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Abstract: In this paper, we extend the block hybrid method with equally spaced intra-step points to
solve linear and nonlinear third-order initial value problems. The proposed block hybrid method
uses a simple iteration scheme to linearize the equations. Numerical experimentation demonstrates
that equally spaced grid points for the block hybrid method enhance its speed of convergence and
accuracy compared to other conventional block hybrid methods in the literature. This improvement is
attributed to the linearization process, which avoids the use of derivatives. Further, the block hybrid
method is consistent, stable, and gives rapid convergence to the solutions. We show that the simple
iteration method, when combined with the block hybrid method, exhibits impressive convergence
characteristics while preserving computational efficiency. In this study, we also implement the
proposed method to solve the nonlinear Jerk equation, producing comparable results with other
methods used in the literature.

Keywords: block hybrid method; equally spaced grid points; differential equations; nonlinear jerk
equation; simple iteration method

MSC: 65L05

1. Introduction

Differential equations with an appropriate set of conditions are key tools in modeling
a plethora of real-world phenomena including engineering problems. It is crucial to have a
clear understanding of the behavior and stability of solutions to these differential equations.
Many numerical methods have been introduced to find an approximate solution for those
cases. In this study, we propose a block hybrid method for the numerical solution of
third-order initial value problems (IVPs) of the form

u′′′ = f
(
z, u, u′, u′′), z ∈ [a, b], (1)

u′′(a) = u′′
0 , u′(a) = u′

0, u(a) = u0, (2)

where the prime denotes the derivative with respect to the independent variable z, and f is
a continuous linear or nonlinear function in the interval [a, b].

Block hybrid algorithms are a class of numerical methods that blend linear multi-step
approaches with interpolation using power series. These techniques were first introduced
by Gragg and Stetter [1] and Shampine and Watts [2] and involve the inclusion of an addi-
tional point within each step of the formula. This allows for more precise approximations
of solutions to differential equations, as well as gives better convergence rates. Since the
pioneering work of Gear [3], block methods have been extensively studied and used in the
literature to solve initial value problems and boundary value problems. Motsa [4] proposed
an overlapping grid hybrid block method with equally spaced and optimal grid points
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for linear and nonlinear first-order IVPs. He found that the overlapping grid approach
gave better performance than the standard non-overlapping grid in terms of reducing the
local truncation error. Shateyi [5] applied a block hybrid method with equally spaced grid
points to solve linear and nonlinear first-order IVPs. He reported that equally spaced grid
points provided high rates of convergence outperforming the fourth-order Runge–Kutta
method [6]. Orakwelu [7] developed an implicit block hybrid method for solving first-,
second-, and third-order IVPs. He investigated the convergence rates, accuracy, and ro-
bustness of implicit block hybrid algorithms. He further investigated the performance of
these algorithms when various countable off-points were imposed between grid points in
the derivation process. El-Hawary and Mahmoud [8] presented the spline functions with
four collocation points to solve second-order IVPs. They showed that the spline collocation
scheme is convergent with order seven under certain conditions on the collocation point
parameters. They found that the stability properties of the method are analyzed rigorously,
and regions of absolute stability are determined based on the parameter values.

Various iterative techniques have been discussed for solving initial value and bound-
ary value problems in ordinary and partial differential equations [9,10]. These iterative
methods yield the solution or an approximation of it through a sequence of successive
iterations. In the case of initial value problems, these iterative approaches can be for-
mulated either in an integral or differential manner [11]. These approaches linearize the
nonlinear equations governing the problem around the previous iteration, leading to linear
differential equations at each step [12]. However, the coefficients of these equations may
vary with the independent variable, necessitating numerical methods for obtaining the
approximation solution.

In this study, we are motivated by the work in [4] and propose a block hybrid method
for third-order IVPs with equally spaced grid points. Several strategies have been de-
veloped in the literature to solve third-order IVPs. For example, Osa et al. [13] used a
multi-step block implicit hybrid method. They reported that the block method performed
better than predictor–corrector methods [14] in terms of being more time-efficient, cost-
effective, and accurate. Rufai and Ramos [15] modified the block method using variable
step sizes instead of equally spaced points. They reported that the technique was efficient
in terms of computational time and minimized truncation errors. Orakwelu et al. [16]
proposed a single-step hybrid block method for solving third-order ODEs without first
converting to an analogous first-order system. They reported that the scheme can be imple-
mented without the use of starting values or predictors, avoiding the necessity for complex
subroutines method. Several other authors have utilized the equal step size procedure for
solving the third-order IVPs [17–19].

Block hybrid methods, used to solve differential equations, are primarily applicable to
linear equations. However, when dealing with nonlinear equations, the method necessitates
a preliminary step of linearization before its implementation. This prerequisite ensures
the effectiveness and accuracy of methods when applied to nonlinear equations. In this
study, we developed an intra-step equally spaced grid point block hybrid method that is
used in conjunction with the simple iteration method (SIM) to solve third-order IVPs. They
demonstrated that the SIM linearization technique generates accurate solutions for non-
linear differential equations [20]. The SIM approach is based on transforming a nonlinear
ordinary differential equation into an iterative scheme made up of linear equations, which
are then solved using a block hybrid method numerical approach. Linearization methods
based on truncated Taylor series approximations are employed to simplify the nonlinear
terms of nonlinear differential equations. Relaxation methods based on the assumption that
nonlinear terms are known from previous iterations can also be used to convert a nonlinear
problem to a linear discretizable problem. Newton-based linearization techniques such as
the quasi-linearization method [21], local linearization method [22], Keller-box method [23],
and relaxation method [24], have extensively been used to linearize differential equations.
All these methods are based on one-term Taylor series expansion and are thereby suscep-
tible to series truncation errors even before errors associated with the numerical method
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used to solve the linearised problem. In this paper, we propose a method that seeks to
circumvent the problem of errors associated with linearization. The proposed method
uses ideas akin to those of fixed point iteration to develop iterative schemes, called Simple
Iteration Methods (SIMs), for solving nonlinear differential equations. Moreover, SIMs are
easy to implement. We show the effectiveness of the proposed method (referred to as the
SIM-BHM) through numerical experiments, demonstrating that it gives fast convergence
and accurate solutions.

2. Development of the SIM-BHM Iterative Method

This section describes the development of the SIM-BHM with equally spaced points
for the numerical solution to third-order IVPs (1) and (2). Before starting the development
of the hybrid block method, we need to linearize the function f using the SIM scheme as
below:

2.1. The SIM Linearization Scheme

In this section, we present the development of the SIM. If the nonlinear equation f = 0
is rearranged in the form z = g(z), then an iterative method can be written as

zs+1 = gs, s = 0, 1, 2, 3, · · · (3)

where gs = g(zs), and s is the number of iterative steps. This method is called fixed point
iteration, the successive substitution method, or the simple iteration method. The simple
iteration method is touted as a differential equation equivalent to the fixed point iteration
method for solving nonlinear equations. Thus, we begin by reviewing some basic concepts
of the fixed point iteration method. The following theorem gives the conditions of the fixed
point iteration method.

Theorem 1. (Fixed Point Theorem).

• If g is continuous on a closed interval [a, b], for all x ∈ [a, b], then g has at least one fixed
point in [a, b].

• If, in addition, g′(z) exists on (a, b) and a positive constant K exists with

|g′(z)| ≤ K < 1, f or allz ∈ (a, b),

then there is exactly one fixed point in [a, b].

Assume that c in (a, b) is a fixed point for g. Then, if there is an initial guess in (a, b), the sequence

zs+1 = gs, s = 0, 1, 2, · · ·

converges to the unique fixed point c. For proof of Theorem 1, see [25].

Simple Iteration Method for the ODE

The approach proposed below is a systematic approach based on a rule used to
simplify products of unknown functions and their derivatives. We assume that

f = f (z, u, δ, γ), (4)

is a nonlinear function in u, δ, and γ. To develop the iteration scheme, Equation (4) is
expressed as a sum of its linear as nonlinear components as

f = L ∗(z, u, δ, γ) +N ∗(z, u, δ, γ), (5)

The SIM linearization scheme is developed so that the linear component L ∗ can be
written as the sum of linear terms (unknown functions) at iteration s + 1

L ∗ = L ∗
2 (z

s)γs+1 +L ∗
1 (z

s)δs+1 +L ∗
0 (z

s)us+1 (6)
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The nonlinear terms are a combination of known (at iteration s) and unknown =func-
tions. In the nonlinear term, the function with a higher derivative is taken as unknown.
Provided that the nonlinear component N ∗ can be written as the sum of nonlinear terms

N ∗ = N2(zs, us, δs, γs)γs+1 +N1(zs, us, δs)δs+1 +N0(zs, us)us+1 +N (zs) (7)

Substituting Equations (6) and (7) into Equation (5), we obtain

f = L2(zs, us, δs, γs)γs+1 +L1(zs, us, δs)δs+1 +L0(zs, us)us+1 +N (zs), (8)

where L2, L1, L0, and N are known functions from a previous iteration given by

L2 = L ∗
2 (z

s) +N2(zs, us, δs, γs),

L1 = L ∗
1 (z

s) +N1(zs, us, δs),

L0 = L ∗
0 (z

s) +N0(zs, us).

Equation (8) is the linearized form of f .
The objective of this paper is to develop an alternative and novel block hybrid method

approach that is based on an equally spaced grid (see Figure 1).

Υ

a

Υ0

h
Υ1

h
Υr

h
ΥN−2

h
ΥN−1

h

z0 z1 z2 zr zr+1 zN−2 zN−1 zN

b

zr zr+1

zr+p0 zr+p1 zr+p2 zr+p3 zr+pmzr+pm−1zr+pm−2zr+pm−3

Figure 1. Illustration of the equally spaced grid points.

We define the block by Υr and the fixed step length or size is denoted by h, where

h = zr+1 − zr, r = 0, 1, 0, . . . , N − 1, (9)

where N is the number of blocks in [a, b]. For each block Υr = [zr, zr+1], we define m + 1
intra-step points pj as

pj =
j

m
, j = 0, 1, 2, 3, . . . , m, (10)

zr+pj = zr + pj h. (11)

In using the BHM, we approximate the solution u(z) to Equation (1) using a polyno-
mial of the form

u(z) ≈ U(z) =
m+3

∑
k=0

ar,k (z − zr)
k. (12)
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In addition, we approximate the first and second derivatives as

δ(z) ≈ U′(z) =
m+3

∑
k=1

ar,k k(z − zr)
k−1, (13)

γ(z) ≈ U′′(z) =
m+3

∑
k=2

ar,k k(k − 1)(z − zr)
k−2, (14)

respectively, where ar,k are m + 4 unknown coefficients. We apply collocation at the
unknown nodes zr+pj and in Equations (10) and (11). We assume that the approximated
solutions (12)–(14) satisfy Equations (1) and (2). The coefficients ar,k are obtained from a
system of m + 4 equations with m + 4 unknowns generated from

U′′′(zr+pj) = fr+pj , j = 0, 1, 2, . . . , m. (15)

U(zr) = ar,0 = ur, r = 0, 1, . . . , N − 1. (16)

U′(zr) = ar,1 = δr, r = 0, 1, . . . , N − 1. (17)

U′′(zr) = 2 ar,2 = γr, r = 0, 1, . . . , N − 1. (18)

where fr+pj = f (zr+pj , ur+pj , δr+pj , γr+pj), fr = f (zr, ur, δr, γr), ur = u(zr), δr = δ(zr),
and γr = γ(zr) . The above system of Equations (15)–(18) can be written in matrix
notation as

1 0 0 0 0 0 0 · · · 0
0 1 0 0 0 0 0 · · · 0
0 0 2 0 0 0 0 · · · 0
0 0 0 6 0 0 0 · · · 0
0 0 0 6 24hp1 60h2 p2

1 120h3 p3
1 · · · (m + 3)(m + 2)(m + 1)hm pm

1
0 0 0 6 24hp2 60h2 p2

2 120h3 p3
2 · · · (m + 3)(m + 2)(m + 1)hm pm

2
0 0 0 6 24hp3 60h2 p2

3 120h3 p3
3 · · · (m + 3)(m + 2)(m + 1)hm pm

3
...

...
...

...
...

...
... · · ·

...
0 0 0 6 24h 60h2 120h3 · · · (m + 3)(m + 2)(m + 1)hm





ar,0
ar,1
ar,2
ar,3
ar,4
ar,5
ar,6

...
ar,m+3



=



ur
δr
γr
fr

fr+p1

fr+p2

fr+p3
...

fr+1


(19)
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We solve the above system of Equation (19) to obtain ar,k. We use Mathematica code
to obtain ar,k. The code is as follows

p = Table
[

pj =
j

m
, {j, 0, m}

]
;

m = Length[p]− 1;

Table[zr+points[[j]] = (r + p[[j]]) ∗ h, {i, m + 1}];

U = sum[ak ∗ (z − zr)
k, {k, 0, m + 3}];

dU = sum[ak ∗ k ∗ (z − zr)
k−1, {k, 1, m + 3}];

ddU = sum[ak ∗ k ∗ (k − 1) ∗ (z − zr)
k−2, {k, 2, m + 3}];

dddU = sum[ak ∗ k ∗ (k − 1) ∗ (k − 2) ∗ (z − zr)
k−3, {k, 3, m + 3}];

initial1 = (U /. z → zr) == ur;

initial2 = (dU /. z → zr) == δr;

initial3 = (ddU /. z → zr) == γr;

Nequations = Table[(dddU /. z → zr+p[[j]]) == fr+p[[j]], {j, 1, m + 1}];
Nallequations = Join[{initial1}, {initial2}, {initial3}, Nequations]//Simpli f y.

Substituting ar,k into Equations (12)–(14) and evaluating the result at collocation
points (10) and (11) yield

ur+pi = ur + h pi δr +
1
2

h2 p2
i γr + h3

m

∑
j=0

αi,j fr+pj , (20)

δr+pi = δr + h pi γr + h2
m

∑
j=0

µi,j fr+pj , (21)

γr+pi = γr + h
m

∑
j=0

κi,j fr+pj , (22)

where αi,j, µi,l , and κi,l are known constants. By substituting Equation (8) into the BHM
scheme system of Equations (20)–(22), we obtain a system of equations in matrix form

D11us+1
r+p + D12δs+1

r+p + D13γs+1
r+p = R1, (23)

D21us+1
r+p + D22δs+1

r+p + D23γs+1
r+p = R2, (24)

D31us+1
r+p + D32δs+1

r+p + D33γs+1
r+p = R3, (25)

where

D11 = Im − h3AL0,r+p, D12 = −h3AL1,r+p, D13 = −h3AL2,r+p,

D21 = −h2BL0,r+p, D22 = Im − h2BL1,r+p, D23 = −h2BL2,r+p,

D31 = −hCL0,r+p, D32 = −hCL1,r+p, D33 = Im − hCL2,r+p,

R1 = ur + h Pδr +
1
2

h2 P2 γr + h3A0Fr + h3ANr,

R2 = δr + h P γr + h2B0Fr + h2BNr,

R3 = γr + hC0Fr + hCNr.
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In Equations (23)–(25), Im is an identity matrix of size (m × m), and all other matrices
of size (m × m) are defined as follows

A =


α1,1 α1,2 · · · α1,m
α2,1 α2,2 · · · α2,m

...
...

. . .
...

αm,1 αm,2 · · · αm,m

, B =


µ1,1 µ1,2 · · · µ1,m
µ2,1 µ2,2 · · · µ2,m

...
...

. . .
...

µm,1 µm,2 · · · µm,m



C =


κ1,1 κ1,2 · · · κ1,m
κ2,1 κ2,2 · · · κ2,m

...
...

. . .
...

κm,1 κm,2 · · · κm,m

, A0 =


α1,0 0 · · · 0

0 α2,0 · · · 0
...

...
. . .

...
0 0 · · · αm,0

,

B0 =


µ1,0 0 · · · 0

0 µ2,0 · · · 0
...

...
. . .

...
0 0 · · · µm,0

 C0 =


κ1,0 0 · · · 0
0 κ2,0 · · · 0
...

...
. . .

...
0 0 · · · κm,0

,

L2,r+p =

L2(zs
r+p1

, us
r+p1

, δs
r+p1

, γs
r+p1

) · · · 0
...

. . .
...

0 · · · L2(zs
r+pm

, us
r+pm

, δs
r+pm

, γs
r+pm

)

,

L1,r+p =


L1(zs

r+p1
, us

r+p1
, δs

r+p1
) 0 · · · 0

0 L1(zs
r+p2

, us
r+p2

, δs
r+p2

) · · · 0
...

...
. . .

...
0 0 · · · L1(zs

r+pm
, us

r+pm
, δs

r+pm
)

,

L0,r+p =


L0(zs

r+p1
, us

r+p1
) 0 · · · 0

0 L0(
szr+p2 , us

r+p2
) · · · 0

...
...

. . .
...

0 0 · · · L0(zs
r+pm

, us
r+pm

)

,

P =


p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...
0 0 · · · pm


whereas vectors of size (m × 1) are defined as follows

us+1
r+p =


us+1

r+p1

us+1
r+p2
...

us+1
r+pm

, δs+1
r+p =


δs+1

r+p1

δs+1
r+p2

...
δs+1

r+pm

, γs+1
r+p =


γs+1

r+p1

γs+1
r+p2
...

γs+1
r+pm

, ur =


us

r
us

r
...

us
r

, δr =


δs

r
δs

r
...

δs
r

,
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γr =


γs

r
γs

r
...

γs
r

, Fr =


L2(zs

r, us
r, δs

r , γs
r)γ

s
r +L1(zs

r, us
r, δs

r)δ
s
r +L0(zs

r, us
r)us

r +N (zs
r)

L2(zs
r, us

r, δs
r , γs

r)γ
s
r +L1(zs

r, us
r, δs

r)δ
s
r +L0(zs

r, us
r)us

r +N (zs
r)

...
L2(zs

r, us
r, δs

r , γs
r)γ

s
r +L1(zs

r, us
r, δs

r)δ
s
r +L0(zs

r, us
r)us

r +N (zs
r)

,

Nr =


N (zs

r)
N (zs

r)
...

N (zs
r)

,

We may rewrite System (25) in compact form as followsD11 D12 D13
D21 D22 D23
D31 D32 D33


us+1

r+p
δs+1

r+p
γs+1

r+p

 =

R1
R2
R3

. (26)

System (26) may now be written in the form

DU = R, (27)

where the matrix D is of size (3m × 3m). The approximate solutions are found by solving
Equation (27) as

U = inv(D)R. (28)

where inv is the inverse of the matrix.

3. Analysis of the Developed SIM-BHM

This section provides the fundamental properties of the proposed SIM-BHM.

3.1. Order and Error Constant

Minimizing the truncation error is a fundamental goal in numerical analysis utilized
as a measure to improve the accuracy of the method.

Proposition 1. In the integration block [zr, zr+1], for the block hybrid method defined as

ur+pi = ur + h pi δr +
1
2

h2 p2
i γr + h3

m

∑
j=0

αi,j fr+pj , (29)

the local truncation error is given by

Li[u(zr); h] =
hm+4

(m + 4)!

[
pm+4

i − (m + 4)(m + 3)(m + 2)
m

∑
j=1

αi j pm+1
i

]
u(m+4)(zr) + O(hm+5). (30)

Proof. Given that u is a sufficiently differentiable function, the local truncation error can
be analyzed using the linear operator L defined as

Li[u(zr); h] = Ci,0u(zr) + Ci,1hu′(zr) + Ci,2h2u′′(zr) + Ci,3h3u′′′(zr) + · · ·+ Ci,qhqu(q)(zr), (31)

where Ci,0, Ci,1, · · · , Ci,q are constant. The method is said to be order q if

Ĉ0 = Ĉ1 = · · · = Ĉq+2 = 0, and Ĉq+3 ̸= 0, (32)
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where Ĉq = [C1,q, C2,q, · · · , Cm,q]T . The vector Ĉq+3 = [C1,q+3, C2,q+3, · · · , Cm,q+3]
T is the

error constant of the method. Using Equation (29), the truncation error of the BHM for
third-order can be written in terms of the linear operator as

Li[u(zr); h] = u(zr + hpi)− u(zr)− hpiu′(zr)−
1
2

h2 p2
i u′′(zr)− h3

m

∑
j=0

αi ju′′′(zr + pj h), (33)

Expanding the terms u(zr + hpi) and u′′′(zr + hpi) using Taylor series about zr and
then substituting them into Equation (33), we obtain

Li[u(zr); h] =
K

∑
k=1

hk+2 pk+2
i

(k + 2)!
u(k+2)(zr)−

K

∑
k=1

khk+2

k!

m

∑
j=0

αi j pk−1
j u(k+2)(zr) + O(hK+1), (34)

Expanding Equation (34), we obtain

Li[u(zr); h] =
m+1

∑
k=1

hk+2 pk+2
i

(k + 2)!
u(k+2)(zr)−

m+1

∑
k=1

khk+2

k!

m

∑
j=0

αi j pk−1
j u(k+2)(zr)

+
K

∑
k=m+2

hk+2 pk+2
i

(k + 2)!
u(k+2)(zr)−

K

∑
k=m+2

khk+2

k!

m

∑
j=0

αi j pk−1
j u(k+2)(zr) + O(hK+1), (35)

where m is a positive integer. This may be written as

Li[u(zr); h] =
m+1

∑
k=3

hk

k!

[
pk

i − k(k − 1)(k − 2)
m

∑
j=0

αi j pk−3
j

]
u(k)(zr)

+
K

∑
k=m+4

hk

k!

[
pk

i − k(k − 1)(k − 2)
m

∑
j=0

αi j pk−3
j

]
u(k)(zr) + O(hK+1), (36)

Following [4,26], we note that

m

∑
j=0

αi j pk−3
j =

pk
i

k(k − 1)(k − 2)
, for k = 4, . . . , m + 1. (37)

Substituting Equation (37) into Equation (36), we obtain

Li[u(zr); h] =
hm+4

(m + 4)!

[
pm+4

i − (m + 4)(m + 3)(m + 2)
m

∑
j=1

αi j pm+1
i

]
u(m+4)(zr) + O(hm+5). (38)

Using Equation (38), the error constant vector is

Ĉm+4 = [C1,m+4, C2,m+4, · · · , Cm,m+4]
T , (39)

where

Ci,m+4 =
pm+4

i
(m + 4)!

− 1
(m + 1)!

m

∑
j=1

αi j pm+1
i . (40)

Table 1 shows the truncation error and order for m = 2, 3, 4, 5, 6. In the table, we note
that increasing the number of intra-step points improves the order of the method.
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Table 1. Truncation errors for the SIM-BHM.

m pi Truncation Error q

2 1
2 , 1 u(6)zrh6

9216 , u(6)zrh6

1440 3
3 1

3 , 2
3 , 1 − 47u(7)zrh7

22044960 ,− 19u(7)zrh7

1377810 ,− u(7)zrh7

30240 4
4 1

4 , 1
2 , 3

4 , 1 139u(8)zrh8

2642411520 , u(8)zrh8

2949120 , 243u(8)zrh8

293601280 , u(8)zrh8

645120 5
5 1

5 , 2
5 , 3

5 , 4
5 , 1 − 9809u(9)zrh9

7087500000000 ,− 491u(9)zrh9

55371093750 ,− 1917u(9)zrh9

87500000000 ,− 1136u(9)zrh9

27685546875 ,− 149u(9)zrh9

2268000000 6
6 1

6 , 1
3 , 1

2 , 2
3 , 5

6 , 1 4001u(10)zrh10

109709829734400 , 199u(10)zrh10

857108044800 , 29u(10)zrh10

267846264400 , 29u(10)zrh10

26784626400 , 7625u(10)zrh10

4388393189376 , u(10)zrh10

391910400 7

3.2. Zero Stability

The zero stability of the SIM-BHM pertains to the performance of Equation (20) as the
step size h approaches zero [27].

Definition 1. Zero stability is confirmed if the roots of the characteristic polynomial ρ(λ) are such
that |λj| ≤ 1 and all roots with |λj| = 1 have a multiplicity that does not exceed 2.

Using Equations (23)–(25), as h → 0, the matrix system reduces to

Imur+p − A1ur−1+p =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




ur+p1

ur+p2
...

ur+pm

−


0 0 · · · 1
0 0 · · · 1
...

...
. . .

...
0 0 · · · 1




ur−1+p1

ur−1+p2
...

ur−1+pm

,

The characteristic polynomial ρ(λ) is given by

ρ(λ) = det(λIm − A1) = λm(λ − 1).

In this case, the block hybrid method derived from m equally spaced intra-step points
is zero-stable and consistent for any selection of intra-step points.

3.3. Absolute Stability

Definition 2. A region is said to have absolute stability or be A-stable if it contains the entire left
half-plane.

A region of absolute stability for the method can be defined as

ℜ(y) = {y ∈ C : H(y) < 1}. (41)

Applying the test equation [28]

u′′′ = λ̂3u, λ < 0,

to the new method gives
ur+pi = H(y)ur, y = λ̂3h3, (42)

where the H(y) is given by

H(y) =
Ã0 + y p0 + y2 p2

0 + y3β0

Ã1 − y3 α1
. (43)

The stability function ℜ(y) can be determined by finding the dominant eigenvalues
of the matrix H(y). The region of absolute stability for this method is shown in Figure 2.
The stability function ℜ(y) is to be bounded if ℜ(y) ≤ 1. The bounded region is illustrated
in Figure 3. The BHM is absolute-stable as the stability region contains the entire left half
complex plane for m = 2, 3, 4, 5.
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Figure 2. Region of absolute stability for m = 2, 3, 4, 5.
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Figure 3. Region of absolute stability for m = 2, 3, 4, 5.

4. Implementation and Computational Procedure of the Proposed SIM-BHM

In this section, we present solutions to third-order IVPs (1)–(2) using the novel SIM-
BHM iterative method. In order to evaluate the convergence of the method, we have
evaluated the absolute error (AE) and absolute error estimate (AEE) between two consecu-
tive iterations. Suppose U(z), δ(z) and γ(z) are the approximate solutions. The absolute
error is defined as

AEu = |ur+pi − Ur+pi |, AEu′ = |u′
r+pi

− δr+pi |, AEu′′ = |u′′
r+pi

− γr+pi |. (44)

We compute the absolute error estimate between two consecutive iterations using the
following terms

AEEu = |Us+1
r+pi

− Us
r+pi

|, AEEδ = |δs+1
r+pi

− δs
r+pi

|, AEEγ = |γs+1
r+pi

− γs
r+pi

|. (45)

where s represents the solution at the corresponding iteration. We enforce the following
conditional stopping procedure in the SIM-BHM iterative method:

• If AEE < Tol, the current iteration solutions are deemed satisfactory, and the SIM-
BHM proceeds to the next block.

• If AEE > Tol, the iteration count is incremented, and the SIM-BHM continues within
the same block.

Here, Tol represents the user-defined tolerance. Within each block, the method iterates
until the error AEE falls below Tol. Once the AEE converges to within an acceptable criteria,
the procedure advances to the next block or concludes the computation. By applying
this conditional structure, we ensure that the accuracy of our solutions is systematically
improved within each block, thereby enhancing control and precision in our numerical
computations.

Algorithm

To illustrate how to implement this SIM-BHM, we demonstrate an algorithm with the
steps provided below:

1. Define function

• Input: Initial value problem function f (z, u, u′, u′′), interval [a, b], number of
blocks N, tolerance Tol, number of intra-step points m.

• Output: Approximate solution for u(z).

2. Linearization scheme

• Linearize f by using Equation (8).
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3. Discretization

• Divide interval [a, b] into N blocks and determine the step size h.

4. Collocation points

• Generate a set of m + 1 fractions in Equation (10).
• Calculate collocation points within each block using Equation (11).

5. Approximate solutions

• Approximate the solutions within each block using a polynomial of degree m + 3
in Equations (12)–(14), which satisfies Equations (1) and (2).

6. Collocation equations

• Set up collocation equations and the initial conditions within each block based
on Equations (15)–(18).

• Solve the system obtained from collocation Equations (15)–(18) to obtain coeffi-
cients ar,k.

7. Initialize iteration

• Initialize iteration s = 1.

8. Solve equations

• Solve the system of equations obtained from collocation Equations (20)–(22) to
obtain approximation solutions.

9. Iterate

• Repeat Steps 7–10 until convergence or maximum iterations reached:

(a) Use Equation (28) to compute approximation solutions us+1
r+pj

, δs+1
r+pj

, and

γs+1
r+pj

at collocation points.

(b) Compute absolute error estimate (AEE) between consecutive iterations
using Equation (45).

(c) If AEEu, AEEδ, and AEEγ ≤ Tol, accept solutions and move to next block
(Step 10).

(d) If AEEu, AEEδ, and AEEγ > Tol, reject solutions and increase iteration s
by 1.

10. Output

• Output the approximate solutions ur+pj , δr+pj , and γr+pj at the block r.

5. Numerical Experimentation

In the next section, we test the method by implementing the SIM-BHM with some
specific third-order IVPs from the literature.

Example 1. Consider the linear third-order IVP [13,17–19]

u′′′ − 3 sin z = 0, z ∈ [0, b],

u′′(0) = −2, u′(0) = 0, u(0) = 1,

This IVP has the exact solution: u(z) = 3 cos z + 1
2 z2 − 2.

Here, we selected m = 6, and to implement the SIM-BHM6 scheme, we defined

f = 3 sin z, L2 = 0, L1 = 0, L0 = 0, N = 3 sin z.

In Table 2, we compare the maximum absolute errors of the SIM-BHM6 method with
different variants of the hybrid block method [13,17–19]. Adesanya et al. [17] used the block
method with six collocation points, Areo et al. [18] used the one-twelfth multi-step block
method, Skwame et al. [19] used the equally spaced block method with five collocation
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points, and Osa et al. [13] used the multi-step block method with fifth–fourth collocation
points. It is evident that the SIM-BHM6 consistently outperforms the existing block methods
in terms of reducing maximum absolute errors. Figure 4 showcases the number of iterations
required in each block. The result provides strong evidence of the impressive convergence
properties of SIM-BHM6, achieving good accuracy in just two iterations when Tol = 10−18

across all blocks, as shown in Figure 4a,b. It is particularly noteworthy that the method
attains a high level of accuracy while maintaining computational efficiency.

Table 2. Maximum absolute error comparison using SIM-BHM6.

b h Adesanya et al. [17] Areo and Omojola [18] Skwame et al. [19] Osa and Olaoluwa [13] SIM-BHM6

Max AE 1 10−1 2.2736 × 10−10 5.8703 × 10−15 3.5652 × 10−14 1.3678 × 10−13 4.4409 × 10−16

CPU - - - - 0.024886

Max AE 5 - - - - - 1.0658 × 10−14

CPU - - - - 0.029308

Max AE 1 10−2 - - - - 7.7716 × 10−16

CPU - - - - 0.035961

Max AE 5 10−2 - - - - 1.2434 × 10−14

CPU - - - - 0.096864
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Figure 4. Iterations per block using the SIM-BHM6.

Example 2. Consider the linear third-order IVP [15,29,30]

u′′′ − 2u′′ − 3u′ + 10u + 34e−2z + 16e−2z + 10z2 − 6z − 34 = 0, z ∈ [0, b],

u′′(0) = 0, u′(0) = 0, u(0) = 0,

The exact solution: u(z) = z2e−2z − z2 + 3.

In this example, we used SIM-BHM6 with

f = 2u′′ + 3u′ − 10u − 34e−2z − 16 exp(−2z)− 10z2 + 6z + 34,

L2 = 2, L1 = 3, L0 = 10, N = −34e−2z − 16e−2z − 10z2 + 6z + 34.

Table 3 gives a comparison of the maximum absolute errors using the SIM-BHM6
method with different variants of the block method [15,29,30]. As shown in Table 3, Ru-
fai and Ramos [15] used a variable step-size fourth-derivative block method, Awoyemi1
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et al. [29] used a linear multi-step block method with five collocation points, and Allog-
many and Ismail [30] used a fourth and fifth derivative block method with three implicit
collocation points. We note that SIM-BHM6 outperformed the other block methods in
terms of reducing maximum absolute errors. Figure 5 shows that the method achieves
good accuracy in two iterations for Tol = 10−10 across all blocks.

Table 3. Maximum absolute error comparison for SIM-BHM6 when Tol = 10−10.

b h Rufai and Ramos [15] Awoyemi1 et al. [29] Allogmany and Ismail [30] SIM-BHM6

Max AE 1 10−1 2.08069 × 10−11 3.73600 × 10−5 2.84944 × 10−9 9.78773 × 10−13

CPU - - - 0.025860

Max AE 4 10−1 4.50239 × 10−9 - - 3.5040 × 10−10

CPU - - - 0.031220

Max AE 4 10−2 - - - 5.2776 × 10−12

CPU - - - 0.092856
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Figure 5. Iterations per block using SIM-BHM6.

Example 3. Consider the nonlinear third-order IVP [31]

u′′′ − zu′′ + z2u2 − z sin z + cos z − z2 sin2 z = 0, z ∈ [0, b],

u′′(0) = 0, u′(0) = 1, u(0) = 0,

The exact solution of Example 3 is u(z) = sin z.

In this example, we selected m = 4, m = 5, and m = 6. We define

f = zu′′ − z2u2 + z sin z − cos z + z2 sin2 z,

L2 = z, L1 = 0, L0 = −zu, N = z sin z − cos z + z2 sin2 z.

In Table 4, we present a comparative analysis of the maximum absolute errors achieved
using the SIM-BHM4, SIM-BHM5, and SIM-BHM6 methods with the work in [31]. Adeyeye
and Omar [31] employed a block method with equally spaced collocation points. Notably,
our findings show enhancement in accuracy when adopting SIM-BHM, particularly as we
increase the number of intra-step points and reduce the step sizes. Figure 6a–c provide
a visual representation of the number of iterations required across various blocks. In the
case of shorter intervals, as in Figure 6a with 10 blocks, we observe that the maximum
number of iterations required is five. As shown in Figure 6b, when 100 blocks are utilized,
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the maximum number of iterations reduces to four. These observations underscore the role
of smaller step sizes in reducing the maximum iteration count within the blocks. For larger
intervals, as illustrated in Figure 6a with 300 blocks, the maximum number of iterations
remains at five. This suggests that, even in scenarios with a larger solution domain,
the SIM-BHM maintains its efficient convergence characteristics. Figure 6d provides further
evidence of SIM-BHM’s effectiveness, indicating that the method returns a maximum
absolute error less than O(10−13). This level of precision underscores the robustness and
accuracy of the SIM-BHM approach. SIM-BHM6 generally outperforms both SIM-BHM4
and SIM-BHM5.

Table 4. Maximum absolute error comparison for SIM-BHM4, SIM-BHM5, and SIM-BHM6.

b h Tol Adeyeye and Omar [31] SIM-BHM4 SIM-BHM5 SIM-BHM6

Max AE 1 10−1 10−18 4.644063 × 10−13 4.640732 × 10−13 5.173639 × 10−14 5.551115 × 10−16

CPU - 0.013125 0.012183 0.013210

Max AE 1 10−2 10−18 - 1.4433 × 10−15 1.7764 × 10−15 9.9920 × 10−16

CPU - 0.028999 0.031710 0.031207

Max AE 3 10−2 10−18 - 4.1911× 10−14 2.1955 × 10−14 1.8152 × 10−14

CPU - 0.083401 0.091006 0.094574
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(d) Absolute error for b = 3.

Figure 6. Iterations per block and absolute error for SIM-BHM when m = 4, m = 5, and m = 6.
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Example 4. Consider a nonlinear system of third-order IVPs [15]

u′′′ =
1
2

wv′e4z, u′′(0) = 1, u′(0) = −1, u(0) = 1, z ∈ [0, b],

v′′′ =
8
3

uw′e2z, v′′(0) = 1, v′(0) = −2, v(0) = 4,

w′′′ = 27vu′, w′′(0) = 1, w′(0) = −3, w(0) = 9,

with the exact solutions given as u(z) = exp(−z), v(z) = exp(−2z), and w(z) = exp(−3z).
In the case of a system of equations, the SIM-BHM6 parameters are given by

f1 =
1
2

wv′e4z, L21 = 0, L11 = 0, L01 = 0, N1 =
1
2

wv′e4z,

f2 =
8
3

uw′e4z, L22 = 0, L12 = 0, L02 = 0, N2 =
8
3

uw′e4z,

f3 = 27wv′, L23 = 0, L13 = 0, L03 = 0, N3 = 27wv′.

Table 5 shows a comparison of the maximum absolute errors achieved using SIM-
BHM6 with the work of Rufai and Ramos [15]. Table 5 illustrates the superior accuracy and
computational efficiency of SIM-BHM6 compared to the methodology proposed in [15].
SIM-BHM6 consistently yields more precise approximate solutions across a range of scenar-
ios while maintaining efficient computational performance. Figure 7 provides a representa-
tion of the maximum iterations within the computational blocks. Notably, the reduction in
user-defined tolerance led to an increase in the number of iterations between the blocks.
We observed a maximum of six iterations. Figure 8 gives a comparison of the exact vs.
numerical of the displacements in Figure 8a and phase portrait in Figure 8b.
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Figure 7. Iterations per block using SIM-BHM6 when Tol = 10−8 and Tol = 10−12.

Table 5. Maximum absolute error comparison using the SIM-BHM6.

Method b h Tol Max AEu Max AEv Max AEw CPU

Rufai and Ramos [15] 3 10−1 10−8 4.36535 × 10−8 3.08415 × 10−8 2.43322 × 10−8 0.172608
SIM-BHM6 4.4973 × 10−11 4.6361 × 10−11 1.6977 × 10−11 0.094197

Rufai and Ramos [15] 6 10−1 10−8 8.81911 × 10−4 2.95244 × 10−5 2.71811 × 10−9 0.172608
SIM-BHM6 2.5891 × 10−6 1.1437 × 10−7 7.1468 × 10−10 0.122777
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Table 5. Cont.

Method b h Tol Max AEu Max AEv Max AEw CPU

Rufai and Ramos [15] 3 10−1 10−12 2.38150 × 10−11 1.50130 × 10−11 2.66831 × 10−12 0.395336
SIM-BHM6 2.1786 × 10−11 3.0987 × 10−11 1.2338 × 10−11 0.090950

Rufai and Ramos [15] 6 10−1 10−12 4.53908 × 10−7 2.87265 × 10−8 4.84118 × 10−10 0.56434
SIM-BHM6 1.8995 × 10−6 8.5346 × 10−8 5.7199 × 10−10 0.126770
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Figure 8. Numerical solution vs. exact solution using SIM-BHM6 when Tol = 10−12, h = 10−1,
and b = 6.

Example 5. Consider a nonlinear IVP [13] given as

u′′′ − (2zu′′ + u′)u′ = 0, z ∈ [0, b],

u′′(0) = 1, u′(0) =
1
2

, u(0) = 0,

with the exact solution:
u(z) =

1
2
+ log(

2 + z
2 − z

).

In this example, we use SIM-BHM4 with

f = (2zu′′ + u′)u′, L2 = 2zu′, L1 = u′, L0 = 0, N (z) = 0.

Table 6 provides a comprehensive comparison between the maximum absolute errors
achieved using the SIM-BHM4 method and the results obtained by Osa and Olaoluwa [13].
Figure 9 illustrates the number of iterations within the computational blocks for different
values of b for a tolerance Tol = 10−10. The maximum number of iterations required was
s = 4 for short and large intervals. The corresponding absolute error profiles for u(z), u′(z)
and u′′(z) are plotted in Figure 10a. Figure 10b shows the exact vs. numerical solution for
u(z), u′(z), and u′′(z).
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Table 6. Maximum absolute errors comparison for SIM-BHM4 when Tol = 10−10.

b h Osa and Olaoluwa [13] SIM-BHM4 CPUMax|u(z)− U(z)| Max|u(z)− U(z)| Max|u′(z)− δ(z)| Max|u′′(z)− γ(z)|
1 10−2 2.6241 × 10−12 1.7764 × 10−15 3.7748 × 10−15 8.5487 × 10−15 0.042517

1.5 10−2 - 1.5765 × 10−14 1.7342 × 10−13 3.3595 × 10−13 0.051358
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Figure 9. Iterations per block using the SIM-BHM4 when Tol = 10−10.
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Figure 10. Absolute error and numerical solution vs. exact solution using the SIM-BHM4 when
Tol = 10−10, h = 10−1, and b = 1.5.

6. On the Application of the SIM-BHM to Solve Nonlinear Jerk Equations

The concept of jerk is particularly relevant in the study of motion and control systems,
especially in engineering and physics [32,33]. In physics, the jerk equation models parti-
cle motion under varying forces, providing valuable insights into dynamic systems [34].
The equation is used to model systems where the rate of change in acceleration is important,
such as in vibration analysis, control systems, and motion planning. Additionally, jerk
analysis finds application in signal processing and control theory, facilitating the filtering of
noisy signals and the detection of anomalies, contributing to technological advancements.
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Higher derivatives of motion, such as snap, are also important in motion control and can
be experienced in everyday life, such as on trampolines and roller coasters [35].

We consider a class of nonlinear jerk equation IVP containing a third derivative of
position with respect to time that describes the rate of change in acceleration, and it is
given by

u′′′ + β1u′ + β2(u′)3 + β3u2u′ + β4uu′u′′ + β5u′(u′′)2 = 0, z ∈ [0, b], (46)

u′′(0) = 0, u′(0) = β0, u(0) = 0, (47)

where the parameters β0, β1, β2, β3, β4, and β5 are constant. Since there is no analytic
solution to Equation (46), we compared the results of the solution profiles to approximated
solutions that have been previously reported in the literature [36–39] .

• Case 1: β1 = β4 = β5 = 0 and β1 = β2 = 1. Then, the nonlinear jerk Equation (46)
takes the form

u′′′ + u2u′ + (u′)3 = 0, z ∈ [0, b], (48)

u′′(0) = 0, u′(0) = β0, u(0) = 0, (49)

Gottlieb [38] employed the harmonic balance method (HBM) approach approximation
solution to solve the nonlinear Equation (48). He found that HBM yields a good
approximated solution of the period and displacement amplitude of oscillations for a
range of values of initial velocity, given as

u(z) =
β0

Ω
sin Ω z, Ω =

1
2
√

2

√
3β2

0 +
√

9β4
0 + 16β2

0

where Ω is the angular frequency. To solve Equation (48) numerically, we use SIM-
BHM7 with

f = −u2u′ − (u′)3, L2 = 0, L1 = −u2 − (u′)2, L0 = 0, N (z) = 0.

Case 1 is solved using SIM-BHM7 with h = 0.01 and Tol = 10−14 in the domain
of integration [0, 20]. The displacement and phase trajectory are given in Figure 11a
and 11b, respectively. A comparison of the approximated analytical vs. numerical
solution is depicted by plotting the two results on the same graph. The corresponding
iterations per block and the absolute error profiles for the displacement are plotted in
Figure 12a and 12b, respectively, for different values of the initial velocity β0.
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(a) Displacement u(z). (b) Phase trajectory.

Figure 11. Displacement and phase trajectory for using SIM-BHM7 when Tol = 10−14, b = 20,
h = 0.01, and N = 2000.
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Figure 12. Iterations per block and absolute error for using the SIM-BHM7 when β0 = 5, Tol = 10−14,
b = 20, h = 0.01, and N = 2000.

• Case 2: β2 = β3 = β5 = 0, β1 = 1 and β4 = −1. For the Case 2 values of the
parameters, the nonlinear jerk Equation (46) is given as

u′′′ + u′ − uu′u′′ = 0, z ∈ [0, b], (50)

u′′(0) = 0, u′(0) = β0, u(0) = 0. (51)

Mirzabeigy and Yildirim [39] employed the modified differential transform method
(MDTM) to obtain approximate periodic solutions to Equation (50), given as

u(z) =
β0

Ω
sin Ω z +

β0

96Ω3

[
(48Ω − 9β2

0 − 48) sin Ω z − β2
0 sin 3Ω z

]
,

Ω =
1
2

√
β2

0 + 4.

In Case 2, we employ SIM-BHM3 with

f = −u′ + uu′u′′, L2 = uu′, L1 = −1, L0 = 0, N (z) = 0.

To determine the accuracy of SIM-BHM3, the numerical results are compared with
Kashkari and Alqarni [40]. In their work, they implemented a two-step hybrid block
method (TSHBM) with a polynomial of degree 6. Table 7 gives a comparison of the
SIM-BHM for β0 = 0.2 and β0 = 0.3. It can be observed that SIM-BHM3 gives similar
results to MDTM and TSHBM within a fast CPU time.

Table 7. Comparison of implementation the SIM-BHM3 when h = 0.125, b = 2, and Tol = 10−18.

z
β0 = 0.2 β0 = 0.3

MDTM [39] TSHBM [40] SIM-BHM3 MDTM [39] TSHBM [40] SIM-BHM3

0.000 0 0 0 0 0 0
0.125 0.024934 0.024934 0.024934950723562 0.037402 0.037402 0.037402433678462
0.250 0.049480 0.049480 0.049480895840067 0.074220 0.074220 0.074221538790320
0.375 0.073253 0.073253 0.073255260278968 0.109878 0.109879 0.109884305379430
0.500 0.095881 0.095881 0.095888161918553 0.143814 0.143814 0.143837971511998
0.625 0.117008 0.117008 0.117028372165012 0.17549 0.17549 0.175559287806927
0.750 0.1363 0.136300 0.136348852382876 0.204397 0.204399 0.204562874433873
0.875 0.153452 0.153453 0.153551767255572 0.23007 0.230073 0.230408498532534
1.000 0.168191 0.168191 0.168372904835116 0.252088 0.252093 0.252707185491022
1.150 0.18028 0.180281 0.180585461680617 0.270088 0.270095 0.271126160102852
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Table 7. Cont.

z
β0 = 0.2 β0 = 0.3

MDTM [39] TSHBM [40] SIM-BHM3 MDTM [39] TSHBM [40] SIM-BHM3

1.250 0.189525 0.189526 0.190003176962089 0.283769 0.283778 0.285392683210093
1.375 0.195777 0.195778 0.196482819208038 0.292902 0.292913 0.295296898220800
1.500 0.198935 0.198937 0.199926041919773 0.297332 0.297344 0.300693825250087
1.625 0.198948 0.198949 0.200280629084105 0.296984 0.296996 0.301504637583959
1.750 0.195815 0.195816 0.197541149338335 0.291864 0.291876 0.297717328253788
1.875 0.189587 0.189589 0.191749029829054 0.282059 0.282007 0.289386829338821
2.000 0.180365 0.180365 0.182992050066185 0.267734 0.267745 0.276634591040122

CPU (s) - - 0.020688 - - 0.019756

Figure 13a depicts the number of iterations required per block for different values of
the initial velocity β0 = 0.2, 0.4, 0.6. It can be observed that SIM-BHM3 converges within
five iterations. Figure 13b illustrates the phase portrait for different values of the initial
velocity.
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(a) Iterations per block. (b) Phase trajectory.

Figure 13. Displacement and phase trajectory for using the SIM-BHM3 when Tol = 10−18, b = 20,
h = 0.01, and N = 2000.

• Case 3: β2 = β3 = β4 = 0, β1 = 1, and β5 = 1.

u′′′ + u′ + u′(u′′)2 = 0, z ∈ [0, b], (52)

u′′(0) = 0, u′(0) = β0, u(0) = 0. (53)

The periodic solutions to Equation (52) are given as [39]

u(z) =
β0

Ω
sin Ω z +

β0

96Ω3

[
(48Ω − 9β2

0 − 48) sin Ω z − β2
0 sin 3Ω z

+ (12Ω3β2
0 + 48Ω − 48Ω3)z cos Ω z

]
,

Ω = 2

√
1

4 − β2
0

.

Here, we set

f = −u′ − u′(u′′)2, L2 = −u′u′′, L1 = −1, L0 = 0, N (z) = 0.
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The displacement, velocity, acceleration, and phase portrait trajectories are given
in Figure 14. A comparison of the exact (MDTM) vs. numerical (SIM-BHM3) solu-
tions is depicted by plotting the two results on the same graph. The corresponding
phase portrait and iterations per block are plotted in Figure 15a and 15b, respectively,
for different values of β0.
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(a) Displacement u(z), velocity u(1)(z), and acceleration u(2)(z). (b) Phase trajectory.

Figure 14. Displacement, velocity, acceleration, and phase portrait for using the SIM-BHM3 when
β0 = 0.2, Tol = 10−18, b = 20, h = 0.01, and N = 200.
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(a) Iterations per block when b = 2 and h = 0.125. (b) Phase portrait when b = 20 and h = 0.01.

Figure 15. Displacement and phase trajectory for using SIM-BHM3 when Tol = 10−18.

• Case 4: β1 = β2 = β3 = β4 = β5 = 1. For the Case 4 values of the parameters, the
nonlinear jerk Equation (46) is given as

u′′′ + u′ + (u′)3 + u2u′ + uu′u′′ + u′(u′′)2 = 0, z ∈ [0, b], (54)

u′′(0) = 0, u′(0) = β0, u(0) = 0. (55)

With linearization, we obtain

f = −u′ − (u′)3 − u2u′ − uu′u′′ − u′(u′′)2, L2 = −uu′ − u′u′′,

L1 = −1 − (u′)2 − u2, L0 = 0, N (z) = 0.

Equation (54) is solved using SIM-BHM7 with h = 0.01 in the domain of integration
[0, 40] for different values of the initial velocity β0. The displacement and iterations
per block utilized to solve Equation (54) are plotted in Figure 16 for different values of
the initial velocity.
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(b) Iterations per block.

Figure 16. Displacement and iterations per block for using SIM-BHM7 when Tol = 10−18, b = 40,
and N = 4000.

Figure 17 depicts phase portraits for Case 4 when varying β0.

(a) Phase portrait. (b) Phase portrait.

Figure 17. Phase trajectory for using the SIM-BHM7 when Tol = 10−18, b = 40, and N = 4000.

• Case 5: β1 = β2 = β3 = β4 = β5 = 4. For the Case 5 values of the parameters, the
nonlinear jerk Equation (46) is given as

u′′′ + 4
[
u′ + (u′)3 + u2u′ + uu′u′′ + u′(u′′)2

]
= 0, z ∈ [0, b], (56)

u′′(0) = 0, u′(0) = β0, u(0) = 0. (57)

With linearization, we obtain

f = −4u′ − 4(u′)3 − 4u2u′ − 4uu′u′′ − 4u′(u′′)2, L2 = −4uu′ − 4u′u′′,

L1 = −4 − 4(u′)2 − 4u2, L0 = 0, N (z) = 0.

Equation (56) is solved using SIM-BHM7 with h = 0.01 and b = 40 for different values
of the initial velocity. Figure 18 illustrates the solution u(z) and the iteration required.
Figure 19 shows the phase portrait.
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(b) Iterations per block.

Figure 18. Displacement and iterations per block for using SIM-BHM7 when Tol = 10−18, b = 40,
and N = 4000.

(a) Phase portrait. (b) Phase portrait.

Figure 19. Phase portraits for using SIM-BHM7 when Tol = 10−18, b = 40, and N = 4000.

We considered five cases of nonlinear jerk Equation (46) with different parameter
combinations for Equations (48)–(56). This allowed us to test the SIM-BHM approach
on various forms of the jerk equation. For Cases 1–3, known analytical solutions from
previous works were available to validate our numerical results. The SIM-BHM-produced
displacement profiles, velocities, accelerations, and phase portraits are in agreement with
these established solutions. In Cases 4 and 5, there were no analytical solutions. The SIM-
BHM generated physically realistic oscillatory behaviors as the initial velocity parameter β0
was varied. This indicates that the method can reliably solve these types of jerk equations
numerically. Across all test cases, the SIM-BHM converged rapidly, typically requiring only
2–8 iterations per block. Even for large solution domains and higher β0 values producing
larger oscillations, the method maintained its fast convergence. The displacement profiles,
phase portraits, and plots of the iterations clearly illustrate the accuracy and consistency of
the SIM-BHM approach. Comparisons with previous works validated the high precision of
the numerical solutions obtained. In conclusion, the SIM-BHM proves to be an effective
technique for solving an important class of nonlinear jerk equations. It generates solutions
in close agreement with the known results. The method exhibits robust computational
performance and accuracy across a wide range of problem scenarios.

The numerical experiments consistently showed the SIM-BHM achieving higher accu-
racy when a smaller step size h was used. For example, reducing h from 10−1 to 10−2 led to
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errors 1–2 orders of magnitude smaller across test problems. This implies that the method
exhibits the expected property of increased accuracy for smaller discretization. Larger
solution domains were also handled effectively. Cases 1–3 of the jerk equations covered
intervals up to b = 20 with good precision. Cases 4 and 5 were solved over the wider
range of b = 40 while maintaining accuracy. The SIM-BHM modeled problems requiring
integration over large physical spaces. Additional support comes from Example 5, where
accuracy improved for the longer interval of b = 1.5 compared to b = 1. These examples
provide strong evidence that SIM-BHM’s accuracy increases predictably with smaller h and
can be systematically extended to large b values through domain discretization.

7. Conclusions

We introduced a novel SIM-BHM iterative method for solving third-order IVPs with a
fixed step size. The primary objective of the SIM-BHM is to obtain accurate solutions to
the IVPs. To evaluate the convergence of the method, we evaluated the absolute error and
the absolute error estimate between consecutive iterations. We applied the SIM-BHM to a
variety of IVPs, both linear and nonlinear. We compared its performance with existing block
methods. The results consistently demonstrated the superior performance of the SIM-BHM
in terms of returning the lowest maximum absolute errors, highlighting its accuracy and
efficiency. The SIM-BHM offers a versatile approach by employing a selective intra-step
method and ensuring convergence. The method gives highly accurate solutions with good
computational performance. The main findings with regard to this numerical method are
as follows:

• Smaller intra-step sizes generally lead to smaller truncation errors.
• Increasing the number of collection points improves the accuracy of SIM-BHM.
• For large intervals, the SIM-BHM gave more accurate approximations than some

existing BHMs, for example, those in [13,15,17–19,29–31].
• The SIM-BHM gives robust computational performance using only a few iterations.

The SIM-BHM method was applied to solve nonlinear jerk equations. Jerk equations
are an important class of third-order problems with applications in fields like engineering
and physics. Five cases of jerk equations with varying parameter combinations were tested.
Comparisons to known approximate solutions from previous works showed excellent
agreement for Cases 1–3. The method generated physically realistic oscillatory behaviors
for Cases 4 and 5. Across all jerk equation problems, the SIM-BHM maintained its fast
convergence, typically requiring only a few iterations per block even for large solution
domains and higher oscillation amplitudes. The accuracy of the numerical solutions was
validated through comparisons. This demonstrates the SIM-BHM provides an effective
technique for reliably solving nonlinear jerk equations.

In future work, the following would allow for improving the performance of the SIM-
BHM:

• Implementing adaptivity with variable step size would allow the method to better
capture solutions with varying behaviors over the domain. This could enhance
accuracy.

• Investigating the use of Legendre–Gauss–Lobatto and Gauss–Lobatto collocation
points, which have been shown to improve accuracy.

• Applying optimally spaced intra-step points within each block, as studies have
observed non-uniform point distributions lead to higher precision than uniform
spacing [7].

• Applying the overlapping domain approach, where blocks intersect, as this has been
demonstrated to reduce errors versus standard non-overlapping grids [4,41].

• Extending the SIM-BHM framework to other problem types, such as higher-order
initial value problems, boundary value problems, singular differential equations,
and fractional differential equations, to evaluate performance on broader classes of
equations.
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SIM Simple iteration method
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