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Abstract: The threat posed by the COVID-19 pandemic has been accompanied by an epidemic of
misinformation, causing confusion and mistrust among the public. Misinformation about COVID-19
whether intentional or unintentional takes many forms, including conspiracy theories, false treat-
ments, and inaccurate information about the origins and spread of the virus. Though the pandemic
has brought to light the significant impact of misinformation on public health, mathematical modeling
emerged as a valuable tool for understanding the spread of COVID-19 and the impact of public
health interventions. However, there has been limited research on the mathematical modeling of
the spread of misinformation related to COVID-19. In this paper, we present a mathematical model
of the spread of misinformation related to COVID-19. The model highlights the challenges posed
by misinformation, in that rather than focusing only on the reproduction number that drives new
infections, there is an additional threshold parameter that drives the spread of misinformation. The
equilibria of the model are analyzed for both local and global stability, and numerical simulations
are presented. We also discuss the model’s potential to develop effective strategies for combating
misinformation related to COVID-19.
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1. Introduction

COVID-19, also known as the coronavirus disease, caused by the novel coronavirus
SARS-CoV-2, has had a profound impact on global health since its emergence in late
2019. The first case was reported in Wuhan, China, and the virus rapidly spread world-
wide, with multiple waves of infections observed in different regions. After more than
118,000 cases in 114 countries and 4291 deaths, the World Health Organization (WHO)
declared COVID-19 a pandemic on 11 March 2020 [1,2]. COVID-19 is primarily trans-
mitted through respiratory droplets when an infected individual coughs, sneezes, talks,
or breathes heavily in close proximity to others [3]. It exhibits a wide spectrum of clinical
manifestations, ranging from mild flu-like symptoms to severe respiratory distress and
multi-organ failure [4,5]. Several factors including social behavior have influenced the
disease’s transmission dynamics. COVID-19 continues to evolve, with variations in the
prevalence and severity of the disease due to emerging variants, vaccination campaigns,
and public health measures implemented by governments and health organizations. Glob-
ally, as of 27 September 2023, there have been 770,875,433 confirmed cases of COVID-19,
including 6,959,316 deaths, reported to the WHO [6].

During the pandemic, many countries put in place a series of measures to contain the
spread of COVID-19, such as social distancing, masking, self-quarantine and eventually
vaccinations when they became available, which essentially helped to regulate the trans-
mission of the coronavirus disease. However, the lack of clear and concise messaging from
public health officials also contributed to the spread of misinformation related to COVID-19.
The constantly evolving nature of the pandemic and the lack of understanding of the virus
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early on led to conflicting information and messages from public health officials, leading to
confusion and mistrust among the public. This led some individuals to turn to alternative
sources of information, including misinformation, for guidance.

Misinformation related to COVID-19 has taken various forms [7–9]. Conspiracy
theories related to COVID-19 have been widely circulated, often claiming that the virus was
intentionally created and spread as a bioweapon or part of a global plot [10]. For example,
the theory that 5G technology is responsible for the spread of COVID-19 has been shared
widely on social media platforms, despite the lack of scientific evidence to support this
claim [11]. False treatments and cures for COVID-19 have also been promoted, leading
to dangerous consequences for individuals who follow them. For instance, the use of
disinfectants, such as bleach, to treat COVID-19 has been widely reported, leading to severe
injuries and deaths [12]. False claims that certain drugs, such as hydroxychloroquine, are
effective in treating COVID-19 have also been circulated, leading to hoarding and shortages
of the drug, which is actually not effective in treating the virus [13]. Rumors about the
origins and spread of COVID-19 have also contributed to the misinformation landscape
surrounding the disease. For example, the theory that the virus was intentionally created
and spread by China has been promoted by some media outlets and politicians, despite
the lack of evidence to support this claim [10]. Furthermore, misinformation surrounding
vaccines includes unfounded allegations of adverse effects, doubts about their efficacy,
and baseless theories about secret agendas. Such misinformation undermines public trust
in vaccines, leading to vaccine hesitancy and jeopardizing the achievement of widespread
vaccination coverage. The politicization of the pandemic also contributed to the spread of
misinformation related to COVID-19. Political leaders and media outlets have often taken
polarizing stances on the pandemic, leading to the amplification of misinformation and
conspiracy theories [14]. This led to a lack of consensus on the severity of the pandemic and
the efficacy of public health measures, further contributing to the spread of misinformation.

Mathematical models have been used extensively to understand the spread of COVID-19
and to inform public health interventions [15]. Several of these models typically involve
a set of differential equations that describe the dynamics of the virus spread, including
the number of infected individuals, the rate of transmission, and the effectiveness of
interventions such as social distancing and vaccination [16,17]. Mathematical models can
be used to estimate key parameters of the pandemic, such as the basic reproduction number
(R0), which measures the average number of people infected by each infected individual
in a susceptible population [18]. By estimating R0, mathematical models can be used to
predict the potential impact of different interventions and to guide public health policy.

There are many challenges associated with modeling COVID-19, including the un-
certainty of key parameters, such as the transmission rate, the duration of infectiousness,
and the duration of immunity after recovery or vaccination [19,20]. In addition, the complex
dynamics of the pandemic, including the emergence of new variants and changes in public
behavior due to misinformation, made it difficult to predict the course of the pandemic
accurately. In this study, we will present a mathematical model of the role of misleading
information in the transmission dynamics of COVID-19 since misinformed individuals
were likely to ignore measures such as social distancing, masking, vaccinations and others,
put in place to safeguard the population. The model is based on the assumptions that some
proportion of the population is vulnerable to misinformation. We refer to misinformation
as false or inaccurate information that is spread, either intentionally or unintentionally,
leading to a distortion of facts or a misunderstanding of reality. It can be disseminated
through various channels, including social media, news outlets, word-of-mouth, or on-
line platforms. Misinformation can take different forms, such as misleading statements,
fabricated data, conspiracy theories, or misinterpretations of legitimate information. It
often aims to deceive or manipulate individuals, resulting in harmful consequences, in-
cluding the erosion of trust, the promotion of fear and panic, the hindrance of informed
decision-making, and potentially detrimental effects on public health, social cohesion,
and democratic processes.
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The purpose of this study is to assess the impact that the amount of misinformation
circulating has on the transmission dynamics of COVID-19 in a population. To achieve
this goal, we formulated an SIR type model with an extra compartment representing
individuals that have been misled through misinformation. Because there was abundant
misinformation (whether intended or unintended) associated with COVID-19, the model
presented also treats the quantity of misinformation as a state labeled M based on the
assumption that it is synthesized by mislead individuals. This approach is similar to target
cell models where virions are produced by infected cells [21]. The equilibrium solutions of
the model are obtained using computed threshold parameters and their stability established
both analytically and numerically. Simulations of the model indicate that COVID-19 will
significantly affect a population negatively if misinformation is not properly tackled.

2. Mathematical Model

The model presented below is an SIR model in nature with additional compartments
for misinformed individuals, deaths, and the density of misleading information circulating.
We assume that as the susceptible population (S) comes into contact with circulating false
or inaccurate information (M) spreading among a community, some will be misled at a
rate of ρ and move into the misinformed compartment (Sm). Irrespective of the medium
through which it is disseminated, we assume that at any point in time (t), circulating
misinformation (M) is the sum total of all forms, including misleading statements, fabri-
cated data, conspiracy theories, or misinterpretations of legitimate information. We assume
that misinformation is generated at a rate µ0 by people that are already misinformed or
bad actors who we also categorized as misinformed, and we suppose that misleading
information density decays at the rate µ1. The model therefore assumes that misleading
information is only generated by individuals in the Sm compartment. We also assume that
misled individuals through awareness campaigns or other sources reject false information
recover at a rate κ and move back into the susceptible compartment. Interactions between
susceptible (S) and misinformed (Sm) individuals with COVID-19 infected individuals
(I) lead to infections, respectively, at rates α and σ. We assumed that infected individuals
either recovered (R) at the rate β or died (D) from a COVID-19 related complication at the
rate γ. It is further assumed new individuals are recruited only as susceptibles at some
rate Λ and that the natural death rate in all compartments is θ. A schematic diagram of the
model is given in Figure 1, and a summary of parameters and their description is given in
Table 1.

Taking into consideration the assumptions stated above and illustrated in the schematic
diagram, the system of differential equations that governs the model is as follows:

dS
dt

= Λ + κSm − αSI − ρSM − θS (1)

dSm

dt
= ρSM − σSm I − κSm − θSm (2)

dI
dt

= αSI + σSm I − βI − γI − θ I (3)

dR
dt

= βI − θR (4)

dD
dt

= γI (5)

dM
dt

= µ0Sm − µ1M, (6)

where we have assumed that all the parameter values are positive and the initial conditions
S(0) = S0, Sm(0) = Sm0, I(0) = I0, R(0) = R0, D(0) = D0, and M(0) = M0 are all
non-negative. We note that at the start of the outbreak, Sm(0) ≥ 0 and R(0) = D(0) = 0.
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Figure 1. Schematic diagram of COVID-19 transmission with misinformation. Individuals transition
from compartments S and Sm to compartment I as a result of their interaction with individuals in
compartment I. Individuals transition between compartments S and Sm as a result of interaction with
misinform M (either by consuming it or recovering from it). Misinformation density is produced by
individuals in compartment Sm.

Table 1. Description of model parameters.

Parameter Description

Λ Rate at which susceptibles are recruited
α Rate at which susceptibles are infected
β Rate at which infectious do recover
ρ Rate at which susceptibles are misled

κ
Rate at which misled recover

from misinformation
σ Rate at which misinformed are infected
γ Death rate of infectious
θ Natural death rate

µ0 Growth rate of misleading information
µ1 Decay rate of misleading information

Before proceeding, we observe that the equation for COVID-19 deaths (D), that is
Equation (5), is decoupled from the rest of the system and therefore will be neglected in
all subsequent analyses. We start by exploring the basic dynamical features of the model.
In particular, we establish the positivity of solutions of the model and an invariance space.
The following result shows that the model always admits positive solutions.

Theorem 1. Let the initial conditions of the model be S(0) > 0, Sm(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0,
and M(0) ≥ 0. Then, the solutions (S(t), Sm(t), I(t), R(t), M(t)) of the model with positive
initial conditions, will remain positive for all time t > 0.

Proof. We start by dividing Equations (1)–(4) and (6), respectively, by the variables S, Sm,
I, R, and M. Integrating the resulting differential equations on the time interval [0, t],
and applying the initial conditions, we obtain the following expressions:

S(t) = S0 exp
∫ t

0

(
Λ

S(η) + κ
Sm(η)
S(η) − αI(η)− ρM(η)− θ

)
dη,

Sm(t) = Sm0 exp
∫ t

0

(
ρ

S(η)M(η)
Sm(η)

− σI(η)− κ − θ
)

dη,

I(t) = I0 exp
∫ t

0 (αS(η) + σSm(η)− β − γ − θ)dη,

R(t) = R0 exp
∫ t

0

(
β

I(η)
R(η) − θ

)
dη, and M(t) = M0 exp

∫ t
0

(
µ0

Sm(η)
M(η)

− µ1

)
dη.
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Since the initial conditions are non-negative, it is obvious from the above expressions
that S(t), Sm(t), I(t), R(t), and M(t) are always positive for all times where t > 0. Thus,
the solution of the model with stated initial condition is always positive.

Next, we show that the solution of the model is bounded. With the given condition,
we consider the living population (L) defined by L(t) = S(t) + Sm(t) + I(t) + R(t) and
show that L(t) and M(t) are bounded in the following result.

Theorem 2. If the initial conditions of the model satisfy L(0) ≤ Λ
θ and M(0) ≤ µ0Λ

θµ1
, then the

solution of the model is bounded.

Proof. Since S(t) > 0, Sm(t) ≥ 0, I(t) ≥ 0, and R(t) ≥ 0 from Theorem 1, it is obvious that
L(t) is bounded from below, and therefore, L(t) ≥ 0. It only remains to establish that L(t)
is bounded from above. Differentiating L(t) = S(t) + Sm(t) + I(t) + R(t) and substituting
the derivatives from the model, we obtain the differential equation

dL
dt

= Λ − θ(S + Sm + I + R)− γI.

from which we obtain the differential inequality

dL
dt

≤ Λ − θL

whose solution satisfies
L(t) ≤ Λ

θ
− (

Λ
θ
− L(0))e−θt.

It is evident from the above inequality that the living population of the system is
always bounded from above. Further, we observe from the inequality that if the initial
condition L(0) ≤ Λ

θ , then we have that L(t) ≤ Λ
θ as t → ∞ is a strict upper bound.

To conclude boundedness of the model, we also established that the misinformation
density M(t) is bounded. We already showed in Theorem 1 that M(t) is always positive,
that is, M(t) ≥ 0, thus it is bounded from below. For boundedness from above, we consider
the case when L(0) ≤ Λ

θ . Since L(t) ≤ Λ
θ , we must have that Sm(t) ≤ Λ

θ . Using the
differential equation for misinformation density, we obtain the differential inequality

dM
dt

≤ µ0Λ
θ

− µ1M

whose solution M(t) satisfies

M(t) ≤ µ0Λ
µ1θ

− (
µ0Λ
µ1θ

− M(0))e−µ1t.

Clearly, the information density is bounded from above. Similarly, if M(0) ≤ µ0Λ
θµ1

,

then we have that M(t) ≤ µ0Λ
θµ1

as a strict upper bound.

Lemma 1. The closed set

Π =

{
(S(t), Sm(t), I(t), R(t), M(t)) ∈ R5

+; L(t) ≤ Λ
θ

, M(t) ≤ µ0Λ
θµ1

}
is positively invariant and attracting for the model.

Proof. The proof follows directly from Theorems 1 and 2 where the trivial existence and
uniqueness of solution is assumed.
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3. Analysis of the Model

In this section, we compute the equilibria and provide conditions for their existence.
We also provide the reproduction number of the model and use it to study the stabilty of
the computed equilibria. Note also that the equation for the recovered (R) is decoupled
from the rest of the system, in addition to that for deaths (D). We will therefore ignore
these equations in the subsequent analysis given that their behavior can easily be deduced
given the behavior of the remaining sub-system.

3.1. Existence of Equilibria

By decoupling the equations for R and D, the equilibria of the model is given by the
solution of the sub-system

Λ + κS∗
m − αS∗ I∗ − ρS∗M∗ − θS∗ = 0

ρS∗M∗ − σS∗
m I∗ − κS∗

m − θS∗
m = 0

αS∗ I∗ + σS∗
m I∗ − βI∗ − γI∗ − θ I∗ = 0

µ0S∗
m − µ1M∗ = 0.

Since the last equation above only depends on variable S∗
m, M∗ can be represented as

M∗ =
µ0S∗

m
µ1

.

From the third equation in the sub-system, we see that either I = 0 which leads to the
disease-free equilibrium (DFE) of the model, or αS∗ + σS∗

m − β − γ − θ = 0 , which leads
to the Endemic Equilibrium.

Suppose that E0 = (S∗, S∗m, I∗, M∗) denotes a DFE, then further computation yields
two DFEs,

E1
0 =

(
Λ
θ

, 0, 0, 0
)

and E2
0 =

(
(θ + κ)µ1

ρµ0
,

Λ
θ
− (θ + κ)µ1

ρµ0
, 0,

Λµ0

θµ1
− (θ + κ)

ρ

)
.

We note here that the second DFE E2
0 will only exist if Λ

θ > (θ+κ)µ1
ρµ0

.
Before going further into the analysis, we pause and compute the reproduction number,

R0, of the model. The reproduction number is the number of secondary infections that
occur when an infectious person is put into a completely susceptible population. Using the
next generation matrix method (see for example Duatel et al. [22]) and the DFEs, E1

0 and
E2

0 , respectively, we obtain the reproduction numbers

R1
0 =

αΛ
θ(β + γ + θ)

and R2
0 =

1
β + γ + θ

(
α(

(θ + κ)µ1

ρµ0
) + σ(

Λ
θ
− (θ + κ)µ1

ρµ0
)

)
.

We remark here that R1
0 regulates the model in the absence of misinformation, while

R2
0 drives the model when misinformation is persistent.

We now turn our attention to establish the endemic equilibria of the model. Suppose
that EE = (S∗, S∗

m, I∗, M∗) denotes an endemic equilibrium, then using equation αS∗ +
σS∗

m − β− γ− θ = 0 and the necessary equations in the sub-system, we obtain two endemic
equilibria namely,

EE1 =

(
A
α

, 0,
θ

α
(R1

0 − 1), 0
)

and

EE2 =

(
(θ + κ + σI∗)µ1

ρµ0
,

A
σ
− α(θ + κ + σI∗)µ1

σρµ0
, I∗,

µ0

µ1

(
A
σ
− α(θ + κ + σI∗)µ1

σρµ0

))
,
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where A = β + γ + θ and where

I∗ = (R2
0 − 1)

θA
σ

(
A +

θαµ1

ρµ0
(

σ

α
− 1)

)−1
.

We also remark here that the first endemic equilibrium EE1 exists if R1
0 > 1, and the

second endemic equilibrium EE2 exists if R2
0 > 1 and A − α(θ+κ+σI∗)µ1

ρµ0
> 0.

3.2. Stability of Equilibria

In this section, we establish local stability results for the DFEs and endemic equilibria
obtained above under appropriate conditions. We begin by noting that the Jacobian matrix,
J(S, Sm, I, M), of the sub-system is given by

J(·) =


−αI − ρM − θ κ −αS −ρ S

ρM −σI − κ − θ −σSm ρ S
αI σI αS + σSm − β − γ − θ 0
0 µ0 0 −µ1

.

Theorem 3. If µ1θ(θ + κ) > µ0ρΛ and R1
0 < 1, then the DFE E1

0 is locally asymptotically stable,
otherwise it is unstable.

Proof. Evaluating the Jacobian matrix at the DFE E1
0 =

(
Λ
θ , 0, 0, 0

)
, we obtain

J(E1
0) =


−θ κ −α Λ

θ −ρ Λ
θ

0 −κ − θ 0 ρ Λ
θ

0 0 α Λ
θ − β − γ − θ 0

0 µ0 0 −µ1


whose characteristic polynomial is

P(λ) = det(J(E1
0)− λI)

= (α
Λ
θ
− β − γ − θ − λ)[(−θ − λ)(−θ − κ − λ)(−µ1 − λ)− µ0(ρ

Λ
θ
)(−θ − λ)],

yeilding the eigenvalues

λ1 = −θ

λ2 = α
Λ
θ
− β − γ − θ

λ3 =
−(θ + κ + µ1)−

√
(µ1 + θ + κ)2 − 4((θ + κ)µ1 − µ0ρ Λ

θ )

2

λ4 =
−(θ + κ + µ1) +

√
(µ1 + θ + κ)2 − 4((θ + κ)µ1 − µ0ρ Λ

θ )

2
.

From the above, it is obvious that λ1 and λ3 have negative real parts, since R1
0 =

αΛ
θ(β+γ+θ)

and λ2 can be rewritten as

λ2 = α
Λ
θ
− (β + γ + θ)

= R1
0(β + γ + θ)− (β + γ + θ)

= (R1
0 − 1)(β + γ + θ).
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Thus, if R1
0 < 1, then λ2 < 0. λ4 has a negative real part if

θ + κ + µ1 >

√
(µ1 + θ + κ)2 − 4((θ + κ)µ1 − µ0ρ

Λ
θ
)

(θ + κ + µ1)
2 > (µ1 + θ + κ)2 − 4((θ + κ)µ1 − µ0ρ

Λ
θ
)

0 > −4((θ + κ)µ1 − µ0ρ
Λ
θ
)

µ1θ(θ + κ) > µ0ρΛ

holds true. Therefore, if µ1θ(θ + κ) > µ0ρΛ and R1
0 < 1, then the DFE E1

0 is locally
asymptotically stable, otherwise it is unstable if R1

0 > 1.

We now conclude our analysis of the first DFE E1
0 by establishing a global stability

result. For this purpose, we recall establishing in Section 2 that at any time t, the living
population L(t) = S(t) + Sm(t) + I(t) + R(t) is bounded above and satisfies

L(t) ≤ Λ
θ
− (

Λ
θ
− L0)e−θt,

where L0 = L(0). The following results are a consequence of the above inequality.

Lemma 2. The living population L(t) ≤ L0 at all times t.

The following result provides global stability for the first DFE E1
0, that is, when there

is no COVID-19 and there is also no misinformation.

Theorem 4. In view of Lemma 2, if L0 = α
σ

Λ
θ , and if R1

0 < 1, then the first disease-free equilibrium,
E1

0 is globally asymptotically stable, otherwise it is unstable.

Proof. In order to prove Theorem 4, we consider Lyapunov function candidate V = 1
2 I2.

Taking its derivative we obtain,

dV
dt

= I
dI
dt

= (αSI + σSm I − βI − γI − θ I)I

= [αS + σSm − (β + γ + θ)]I2

= (β + γ + θ)(
αS + σSm

β + γ + θ
− 1)I2.

Since the model assumes that α < σ, then the above equation becomes

dV
dt

≤ (β + γ + θ)(
σ(S + Sm)

β + γ + θ
− 1)I2.

If L0 = α
σ

Λ
θ then by Lemma 2, we obtain that S + Sm ≤ α

σ
Λ
θ . Thus, we obtain the

differential inequality

dV
dt

≤ (β + γ + θ)(
αΛ

θ(β + γ + θ)
− 1)I2

≤ (β + γ + θ)(R1
0 − 1)I2.

It is clear that if R1
0 < 1, then

dV
dt

< 0 and therefore, by LaSalle’s invariance principle

the disease-free equilibrium E1
0 is globally asymptotically stable [23].

Next, we consider the local stability of the second DFE E2
0 and state the following result.
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Theorem 5. If ρΛµ0 > θ(θ + κ)µ1 and R2
0 < 1, then the DFE E2

0 is locally asymptotically stable,
otherwise it is unstable.

Proof. Evaluating the Jacobian matrix at the the second DFE, that is, E2
0 = ( (θ+κ)µ1

ρµ0
, Λ

θ −
(θ+κ)µ1

ρµ0
, 0, Λµ0

θµ1
− (θ+κ)

ρ ), we obtain the Jacobian matrix

J(E2
0) =


− ρΛµ0

θµ1
+ κ κ −α

(θ+κ)µ1
ρµ0

−ρ
(θ+κ)µ1

ρµ0
ρΛµ0
θµ1

− θ − κ −κ − θ −σ(Λ
θ − (θ+κ)µ1

ρµ0
) ρ

(θ+κ)µ1
ρµ0

0 0 α
(θ+κ)µ1

ρµ0
+ σ(Λ

θ − (θ+κ)µ1
ρµ0

)− β − γ − θ 0
0 µ0 0 −µ1

.

Clearly, we see from the third row of the above matrix that

λ1 = α
θµ1

ρµ0
+ σ(

Λ
θ
− θµ1

ρµ0
)− β − γ − θ

= R2
0(β + γ + θ)− (β + γ + θ)

= (R2
0 − 1)(β + γ + θ) < 0 if R2

0 < 1.

The remaining factor of the characteristic polynomial is of degree three and is given by

λ3 + b1λ2 + b2λ + b3 = 0,

where

b1 = µ1 +
ρΛµ0

θµ1
+ θ

b2 =
ρΛµ0

θ
+

ρΛµ0

µ1
− κµ1

b3 = ρΛµ0 − (θ + κ)µ1θ.

To establish that the remaining eigenvalues (that is the zeros of the above cubic
equation) have negative real parts, we use Routh–Hurwitz criterion. It is obvious from the
above coefficients b1, b2, and b3 that if the condition ρΛµ0 > (θ + κ)µ1θ is satisfied then
b1 > 0, b2 > 0, and b3 > 0. Further, we also see that the inequality

b1b2 = (µ1 +
ρΛµ0

θµ1
+ θ)(

ρΛµ0

θ
+

ρΛµ0

µ1
− κµ1) > ρΛµ0 − (θ + κ)µ1θ = b3

holds true. Since b1, b2, and b3 are all positive and b1b2 > b3, we conclude using Routh–
Hurwitz criterion that the remaining eigenvalues have negative real parts. Therefore,
if R2

0 < 1, the DFE, E2
0, is locally asymptotically stable, otherwise, it is unstable.

Remark 1. Just as a reminder, we recall here that the condition ρΛµ0 > (θ + κ)µ1θ was imposed
to ensure that the DFE E2

0 is valid.

Theorem 6. If R1
0 > 1, then the Endemic Equilibrium, EE1, is locally asymptotically stable,

otherwise it is unstable.
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Proof. Evaluating the Jacobian matrix at the endemic equilibrium EE1, that is, at EE1 =
( A

α , 0, θ
α (R1

0 − 1), 0) where A = β + γ + θ, we obtain the Jacobian matrix

J(EE1) =


−θR1

0 κ −A −ρ A
α

0 −σ( θ
α (R1

0 − 1))− κ 0 ρ A
α

θR1
0 σ( θ

α (R1
0 − 1)) 0 0

0 µ0 0 −µ1

.

The characteristic polynomial is

P(λ) = det(J(EE1)− λI)

= (−σ(
θ

α
(R1

0 − 1))− λ)[(−µ1 − λ)(θR1
0λ + λ2 + AθR1

0)],

and the eigenvalues are

λ1 = −σ(
θ

α
(R1

0 − 1)) < 0 if R1
0 > 1

λ2 = −µ1 < 0

λ3 =
−θR1

0 −
√
(θR1

0)
2 − 4AθR1

0

2

λ4 =
−θR1

0 +
√
(θR1

0)
2 − 4AθR1

0

2
.

From the results above, the eigenvalues λ3 and λ4 clearly are always negative real

numbers or have negative real parts, since
√
(θR1

0)
2 − 4AθR1

0 < θR1
0. Therefore, we can

conclude that if R1
0 > 1, then the endemic equilibrium, EE1, is locally asymptotically stable

and unstable if R1
0 ≤ 1.

Remark 2. We note here that in a similar manner to Theorem 6, it can be established that if R2
0 > 1,

then the endemic equilibrium

EE2 =

(
S∗,

A − αS∗

σ
, I∗,

µ0

µ1
(

A − αS∗

σ
)

)
,

where S∗ = (θ+κ+σI∗)µ1
ρµ0

, I∗ = (R2
0 − 1) θA

σ

(
A + θαµ1

ρµ0
( σ

α − 1)
)−1

, and A = β + γ + θ is
locally stable.

4. Results and Discussion

In this section, we present numerical simulations of the model under different cir-
cumstances focusing on the population of the United States. We simulate the number of
infections for different rates related to misinformation and in some instances the number of
cumulative deaths. The parameter values used in the simulations were chosen based on
values from the published literature for COVID-19 [20,24–26] where available and other
parameter values were assumed to explore the behavior of the model. The initial conditions
were chosen to reflect the United States population of approximately 335 million by setting
S(0) = 3.35 × 108. Considering that the true population of the US is estimated to range
between 331 million and 341 million, we carried out several simulations with small pertur-
bations in the initial conditions and the long term behavior of the model’s predictions did
not change.

In the previous section, we established several qualitative results relating to the
equilibria of the model. We start by confirming these results numerically in Figures 2–4.
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Figure 2. Numerical simulation of the first DFE: populations distribution (left) and information
density (right), for parameter values Λ = 0, α = 0.25 × 10−4, β = 1/14, ρ = 0.1, κ = 20ρ,
σ = 0.5 × 10−3, γ = 10−4, θ = 4 × 10−5, µ0 = 0.0025, and µ1 = 0.01.

Figure 3. Numerical simulation of the second DFE: populations distribution (left) and information
density (right), for parameter values Λ = 0, α = 0.25 × 10−4, β = 1/14, ρ = 0.1, κ = 2.5ρ,
σ = 0.5 × 10−3, γ = 10−4, θ = 4 × 10−5, µ0 = 0.0025, and µ1 = 0.01.

Figure 4. Numerical simulation of a stable endemic equilibrium: populations distribution (left) and
information density (right), for parameter values Λ = 0.75, α = 0.25 × 10−4, β = 1/14, ρ = 0.1,
κ = 20ρ, σ = 0.5 × 10−3, γ = 10−4, θ = 4 × 10−5, µ0 = 0.0025, and µ1 = 0.01.

The results in Figure 2 demonstrate the global stability of the first DFE. The simulations
show the disease, the misinformed and the density of misinformation eventually dying
out with the passage of time. It is important to observe from these results that though
COVID-19 may die out much earlier, it takes much longer for both the misinformed and
misinformation density to be eradicated. We note here that the numerical computations
for the first DFE were obtained by setting the recovery rate of misinformed individuals (κ)
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to about 20 times the rate at which susceptible people are misled (ρ). When the recovery
rate of misinformed individuals is set at about two times the rate at which the susceptible
become misled, we obtained the simulations given in Figure 3. Clearly, the results in
Figure 3 demonstrate the second DFE that we also established in the previous section.
These results show that even if COVID-19 completely dies out, misinformation about the
disease will never go away. Conspiracy theories such as the origin of COVID-19, the disease
being a bioweapon, misconceptions about COVID-19 vaccines, and COVID-19 deniers are
likely to persist for a long while given the ease and speed at which misinformation is
currently disseminated.

The results for the disease-free equilibria discussed above were obtained by assuming
a closed population (Λ = 0), that is, no new individuals are entering the community. This is
a scenario where there is either strict lockdown or restriction of movement. This was indeed
the case with the early variants of COVID-19 where cities/countries were able to restrain
the spread of the disease through strict lockdowns; however, misinformation could not be
contained. By shifting the paradigm from a closed population to an open one where there
is freedom of movement with people entering and leaving the community, the dynamics
quickly shift to simulations of an endemic equilibrium. The results in Figure 4 show a
globally stable endemic equilibrium. Recall that setting the recovery rate (κ) of misinformed
individuals to about 20 times the rate at which susceptible people are misinformed (ρ) led to
a DFE. However, for an open population where the recruitment rate Λ = 0.75 and κ = 20ρ,
we obtain an endemic equilibrium Figure 4. A further increase in the recovery rate of
misinformed individuals say by a multiple of 50 times the rate at which susceptible people
are misinformed, that is, κ = 50ρ, leads to a hopf bifurcation that renders the endemic
equilibrium unstable as demonstrated in Figure 5. It is worth noting that the bifurcation
here transforms a stable equilibrium to an unstable one containing a very large amplitude
of oscillations. We can therefore infer from the results in Figures 4 and 5 that it is not
enough to refute misleading information through fact checking by the media. Refuting and
also correctly educating the public about COVID-19 should be carried out simultaneously.
Media literacy is also essential in combating misinformation related to COVID-19. Increased
media literacy can help individuals identify and distinguish between credible sources of
information and misinformation. An educated public that is less susceptible to being
misled will lead to a better outcome in eradicating COVID-19 or controlling the spread of
the disease in an endemic state. We remark here that all simulations that we carried out for
a positive recruitment rate, that is Λ > 0 (irrespective of how small the value of Λ), led to
an endemic equilibrium. As a consequence, considering the fact that we live in an open
population with freedom of movement, COVID-19 will become endemic.

Next, we turn our attention to simulate the effect that varying the recovery rate of
misinformed individuals (κ) will have on the number of COVID-19 cases and cumulative
deaths. The results for the number of COVID-19 cases for a closed population are depicted
in Figure 6. We observe here that an increase in the recovering rate of the misinformed (κ)
leads to fewer cases of COVID-19. The larger the recovery rate (κ), the further it takes for
the number of cases to peak, and the magnitude of the peak is also smaller. We also note
that because it takes longer to peak given a larger recovery rate (κ), precious time is afforded
that can be used by public health officials to implement other measures so as to further
reduce the impact of the disease on the entire population. The results in Figure 7 show the
cumulative deaths from COVID-19 for different misinformed recovery rates for a closed
population. It is also evident from these simulations that a higher recovery rate κ will lead
to a lower number of cumulative COVID-19 deaths. According to the WHO [6], there were
about 1,127,252 COVID-19 deaths reported in the United States between 3 January 2020
and 21 September 2023. We observe from the cumulative death simulations in Figure 7 that
the rate at which misinformed people recover for the United States is less than five times
the rate at which people were misled. Considering that misinformed people contribute
to the growth of misinformation, the United States recovery rate of misled individuals
appears to be small.
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Figure 5. Numerical simulation of an unstable endemic equilibrium: populations distribution (left)
and information density (right), for parameter values Λ = 0.75, α = 0.25 × 10−4, β = 1/14, ρ = 0.1,
κ = 50ρ, σ = 0.5 × 10−3, γ = 10−4, θ = 4 × 10−5, µ0 = 0.0025, and µ1 = 0.01.

Figure 6. Numerical simulation of the number of infections for different misinformed recovery rates
κ. The other parameter values are fixed at Λ = 0, α = 0.25 × 10−4, β = 1/14, ρ = 0.1, σ = 0.5 × 10−3,
γ = 10−4, θ = 4 × 10−5, µ0 = 0.0025, and µ1 = 0.01.

Finally, we consider the effects of misinformation density growth and decay rates on
the number of COVID-19 cases, focusing on a closed population. The results in Figure 8
are for different growth rates µ0, while those in Figure 9 are for different decay rates µ1. We
can clearly see from the results in Figure 8 that lowering the growth rate of misinformation
density leads to fewer cases of COVID-19. Indeed, keeping the growth rate low also leads
to a smaller infection peak that occurs further down the road, thus affording time that can
be used to implement other containment strategies and consequently minimize the disease
burden. Promoting accurate information is essential in combating misinformation related to
COVID-19. Public health officials and credible sources of information should provide clear
and concise messaging about the virus and public health measures, including vaccination.
Positive messaging slows down the growth rate of misinformation. On the other hand,
increasing the decay rate of misinformation likewise leads to a smaller infection peak that
occurs much later in time. Fact-checking mechanisms can be implemented to combat
misinformation related to COVID-19. TV, radio, and social media platforms can implement
fact-checking mechanisms to flag and remove misinformation related to the disease.
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Figure 7. Numerical simulation cumulative deaths for different recovery rates κ. The other parameter
values are fixed at Λ = 0, α = 0.25× 10−4, β = 1/14, ρ = 0.1, σ = 0.5× 10−3, γ = 10−4, θ = 4× 10−5,
µ0 = 0.0025, and µ1 = 0.01.

Figure 8. Numerical simulation of the number of infections for different misinformation growth
rates µ0. The other parameter values are fixed at Λ = 0, α = 0.25 × 10−4, β = 1/14, ρ = 0.1, κ = 5ρ,
σ = 0.5 × 10−3, γ = 10−4, θ = 4 × 10−5, and µ1 = 0.01.
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Figure 9. Numerical simulation of the number of infections for different misinformation decay rates
µ1 = µ. The other parameter values are fixed at Λ = 0, α = 0.25 × 10−4, β = 1/14, ρ = 0.1, κ = 5ρ,
σ = 0.5 × 10−3, γ = 10−4, θ = 4 × 10−5, and µ0 = 0.0025.

5. Conclusions

The COVID-19 pandemic has brought the issue of misinformation to the forefront,
highlighting the significant impact on public health. Misinformation can undermine efforts
to control the spread of the virus and thus lead to a range of negative consequences, includ-
ing increased vaccine hesitancy, non-compliance with public health measures, and mistrust
of public health officials. In this paper, we formulated a model that captures the trans-
mission dynamics of COVID-19 simultaneously with the spread of misinformation in a
community. Analysis of the model shows that it has two disease-free equilibria, one con-
taining misinformation and the other does not. The DFE with no misinformation yields
a reproduction number R0 and is both locally and globally stable if R0 < 1. The DFE
containing misinformation yields a threshold parameter that renders the equilibrium stable
if the value of the parameter is less than one.

Factors contributing to the spread of misinformation related to COVID-19 include
the rapid spread of information through social media, the echo chamber effect, and the
politicization of the pandemic. When the model is applied to the population of the United
States, simulations of cumulative deaths suggest that the United States did a poor job
at combating misinformation related to COVID-19. Numerical simulations of the model
suggest that a multi-faceted approach is needed to combat the spread of misinformation and
promote accurate information about the pandemic. Strategies to combat misinformation
related to COVID-19 include promoting accurate information, increasing media literacy,
and implementing fact-checking mechanisms. Further, simulations of the model predict
that as long as people are able to enter and exit a community, the COVID-19 virus will
remain endemic in such a community.

In conclusion, we have shown that mathematical modeling can play an important role
in understanding the spread of misinformation related to COVID-19 and developing effec-
tive strategies for combating misinformation. Combating COVID-19 misinformation is es-
sential for promoting public health and controlling the spread of the virus. Further, address-
ing the underlying causes of the spread of misinformation is essential, as is promoting accu-
rate information, increasing media literacy, and implementing fact-checking mechanisms.
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