statistical analysis [34].

2.6. Statistical Analysis

This strategy was leveraged by fitting a proper PDF to the scaled histograms of the
updated daily peaks. In this study, we used three well-known PDFs, Gamma, Log-normal,
and Beta, where their shapes were similar to the derived daily peaks in PV–battery histograms.
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The Gamma distribution is useful in modeling variables that are always positive and have
asymmetric distributions. The PDF of a Gamma distribution is given by [35]:

f (x) =
( x−µ

β )
α−1

exp(− x−µ
β )

β Γ(α)
(5)

where α, β, and µ are shape, scale, and location parameters, respectively, and Γ(α) is the
Gamma function and can be expressed as follows [35]:

Γ(α) =
∞∫

0

tα−1 exp(−t)dt (6)

The Beta distribution is a versatile statistical distribution used to model random
variables, and the PDF of a Beta distribution is given by [36]:

f (x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1 (7)

where α and β are shape and scale parameters for the Beta distribution.
The Log-normal distribution is suitable for modeling variables where the data are

positively skewed and constrained to positive values, such as energy usage or peak demand
levels. The PDF of a Log-normal distribution is [37]:

f (x) =
1

xσ
√

2π
exp(−1

2
(

ln(x)− µ

σ
)

2

) (8)

where µ indicates the mean of data, and σ represents the standard deviation. Besides, the
Kolmogorov–Smirnov (KS) statistic test was utilized to evaluate the fitted PDFs for their
accuracy in modeling the updated peak demands in this study. The KS test is particularly
adept at assessing how well the selected PDFs conform to the empirical distribution of
the updated peak demand data obtained from the system simulations. This test measures
the largest difference between the empirical distribution of the observed peak demand
data and the cumulative distribution functions (CDFs) of the theoretical models [38]. The
distribution with the smallest KS statistic score and largest p-value (typically, a p-value
larger than 0.05 is set) was considered the best fit for the data [39]. This means it has
the smallest maximum deviation and, thus, most closely represents the behavior of the
observed peak demands. After identifying the most suitable PDFs for various combina-
tions of PV and battery sizes, we undertook the following steps to determine the optimal
PV–battery system configuration:

1. Selection of PV and battery sizes. We started by selecting a PV size of X1 and calculating
the updated daily peak demand across various battery sizes ranging from Y1 to Ym.

2. Histogram creation and PDF fitting. For each PV–battery size, we generated scaled his-
tograms of daily peak demands following PV–battery installation. These histograms
were then fitted with appropriate PDFs, specifically chosen for their relevance, charac-
terized by PDF parameters.

3. Determining the 0.95 threshold. For each PDF, we calculated the threshold value that
corresponds to the 95th percentile. Mathematically, this is represented as:

F−1(P = 0.95) (9)

where F−1 is the inverse of the CDF for the fitted PDF. This calculation yields multiple
threshold values for each PV–battery combination.

4. Optimal sizing criteria. The objective was to find the PV–battery size combination
that meets a predetermined threshold of T kW with a 95% probability. If the desired
threshold, T, aligns with the thresholds found in Equation (9), the corresponding
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battery size is considered optimal for the PV size of X1. In cases where the desired
threshold, T, did not align with the previously determined thresholds, we adjusted
our approach and recalculated the parameters of a new PDF to match the desired
threshold, T, with a 95% probability. This was achieved through the formula:

F(T, Parameters) = 0.95 (10)

After recalibrating the new parameters of a new PDF to align with the T kW threshold
at a 95% probability level, we used interpolation between the newly found parameters
and those determined in step 3. This interpolation helped us identify the corresponding
optimal battery size for these updated parameters.

5. Optimal PV–battery system. By repeating all the aforementioned steps for a wide
range of PV sizes, we eventually compiled an extensive set of optimal PV and battery
combinations. Each of these combinations was capable of flattening 95% of the daily
peaks up to a fixed threshold of T kW, which meets the technical requirement.

However, while these combinations technically satisfied the peak demand flattening
criteria, the selection of the most suitable PV–battery system for actual implementation also
requires a thorough economic analysis.

2.7. Economic Analysis

To determine the truly optimal PV–battery system for installation, it is essential to
assess each determined PV–battery combination from an economic perspective. In this
study, we rigorously evaluated the financial benefits of each PV–battery combination
identified in our previous analyses. This economic evaluation for a PV size of X kW and
battery size of Y kWh involves several key components, as follow:

2.7.1. Initial Investment Cost

We first assessed the initial capital investment required for each PV–battery combina-
tion. This included the costs of:

• PV installation [40]:

Cini
pv = X·Cpv (11)

Here, Cini
pv represents the total cost of the PV installation (USD), and Cpv is the capital

cost of PV panels in USD/kW.

• Inverter cost [41]:

Cini
inv = X·ηinv·K·Cinv (12)

where, Cini
inv is the total installation cost for the inverter (USD), Cinv is the capital cost of the

inverter in USD/kW, and K represents the oversized parameter of the invertor.

• Labor cost [42]:

Cini
labor = X·Clabor (13)

where, Cini
labor is the total initial human and labor cost (USD) and Clabor is the cost of labor in

USD/kW.

• Equipment costs [43]:

Cini
eq = X·Ceq (14)

where, Cini
eq is the total initial equipment cost (USD) and Ceq is the capital cost of equipment

in USD/kW.

• Overhead costs:

Cini
over = X·Cover (15)

where, Cini
over is the total initial overhead cost (USD) and Cover is the cost of overhead in

USD/kW.
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• Battery cost:

Since the battery lifespan is typically shorter than the project lifetime, it is anticipated
that the battery will require replacement during the project duration. Therefore, the initial
cost of the first battery is as follows:

C1,ini
bat = Y·C1

bat (16)

where, C1,ini
bat is the initial cost of the first battery (USD), and C1

bat is the capital cost of the
first battery in USD/kWh. However, with the rapid advancement in battery technology,
the cost for a replacement battery is expected to decline. Thus, the cost of the replacement
battery can be expressed as follows [44]:

C2,ini
bat = Y·C2

bat (17)

where, C2,ini
bat is the total initial cost of the replacement battery (USD), and C2

bat is the capital
cost of the replacement battery in USD/kWh. Besides, the cost for the second battery must
be adjusted to its present worth considering the expected decrease in cost and the time
value of money. This is calculated using the formula for present worth, considering the
discount rate of i and the period of M in which the replacement is needed [45]:

C2,present
bat = C2,ini

bat · 1

(1 + i)M (18)

where C2,present
bat represents the present worth of the replacement battery (USD). Accordingly,

the total initial battery cost of Cini
bat, accounting for both the first installation and the present

worth of the replacement battery, is then given by:

Cini
bat = C2,present

bat + C1
bat (19)

Finally, considering the cost of the required transformers, Cini
trans, for the PV–battery

system, the total initial investment costs (TIIC) can be expressed as follows:

TIIC = Cini
pv + Cini

inv + Cini
labor + Cini

eq + Cini
over + Cini

trans + Cini
bat (20)

2.7.2. Operation, Maintenance, and Insurance Costs

Once the PV–battery system is operational, there are ongoing costs that must be accounted
for to ensure its continuous and efficient functionality. The annual operation costs typically
cover monitoring and routine inspections. Maintenance costs include regular cleaning, repair,
and replacement of components. Lastly, insurance is crucial for protecting the investment
against risks, such as damage, theft, and other liabilities. The annual costs associated with the
operation, maintenance, and insurance of the PV–battery system are as follows:

Cannual
O&M = X·CO&M (21)

where Cannual
O&M represents the annual costs of operation, maintenance, and insurance (USD),

and CO&M is the capital cost associated with them in USD/kW. Since these costs are incurred
annually over the life of the system, N, its present worth can be calculated as follows [45]:

Cpresent
O&M = Cannual

O&M

[
1 − (1 + i)−N

i

]
(22)

2.7.3. Peak Demand and Energy Costs

An important component of the economic analysis is the peak demand charge, which
represents the cost incurred by the highest level of demand recorded (measured in kW),
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typically within a month. The peak demand cost of PDCn for year n can be expressed as
follows [46]:

PDCn =
12

∑
m=1

Pmax
m ·Cpeak (23)

where Pmax
m is the peak demand of month m, and Cpeak represents the peak demand rate

in USD/kW. Energy cost is the expense incurred for using electricity, determined by
multiplying the quantity of electrical energy consumed by the rate charged by the electricity
supplier. The energy cost of ECn for year n can be expressed as follows:

ECn = ∑
h=1

Ph·Cenergy (24)

where Ph is the hourly electricity consumption and Cenergy represents the energy rate in
USD/kWh. To accurately compute the economic benefits of PV–battery installation, it is
necessary to determine these costs before and after the implementation of the PV–battery
system. Besides, these costs are annuities recurring at yearly intervals. Therefore, the
present value of these charges over the system lifetime, N, must be calculated to evaluate
the economic benefit effectively.

The present value of peak demand charge before installation, PDCpresent
be f ore PV−bat, is:

PDCpresent
Be f ore PV−bat =

N

∑
n=1

(
PDCn·

[
1

(1 + i)n

])
(25)

Similarly, the present value of peak demand charge after installation, PDCpresent
A f ter PV−bat, is:

PDCpresent
A f ter PV−bat =

N

∑
n=1

(
PDC

′
n·
[

1
(1 + i)n

])
(26)

where PDC
′
n represents the yearly peak demand charge after PV–battery installation.

The present value of energy cost before PV–battery installation, ECpresent
be f ore PV−bat, is:

ECpresent
be f ore PV−bat =

N

∑
n

(
ECn·

[
1

(1 + i)n

])
(27)

Similarly, the present value of energy cost after PV–battery installation, ECpresent
Ae f ore PV−bat, is:

ECpresent
Ae f ore PV−bat =

N

∑
n

(
EC

′
n·
[

1
(1 + i)n

])
(28)

where EC
′
n represents the yearly energy cost after PV–battery installation.

2.7.4. Economic Benefit

The economic benefit of installing a PV–battery system is a critical aspect of this
study, encompassing the overall financial advantages gained over the system lifespan. The
economic benefit of the PV–battery system installation is quantified by comparing the total
costs incurred before and after the PV–battery installation and is calculated as follows:

Total cost before PV-battery installation = ECpresent
be f ore PV−bat + PDCpresent

Be f ore PV−bat (29)

Total cost after PV-battery installation = TIIC + Cpresent
O&M + PDCpresent

A f ter PV−bat + ECpresent
Ae f ore PV−bat (30)

Benefit = Total cost before PV-battery installation − Total cost after PV-battery installation (31)

A positive economic benefit demonstrates that the PV–battery system is cost-effective.
The savings on energy and peak demand charges outweigh the combined costs of installa-
tion, operation, and maintenance. We extended this economic evaluation across all optimal
combinations of the PV–battery system that met a predetermined threshold of T kW with
a 95% probability. This comprehensive analysis enabled the identification of the optimal
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PV–battery system configuration that maximized the utility benefit. Nonetheless, the inher-
ent uncertainties within historical demand and solar irradiance data necessitate a rigorous
validation of the robustness of the optimal PV–battery system under varied conditions.
Variations in demand and irradiance are critical factors that could significantly influence
the efficacy of the system. To consider these uncertainties and validate the resilience of the
proposed solution, we employed an effective Monte Carlo simulation methodology. This
simulation generates multiple scenarios, each representing distinct daily demand and solar
irradiance conditions, thereby providing a holistic test of the model’s robustness.

2.8. Modified Monte Carlo Simulation

Monte Carlo simulation is a statistical technique that utilizes random sampling and
probabilistic modeling for scenario analysis, decision-making, and predictive modeling.
It operates by running a large number of simulations with random variables, thereby
generating a wide range of possible outcomes and their probabilities [47]. However, in
this study, the typical approach to Monte Carlo simulation requires modification due to
the simultaneous consideration of two parameters: daily load and solar irradiance profiles.
The goal is to generate multiple scenarios that accurately reflect the interdependence of
solar irradiance and demand profiles throughout the year. A challenge in this methodology
is the logical pairing of load and solar irradiance profiles to reflect realistic conditions. For
instance, it is not methodologically sound to associate a high demand profile, typical of
summer conditions, with a solar irradiance profile of winter. Such contradictions lead
to skewed results and impair the reliability of the simulation. To address this, we have
integrated a clustering technique to categorize similar load demands and solar irradiance
profiles into distinct groups to effectively generate load and solar irradiance scenarios.

2.8.1. Time Series Clustering

The time series clustering involves grouping similar temporal data patterns into
distinct clusters. To cluster the time series data of load demands and solar irradiance,
we categorized three years of data on a monthly basis. Subsequently, within each month,
daily time series for load and solar irradiance were clustered separately. In this study,
we employed a structured approach to cluster time series data, involving the following
steps [48]:

1. Data preprocessing. The first step involved comprehensive data preparation. This
includes cleaning the data to remove any inconsistencies or errors, addressing outliers,
and ensuring that all data are correctly formatted. Subsequently, we normalized the
data values to fall between 0 and 1. This standardization is crucial for comparability
analysis. Then, we grouped the data monthly, aggregating three years of data for
further analysis.

2. Similarity measures. The objective of time series clustering is to categorize time series
datasets into clusters, where datasets within each cluster exhibit maximum similarity
among themselves and minimal similarity with datasets in other clusters. A similarity
measure is crucial in quantifying the degree of resemblance between two time series
datasets. In this study, we employed dynamic time warping (DTW), a technique that
has demonstrated significant efficacy in assessing similarity, particularly in the energy
management sector [49]. DTW compares each point of one time series with multiple
points of another, finding the best alignment by minimizing the cumulative distance
between these matched points. By allowing such flexibility in the alignment, DTW
effectively captures the inherent patterns and shapes within the time series data, even
when these occur at different rates or phases.

3. Clustering algorithms. The next step was to employ an appropriate time series clus-
tering algorithm. Time series clustering is a complex process, and validation of the
time series clustering results is challenging. For this purpose, we utilized two distinct
clustering algorithms, including K-means and self-organizing maps (SOM), ensuring
a robust and thorough examination of the time series data, enhancing the reliability of
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the results. The K-means clustering method is a partitioning clustering algorithm that
has shown effective performance in various power system clustering applications [50].
It is adept at managing non-Euclidean similarity measures, demonstrates resilience
against outliers, and has lower computational complexity relative to other partition-
ing clustering algorithms, making it a suitable choice for this study [51]. Despite its
advantages in time series clustering, it cannot autonomously determine the optimal
number of clusters. On the other hand, SOM is an unsupervised neural network that
can inherently determine the optimal number of clusters as part of its training process.
SOM visualizes high-dimensional data in a low-dimensional map and preserves the
topological and temporal structure of the data. This capability of SOM facilitates
the identification of patterns and trends within complex time series datasets [52].
However, SOM requires a careful selection of the appropriate map size and learning
parameters. This combination of partitioning and neural network-based clustering
methods helped us analyze load demand and solar irradiance clustering. K-means
identifies distinct clusters based on similarity measures, while SOM captures complex
patterns and relationships within the data through neural network layers. By leverag-
ing the strengths of both approaches, we can gain a comprehensive understanding of
the underlying structures in the dataset.

K-means clustering aims to partition the data into K clusters, in which each data point
belongs to the cluster with the nearest mean, serving as a prototype of the cluster. The
K-means algorithm operates through the following iterative steps [51]:

1. Initialization—The process began by randomly selecting k data points as the initial
centroids of the clusters.

2. Assignment step—In this phase, each data point in the dataset was assigned to the
nearest centroid. The closeness was determined based on the DTW distance.

3. Update step—The centroids of the clusters were then recalculated as the mean of all
points assigned to each cluster.

4. Convergence—These steps were repeated until the positions of the centroids stabilized,
indicating that the clusters had converged and were no longer significantly changing.

5. Optimal number of clusters—Determining the optimal number of clusters is a critical
aspect of the K-means algorithm. We employed the Elbow method to identify this
number. To apply the Elbow method, we first executed the K-means algorithm over
a range of K values, from 1 to a predefined maximum, then computed the Within-
Cluster Sum of Squares (WCSS) for each K, and finally plotted these WCSS values
against their cluster number. By observing the WCSS curve, we looked for a point
where the rate of decrease in WCSS significantly slowed down, creating an elbow in
the plot. The K value at this elbow point is considered the optimal number of clusters,
as it indicates a trade-off between maximizing the number of clusters and minimizing
WCSS [53].

SOM is a type of artificial neural network that is trained using unsupervised learning
to produce a low-dimensional map. The methodology for applying SOM in this study is as
follows [54]:

1. Initialization—We started by initializing the SOM neural network with weight vectors,
through random selection.

2. Competitive learning—For each data point in our dataset, SOM identified the Best Match-
ing Unit (BMU) by finding the neuron with the closest weight vector to the data point.

3. Weight adjustment—The weights of the BMU and its neighbors within the network
were adjusted to become more similar to the input data point, with the adjustment
magnitude decreasing over time and distance from the BMU.

4. Iterative process—This cycle of competitive learning and weight adjustment was
repeated across numerous iterations, allowing the SOM to evolve and form a map
that reflects the intrinsic structure of the data.
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5. Cluster visualization—The final output was a map where similar data points were
clustered together.

Finally, we systematically compared the results obtained from both K-means and SOM
clustering techniques. Then, the results were integrated into the modified Monte Carlo
simulation to generate meaningful load and solar irradiance scenarios.

2.8.2. Modified Monte Carlo Simulation

After clustering the daily load and solar irradiance for each month, we implemented a
modified Monte Carlo simulation to generate realistic scenarios. Assuming we have solar
irradiance, clusters labeled set {I1, I2, I3, . . . , Im}, and load demand clusters labeled set
{L1, L2, L3, . . . , Ln} for a month, the steps for a typical month were as follows:

1. Assign probabilities to solar irradiance clusters. For each solar irradiance cluster
Ii (i = 1 to m), we calculated its probability as:

P(Ii) =
Number of data within cluster Ii

Total number of data within the month
(32)

2. Establish probability intervals. This was carried out by sequentially adding the
probabilities of the clusters. For the first cluster I1, its probability interval, PI(I1) is:

PI(I1) = [0, P(I1)] (33)

For the second cluster I2, the interval is defined as:

PI(I2) = (P(I1), P(I1) + P(I2) (34)

This continues for each cluster Im, where:

PI(Im) = (P(I1) + P(I2) + . . . + P(Im−1), P(I1) + P(I2) + . . . + P(Im−1) + P(Im) (35)

3. Random cluster selection for solar irradiance. A random number R within the range
[0, 1] was selected uniformly, selecting the solar irradiance cluster Ii for which the
random number R falls within its probability interval.

4. We determined the specific days that are included in the selected solar irradiance cluster.
5. Match the days with load clusters. For each identified day in the solar irradiance

cluster Ii, we found the corresponding days within the load demand clusters from L1
to Ln.

6. Calculate the conditional probability for load clusters. After selecting the solar ir-
radiance cluster Ii, the probability of each load demand cluster conditioned on the
selection of Ii was calculated. The conditional probability was calculated as:

P(Lj|Ii) =
P(Lj ∩ Ii)

P(Ii)
(36)

7. We established probability intervals for each conditional probability, as in step 2.
8. We randomly selected a load cluster based on the conditional probability intervals.
9. Final scenario selection. From the selected solar irradiance cluster Ii and the randomly

chosen load cluster L, a specific pair of solar irradiance and load demand profile was
identified. If multiple profile pairs were available within the selected clusters, one
pair was randomly selected. This random selection can be performed using a uniform
distribution, ensuring each pair has an equal chance of being chosen.

All the steps to generate load demand and solar irradiance are demonstrated in Figure 5.
These steps ensure that the final scenario chosen for each day accurately reflects the interde-
pendencies between solar irradiance and load demand patterns, as dictated by the conditional
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probabilities. This approach enhances the realism and applicability of the scenarios generated
for the Monte Carlo simulation, crucial for robust and insightful analysis.
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3. Results
3.1. Data Analysis

A comprehensive analysis was conducted to investigate the occurrence of daily peak
demand hours and their correlation with solar irradiance levels. For this purpose, the daily
peak hours for each month were depicted and examined. The results of this analysis are
presented in Figure 6. In the winter months, a significant trend was observed where the
peak demand hours predominantly occurred during early morning times. Notably, these
periods coincided with minimal solar irradiance, highlighting a critical gap in demand
supply when relying solely on PV systems. Similarly, in the summer months of June, July,
and August, peak demand hours were mostly observed in the late evening (18:00 to 20:00),
when solar irradiance is not at its peak, despite it being higher during the noon hours
throughout the year. These patterns across different months suggest that PV installations
might not substantially contribute to peak demand reduction on most days of the year due
to this misalignment with solar irradiance. Accordingly, battery storage can be a potential
solution, capable of storing excess energy during off-peak hours or energy purchased from
the grid, to be later utilized during peak demand periods. This strategic use of battery
storage can potentially enhance the effectiveness of PV systems in peak demand reduction,
highlighting its importance in overall energy management.
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3.2. Battery Operation—Required Daily Battery Sizes

In this study, we considered PV system sizes ranging from X1 = 200 kW to X2 = 10,000 kW,
paired with battery storage capacities from Y1 = 200 kWh to Ym = 10,000 kWh, incrementing
in steps of 100. For each PV size, the modified load profile was calculated by subtracting the
original load profiles from the PV generations. Then, for each of these modified profiles, the
battery sizes needed to flatten the daily load curves were determined. For example, Figure 7
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illustrates this for a 2000 kW PV system, showing a histogram of the required daily battery sizes
that effectively flattened the load profiles for each day. The histogram has multiple peaks and
is widespread, indicating significant variability in the required daily battery sizes. The variety
in sizes likely reflects fluctuations in daily solar generation and load profiles. The distribution
of sizes underscores the challenge of selecting a single, optimal battery size for a PV size of
2000 kW. For instance, while a large battery, such as one with a capacity of 12,000 kWh, could
address peak demands on most days and effectively flatten the daily load profiles, it is not
economically efficient due to its high cost. Conversely, a smaller battery might be more cost-
effective but could lead to inadequate load flattening on days with higher energy demands.
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2000 0.041089 0.0480 0.031794 0.65124 0.08 0.005355 
2500 0.03537 0.12579 0.029497 0.55618 0.11 0.027578 
3000 0.040364 0.15470 0.026193 0.56416 0.09 0.005044 
3500 0.026193 0.43233 0.053331 0.42345 0.12 0.04289 
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Figure 7. Histogram of the required daily battery sizes that effectively flattened the load profiles for
PV = 2000 kW.

3.3. Optimal PV–Battery System

Building upon the previous results of the required daily battery sizes for modified
load profile flattening, this section examines optimal sizing for PV–battery systems. For
each PV and battery size combination, we calculated the updated daily peak demands after
PV–battery system integration. Then, the scaled histograms of the updated daily peaks for
each combination of the PV–battery sizes were created. Next, three PDFs of Gamma, Log-
normal, and Beta were fitted for each histogram. To assess the goodness-of-fit, a KS statistic
test was performed on the fitted PDFs. The results revealed that the Gamma distribution
fit the updated daily peak demands appropriately. Table 2 presents the results of the KS
statistic test, comparing the fits of the Gamma, Log-normal, and Beta distributions to the
updated daily peak demands for a PV size of 2000 kW across various battery sizes. The KS
statistics and p-values indicate that the Gamma distribution consistently offered a better fit
for the data compared to the Log-normal and Beta distributions. This is evident from the
generally lower KS statistic values and higher p-values for the Gamma distribution across
all battery sizes. For instance, at a battery size of 2000 kWh, the Gamma distribution had a
KS statistic of 0.031794 and a p-value of 0.65124, which are considerably more favorable
than those for the Log-normal and Beta distributions, suggesting a more accurate and
reliable fit.

After identifying the Gamma distribution as the best-fitted PDF for the updated daily
peak demands, the next step involved determining a 0.95 percent threshold. For each
fitted Gamma PDF, we calculated the value corresponding to the 95th percentile, effectively
establishing a threshold that represents the maximum peak level that the PV–battery system
is expected to flatten on 95% of the days. For example, Figure 8 presents the fitted Gamma
PDF for updated daily peaks with a PV size of 2000 kW and battery size of 3000 kWh.
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The Gamma distribution parameters were α = 26.805 and β = 57.668, with a threshold at
2041.996 kW, indicating only a 5% chance of exceeding this peak demand.

Table 2. KS statistic test results for the fitted PDFs for PV = 2000 kW and various batteries.

Log-Normal Gamma Beta

Battery KS_Statistic p-Value KS_Statistic p-Value KS_Statistic p-Value

2000 0.041089 0.0480 0.031794 0.65124 0.08 0.005355
2500 0.03537 0.12579 0.029497 0.55618 0.11 0.027578
3000 0.040364 0.15470 0.026193 0.56416 0.09 0.005044
3500 0.026193 0.43233 0.053331 0.42345 0.12 0.04289
4000 0.062428 0.037 0.027589 0.65164 0.16 0.01455
4500 0.039343 0.06544 0.03461 0.32136 0.13 0.004353
5000 0.046593 0.01660 0.030778 0.32103 0.14 0.000539
5500 0.051666 0.00554 0.062428 0.27564 0.15 0.000127
6000 0.054413 0.00292 0.034076 0.24565 0.25 5.58 × 10−5
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Then, for each combination of PV and battery, unique Gamma PDF parameters,
including shape, scale, and thresholds, were derived. However, the utility desired peak
demand threshold is 2000 kW with a 95% probability, indicating that the system should not
exceed a 2000 kW peak demand more than 5% of the time. Since an exact 95% probability
threshold of 2000 kW was not found among the calculated peak demand thresholds, we
recalibrated a new Gamma distribution to meet this specific criterion, using the formula:

2000 = F−1(0.95, shape, scale) (37)

Since the inverse CDF of the Gamma distribution is not available in closed form,
numerical methods were employed for approximation. For instance, with a PV size of
2000 kW, the recalibrated shape and scale parameters were found to be 25.99 and 57.92,
respectively. It is noteworthy that the recalibrated Gamma parameters aligned closely
with the actual data-derived parameters. This proximity suggests that the recalibrated
parameters and associated Gamma distribution are strongly representative of actual daily
peak demand data. Figure 9 illustrates the shape and scale parameters of the fitted Gamma
PDFs for a PV size of 2000 kW and various battery sizes. By aligning the new parameters
on this plot, the corresponding optimal battery size was determined to be approximately
4000 kWh. As a result, a battery size of 4000 kWh has been identified as optimal for
a PV system of 2000 kW, capable of flattening 95% of daily peak demands up to the
desired threshold of 2000 kW. Accordingly, the proposed methodology performed well in
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determining the appropriate battery size to meet specific demands. Applying this method
to a wide range of PV sizes, from 200 kW to 10,000 kW, the optimal battery size for each PV
configuration can be determined. Table 3 presents the optimal battery sizes for PV–battery
systems to flatten 95% of daily peak demands. For PV sizes between 500 kW and 1000 kW,
optimal battery sizes were not defined, implying these PV systems may not have a battery
solution that can meet the peak flattening criteria within the study parameters. As the PV
system size increased to 1200 kW, a substantial battery capacity of 9200 kWh was required.
This indicates a significant need for battery storage to effectively flatten peak demands for a
relatively small PV size of 1200 kW. As the PV system size continued to increase, there was
a gradual decrease in the required battery size. This trend suggests increasing efficiency in
peak demand reduction with larger PV systems, requiring relatively smaller batteries.
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Table 3. Optimal battery sizes for PV–battery systems to flatten 95% of the daily peak demands.

PV (kW) 500 1000 1200 1500 2000 2500 3000 3500 4000
Battery (kWh) NAN NAN 9200 4400 4000 3800 3600 3400 3300

3.4. Financial Analysis

The proposed methodology provided a wide range of PV–battery configurations
capable of effectively flattening 95% of the daily peak loads up to a threshold of 2000 kW.
While technical optimization is pivotal, the economic viability of each configuration is
equally essential. To this end, we computed a financial analysis for all identified optimal
PV–battery combinations. This analysis for each combination was calculated by grouping
three years of data on a monthly basis. For example, for January, we obtained three sets of
load demand and solar irradiance data for 2019, 2020, and 2021. Within each month, we
determined the average peak demand charges and average energy costs. We then combined
them all into 1 year and calculated the benefit over 20 years. This detailed financial analysis
for all combinations of optimal PV–battery sizes is illustrated in Figure 10. As the size of
the PV system increased, the energy cost decreased. This is because larger PV systems
have a greater capacity to reduce energy costs during operation. It should be noted that
the contribution of the battery to reducing energy costs is limited, because rather than
generating energy, batteries are primarily used to shift energy. Notably, the peak demand
charge exhibited minimal variation across different PV–battery sizes. This consistency can
be attributed to the fact that all optimal PV–battery configurations effectively flattened
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95% of the daily load profiles, resulting in a consistent impact on the peak demand cost
reduction. This minor discrepancy can be ascribed to the statistical fitting of the histograms
into Gamma PDFs, which may not be ideally fitted. Additionally, the equipment cost
exhibited a gradual increase. Despite the reduction in battery size as the PV size increased,
the overall increase in PV size outweighed the decrease in battery size, resulting in a net
rise in equipment costs. In particular, the equipment cost for a PV size of 1200 kW and
a battery size of 9200 kWh was relatively high due to the elevated costs associated with
large batteries. However, the subsequent reduction in battery size led to a notable drop in
equipment costs.

Solar 2024, 4, FOR PEER REVIEW 23 
 

 

with large batteries. However, the subsequent reduction in battery size led to a notable 
drop in equipment costs. 

 
Figure 10. Comparative financial impacts of PV–battery installations, showing energy, peak costs, 
and equipment costs for varying system sizes. 

Furthermore, the financial benefits for each PV–battery combination were computed 
and depicted in Figure 11. The PV–battery size that yielded the maximum utility benefit 
was considered as the most desirable system. Notably, a PV system with a size of 2000 kW 
with a 4000 kWh battery emerged as the most economically advantageous, yielding a max-
imum benefit of USD 812,648 over the project lifetime. This optimal benefit was identified 
as providing the greatest economic return for utilities. Table 4 provides detailed economic 
information for the optimal PV–battery system. The total peak demand cost without the 
PV–battery system was almost twice the energy cost, thereby highlighting the substantial 
influence of peak demand charges on the overall utility costs. Upon the installation of a 
PV only, there was a notable decrease in energy costs by 19.8%, demonstrating the effec-
tiveness of a PV-only system in reducing energy costs. However, the peak demand costs 
had a relatively modest reduction of only 6%, underscoring that while PV installations 
significantly contributed to energy cost savings, their impact on peak demand reduction 
was comparatively limited. The economic assessment of the PV-only system presented a 
less advantageous outcome. The high costs associated with the installation, maintenance, 
operation, and insurance of the PV system outweighed the savings costs, leading to a neg-
ative benefit for utilities. This highlights a critical limitation of relying solely on PV sys-
tems. In contrast, the integration of batteries with PV systems demonstrated a significant 
improvement in peak demand costs, with a reduction of up to 29%. This substantial de-
crease indicates the battery’s capability to effectively flatten daily peak demands. Alt-
hough the addition of batteries incurred an extra energy cost of USD 25,155 due to losses 
inherent in battery operation, the overall peak demand charge savings were sufficient to 
offset these additional expenses. This resulted in a positive benefit of USD 812,648 over 
the project lifetime for utilities. Accordingly, the combined PV–battery system not only 
reduced the peak demand charges effectively but also provided a positive financial benefit 
for utilities. 

Table 4. Economic analysis of the optimal PV–battery system (PV = 2000 kW and battery = 4000 
kWh). 

 Before PV–Battery PV Only After PV–Battery 
Equipment cost (USD) 0 1,638,688 2,015,246 

Energy cost (USD) 3,788,907 3,036,927 3,023,569 
Peak demand charge 

(USD) 
6,913,926 6,472,805 4,901,679 

Benefit (USD) 0 −445,587 812,648 

Figure 10. Comparative financial impacts of PV–battery installations, showing energy, peak costs,
and equipment costs for varying system sizes.

Furthermore, the financial benefits for each PV–battery combination were computed
and depicted in Figure 11. The PV–battery size that yielded the maximum utility ben-
efit was considered as the most desirable system. Notably, a PV system with a size of
2000 kW with a 4000 kWh battery emerged as the most economically advantageous, yield-
ing a maximum benefit of USD 812,648 over the project lifetime. This optimal benefit was
identified as providing the greatest economic return for utilities. Table 4 provides detailed
economic information for the optimal PV–battery system. The total peak demand cost
without the PV–battery system was almost twice the energy cost, thereby highlighting
the substantial influence of peak demand charges on the overall utility costs. Upon the
installation of a PV only, there was a notable decrease in energy costs by 19.8%, demon-
strating the effectiveness of a PV-only system in reducing energy costs. However, the
peak demand costs had a relatively modest reduction of only 6%, underscoring that while
PV installations significantly contributed to energy cost savings, their impact on peak
demand reduction was comparatively limited. The economic assessment of the PV-only
system presented a less advantageous outcome. The high costs associated with the instal-
lation, maintenance, operation, and insurance of the PV system outweighed the savings
costs, leading to a negative benefit for utilities. This highlights a critical limitation of
relying solely on PV systems. In contrast, the integration of batteries with PV systems
demonstrated a significant improvement in peak demand costs, with a reduction of up
to 29%. This substantial decrease indicates the battery’s capability to effectively flatten
daily peak demands. Although the addition of batteries incurred an extra energy cost of
USD 25,155 due to losses inherent in battery operation, the overall peak demand charge sav-
ings were sufficient to offset these additional expenses. This resulted in a positive benefit of
USD 812,648 over the project lifetime for utilities. Accordingly, the combined PV–battery
system not only reduced the peak demand charges effectively but also provided a positive
financial benefit for utilities.
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Table 4. Economic analysis of the optimal PV–battery system (PV = 2000 kW and battery = 4000 kWh).

Before PV–Battery PV Only After PV–Battery

Equipment cost (USD) 0 1,638,688 2,015,246
Energy cost (USD) 3,788,907 3,036,927 3,023,569

Peak demand charge (USD) 6,913,926 6,472,805 4,901,679
Benefit (USD) 0 −445,587 812,648

The proposed statistical method successfully determined the optimal PV–battery
system that provides a financial benefit for utilities. However, the obtained results were
based on baseline economic parameters. Accordingly, a sensitivity analysis was conducted
to rigorously evaluate the robustness and resilience of the proposed statistical system under
varying economic conditions. This analysis helps to understand the potential impacts of
fluctuations in energy costs, peak demand charges, and tax credits on the optimal PV battery
systems. To undertake this sensitivity analysis, we systematically varied the assumptions
related to energy costs, peak demand charges, capital costs of PV and battery systems, labor
costs, and tax credit rates from their baseline values. The baseline scenario was based on
an energy cost of USD 0.025/kWh, a peak demand charge of USD 22/kW, a PV capital
cost of USD 0.35/kW, an initial battery cost of USD 150/kWh, a labor cost of USD 0.1, and
tax credits at 30%. We adjusted the parameters for the sensitivity analysis with various
values to assess their impact on the financial benefit of the PV–battery system. The results
of this sensitivity analysis, which demonstrated how each economic parameter influenced
the financial benefit of the PV–battery system, are depicted in Figure 12. Each subplot
illustrates the impact of varying a single economic parameter while holding others constant.
Additionally, the black triangles indicate the maximum benefit for each scenario. It was
observed that the peak demand rate, energy rate, and tax credit rate had a direct relationship
with financial benefits. In other words, as these rates increased, the maximum benefit also
increased. Conversely, the capital costs of the labor, PV panels, and batteries exhibited an
inverse relationship with the benefits. Although a high peak demand rate significantly
enhanced the benefit, it did not markedly influence optimal PV–battery system sizes. This
was attributed to the relatively equal contribution of all PV–battery combinations to flatten
the daily peak demands. Consequently, with other parameters remaining constant, the peak
demand rate had a minimal impact on selecting the optimal PV–battery system. Further, a
peak demand rate of USD 10/kW did not provide positive financial benefits, thus making
it uneconomical.
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However, the energy rate influenced both the benefit and optimal PV–battery selection.
Since battery installations do not contribute to energy reduction, larger PV sizes can yield
more energy savings, resulting in increased financial benefits for utilities. With other
economic parameters held constant, the increase in energy savings provided by larger
PV systems outweighed the installation costs of PV–battery systems. Notably, for energy
rates higher than 0.0375 USD/kWh, the impact on decision-making was significant, with
larger PV sizes offering substantial energy savings. Tax credits affected the PV–battery
installation costs, with higher tax credit rates leading to more cost savings and higher
benefits. Additionally, higher tax credits resulted in larger PV–battery systems compared
to lower tax credit rates, leading to larger optimal PV–battery configurations for higher tax
credit rates.

Conversely, higher capital costs for labor, PV panels, and batteries led to decreased
financial benefits, without significantly affecting the selection of optimal system sizes. The
analysis revealed that as these costs increased from their baseline values, the financial
benefits for various PV–battery configurations declined in a relatively uniform manner.
This uniform reduction ensured that the choice of optimal systems remained consistent,
highlighting the resilience of the optimal system size selection against fluctuations in capital
cost rates. It should be noted that there were two distinct maximum benefit points on the
peak rate and labor cost sensitivity curves, corresponding to the peak rate of USD 10/kW
and labor cost of USD 0.2/kW. Despite these differences, the variations in maximum benefit
values, when compared with other rates within the same plots, were slight.

This sensitivity analysis revealed that the proposed statistical methodology was influ-
enced by the economic parameters of the system. Although peak demand, labor, battery,
and PV panel rates altered the financial benefits, they had a minimal impact on selecting
the optimal PV–battery system. This underscores the resilience and robustness of the
proposed statistical model against these parameters. However, energy rates and tax credits
significantly impacted the decision on selecting the optimal PV–battery size, highlighting
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the critical role of these economic parameters. This insight is crucial for utilities, empha-
sizing the need to consider these economic parameters when planning and implementing
PV–battery systems.

In addition, to account for the inherent variability in load demand and solar irradiance,
we employed a modified Monte Carlo simulation to rigorously test the performance of the
optimal PV–battery system under diverse conditions.

3.5. Modified Monte Carlo Simulation

To categorize similar load and solar irradiance data into distinct clusters, we segmented
three years of data by month. For instance, January data comprised 93 daily load profiles
for both demand and solar irradiance, spanning across 3 years. These data points were
normalized between zero and one for effective clustering. We employed K-means and SOM
clustering algorithms to group each month’s data. The K-means algorithm was applied
with varying cluster numbers, and for each, the WCSS was calculated. To create Elbow
curves, we plotted the WCSS against various numbers of clusters to determine the optimal
number of clusters. For example, Figure 13 shows the Elbow curve associated with the
January load demand profile clustering. The reduction in WCSS from 1 to 5 clusters was
relatively gradual. After 5 clusters, the decreases continued, but they were less pronounced.
Considering these values, the optimal number of clusters could be around 5 clusters. By
repeating this process for other months, the clusters were obtained for load demand and
solar irradiance.
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Figure 13. Elbow curve of the K-means clustering for January load profiles.

Since clustering is a complex process and determining the optimal number of clusters
is challenging, the SOM technique was employed to validate these findings and offer deeper
insights. Utilizing SOM with key parameters, such as a sigma of 0.01 and a learning rate of
0.5 over 1000 iterations, the SOM effectively identified similar data profiles. The process
revealed distinct clusters within the data, as the SOM neuron grid self-organized based
on the inherent similarities in load and solar irradiance profiles. This self-organization
was evident in the final SOM grid, which visually represented the data points’ topological
relationships, demonstrating clear patterns and groupings within the load and irradiance
profiles. For example, the results of the January load profile are depicted in Figure 14.
The number of clusters identified was 5, aligning with the findings from the K-means
analysis, thereby confirming the success of the clustering process. These 5 distinct clusters
demonstrated varying patterns in energy consumption, reflecting different energy usage
behaviors. Notably, one of the load demand profiles within cluster 1 exhibited a relatively
different pattern between hours 11 to 13 and 21 to 23, differing from other profiles during
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these particular hours. Despite these differences, the SOM algorithm grouped this load
profile into cluster 1 instead of isolating it into a new single cluster. This decision can
be attributed to the SOM overall pattern recognition approach, focusing on general daily
energy usage trends rather than specific differences at certain hours. Furthermore, SOM
clustering logic aims to avoid overfitting by not creating particular clusters for minor
variations, ensuring a robust and generalizable grouping of load profiles. It should be
noted that we employed clustering primarily to enhance the effectiveness of the Monte
Carlo simulation. Consequently, a thorough exploration of the clustering patterns, which
would require an extensive analysis including detailed consumer types and environmental
information, is beyond the scope of this study.
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After clustering the monthly load demand and solar irradiance data, we applied
the established modified Monte Carlo simulation to generate 10,000 daily load and solar
irradiance scenarios for each month. These were then aggregated into annual sequences,
yielding 10,000 yearly datasets. For the 20-year benefit analysis, we randomly selected
20 distinct daily load and solar irradiance pairs per iteration, ensuring no repetition in the
selection process. This procedure was repeated 500 times, creating 500 unique samples
of 20-year benefit calculations. Accordingly, the benefit analysis for the optimal system,
considering PV sizes of 2000 kW and a battery size of 4000 kW, was conducted under
various ranges of demand and solar irradiance scenarios. The results of this comprehensive
evaluation are depicted as histograms in Figure 15. The histogram analysis indicated
that the average benefit over a 20-year period for the optimal PV–battery systems was
USD 810,364. This central value suggests that, on average, the integration of the
PV–battery system is expected to yield substantial financial benefits over the long term.
Besides, the standard deviation of USD 7834.234 indicated a consistent performance of
the PV–battery systems in terms of financial returns. The benefit histogram was fitted
by a normal distribution with obtained mean and standard deviation. The first standard
deviation range was between USD 802,529.82 and USD 818,198.28. This indicates that
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approximately 68% of the benefit values are expected to fall within this range, suggesting
a high likelihood of achieving favorable financial outcomes close to the mean. Similarly,
the second standard deviation extended the range to between USD 794,695.59 and USD
826,032.49. This wider range encompasses about 95% of the potential benefit outcomes,
indicating that even when accounting for greater variability, the vast majority of benefits
remained within an acceptable benefit range. The alignment of these values around the
central mean suggests that significant deviations from the expected average are relatively
uncommon. These statistical insights, derived from the benefit data, provide a robust
foundation for anticipating the financial performance of the optimal PV–battery systems
over a 20-year period. The concentration of data within the first and second standard
deviations reinforces the reliability and stability of these systems as a financially viable
solution in the long-term planning.
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While the proposed statistical methodology successfully determined the optimal
size of the PV–battery system by flattening 95% of the daily load demand and providing
financial benefits for the utility, it is limited to those residential, commercial, and industrial
customers, and utilities, who pay for electricity peak demand and are connected to primary
power suppliers to meet the highest 5 percent of daily demand peaks that are not flattened.
Additionally, the proposed methodology in this study, while initially based on economic
parameters specific to a municipal utility in Kansas, can be applied to any utilities connected
to the grid that incur peak demand charges. By adjusting the input parameters, such as
solar irradiance levels, electricity rates, and installation costs, the model can be applied to
other states or countries with distinct economic and environmental conditions.

4. Conclusions

This study addressed the significance of the peak demand reduction in optimizing
grid-connected PV–battery systems. Considering that utility companies often incur en-
ergy and peak demand costs, PV installations should reduce energy and peak demand
charges. The results revealed that PV installation alone reduced energy costs signifi-
cantly, but its contribution to peak demand reduction was relatively low, leading to a
negative benefit for utilities. Accordingly, battery storage was used to shift energy from
off-peak to peak hours to mitigate the peak demands. Recognizing the importance of
peak demand reduction, a novel statistical method was proposed to determine the optimal
PV–battery system that can effectively flatten 95% of daily load profiles up to a threshold of
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2000 kW, while accommodating the risk of not meeting the highest 5% of daily peak
demands. Through a systematic and efficient search process, we identified optimal combi-
nations of PV and battery sizes that meet these criteria. Based on economic analysis, the
most cost-effective system for the utility company was a 2000 kW PV system with a battery
of 4000 kWh, providing a benefit of USD 812,648 over 20 years. Moreover, the robustness of
the optimal PV–battery system was rigorously tested against 10,000 diverse solar irradiance
and load demand profiles. This was achieved by integrating time series clustering and
applying conditional probabilities to effectively consider the interdependence between
solar irradiance and demand profiles, using a modified Monte Carlo approach. However,
this study is primarily applicable to utility companies connected to the grid and incurring
peak demand charges. Future research is recommended in several areas:

1. Integrating electric vehicles into the grid—enhancing grid adaptability to manage
the stochastic load and energy contributions from electric vehicles. This initiative
aims to optimize financial benefits and energy efficiency through the development of
dynamic charging strategies and vehicle-to-grid technologies.

2. Examining the influence of various grid topology and related constraints. A deeper
exploration of how grid configurations and limitations affect the deployment and per-
formance of PV–battery systems will refine the accuracy of the proposed methodology.
It will enable the model to account for physical and regulatory constraints, thereby
improving the feasibility and reliability of the system.

3. Extending the methodology to include other renewable energy sources. By incorpo-
rating technologies, such as wind turbines, into a hybrid system, the framework can
provide a more comprehensive analysis of renewable energy potentials. This holistic
approach will facilitate the development of optimized, multi-faceted energy solutions
that better meet the needs of utilities and consumers, while also promoting a more
sustainable energy mix.

4. Refining the methodology to determine the desired demand threshold. Tailoring the
model to align with specific utility company requirements and operational capacities
will enhance its practical relevance and effectiveness. Customizing the methodology in
this way ensures that the proposed solutions are not only theoretically sound but also
practically implementable, leading to more efficient energy management strategies.

5. Investigating the integration of emerging photovoltaic technologies. Incorporating
advanced solar technologies, such as dye-sensitized and perovskite solar cells, could pave
the way for leveraging cutting-edge innovations in solar energy, potentially transforming
the economic landscape of solar power by reducing costs and increasing efficiency.
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