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Abstract: The impact of visual impairment, such as blindness, on quality of life is immeasurable.
However, effective ocular drug delivery into the eyes has not yet been established, primarily due
to the impermeability imposed by the blood–retinal barrier (BRB) based on the tight junctions and
efflux transporters at the endothelium or the epithelium in oral or intravenous administration,
as well as the dilution with tear fluid and excretion through the nasolacrimal duct in eye drop
administration. Furthermore, intravitreous injections induce pain and fear in patients. Unmet
medical needs persist in ocular diseases such as age-related macular degeneration and diabetic
retinopathy. Therefore, innovative non-invasive administration methods should be developed. Drug-
releasing soft contact lenses (DR-SCLs) affixed to the eye’s surface can continuously and locally
deliver their loaded drugs to the eyes. The use of DR-SCLs is expected to greatly enhance the
bioavailability and patient adherence to the drug regimen. It is known that several solute carrier
(SLC) transporters are expressed in various parts of the eyes, including the cornea, the ciliary body,
and the bulbar conjunctiva. Carrier-mediated transport through SLC transporters may occur in
addition to passive diffusion. Moreover, nanoparticles can be loaded into DR-SCLs, offering various
intelligent approaches based on modifications to induce receptor-mediated endocytosis/transcytosis
or to control the loaded drug release within this delivery system. In this perspective review, I discuss
the implementation and potential of DR-SCL-mediated ocular drug delivery, particularly focusing on
low-molecular-weight compounds because of their fine distribution in living body, ease of handling,
and ease of manufacturing.

Keywords: drug-releasing soft contact lens; ocular disease; eye disease; drug delivery system;
transmembrane drug delivery; low-molecular-weight eye drug

1. Introduction

The eye is one of the body’s most vital organs, responsible for transmitting visual
information to the brain as a sensory organ via the optic nerve. However, significant
medical needs persist in ocular diseases such as age-related macular degeneration (AMD),
diabetic retinopathy (DR), cataracts, glaucoma, dry eye disease, neurotrophic keratitis, and
neuropathic corneal pain, largely due to barriers such as the blood–retinal barrier (BRB)
at the endothelium composed of retinal capillary endothelial cells (the inner BRB) or the
epithelium composed of retinal pigment epithelial cells (the outer BRB) [1], the ocular blood–
aqueous barrier (BAB) in the iris and the ciliary body [2], and anatomical structures like the
nasolacrimal duct, as indicated by structuralism [3,4]. The BRB and the BAB are basically
based on tight junctions and efflux transporters. Drug membrane impermeability poses a
significant challenge in drug discovery and development. While eye drop administration
is relatively simple compared to local injection and is not hindered by the BRB or the BAB,
only 1–7% of administered drugs actually penetrate into the eyes due to dilution with
tear fluid, excretion through the nasolacrimal duct, and poor membrane permeability due
to transportation via efflux transporters and low contact frequency to influx carriers [5].
Off-target side effects may arise when drugs enter the systemic circulation via the choroid,
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the bulbar conjunctiva, or the nasal mucosa. Furthermore, applying eye ointment, a dosage
form intended for long-term effectiveness, can be somewhat challenging. Oral medication
or intravenous injection is often hindered by the impermeability imposed by the BRB and
can lead to off-target side effects due to incorrect distribution. Therefore, innovative drug
delivery systems should be developed to enhance patient quality of life. Drug-releasing
soft contact lenses (DR-SCLs) offer solutions to these challenges, addressing issues such as
low bioavailability, off-target side effects, and drug adherence [Table 1]. Additionally, the
potential for carrier-mediated eye drug transport across the BRB using cation transporters
is an attractive prospect [6,7]. In this perspective review, I explore the possibilities and
implementations of ocular drug delivery to the eyes using DR-SCLs loaded with potent
drugs, particularly focusing on low-molecular-weight compounds because of their fine
distribution in living body via carrier-mediated transport and passive diffusion, ease of
handling to load into DR-SCLs, ease of manufacturing, and stability at room temperature.

Table 1. The relationship of ocular drugs between administrations/formulations and pharmaceutical
items. # means positive correlation, while × means no positive correlation. △ means slightly positive
correlation.

Eye Drop Eye
Ointment

Local
Injection

Oral
Administra-

tion

Intravenous
Administra-

tion

Drug-
Releasing Soft
Contact Lenses

(DR-SCLs)

Long-term effectiveness × # # × × #

Patient friendliness # △ × # × #

Patient adherence to the drug
regimen × × # × # #

Low-molecular-weight drugs # # # # # #

High-molecular-weight drugs × × # × # #

Nanoparticles # # # # # #

Dilution with tear fluid # # × × × ×
Excretion through the

nasolacrimal duct # # × × × ×

The blood–retinal barrier (BRB) × × × # # ×
The ocular blood–aqueous barrier

(BAB) × × × # # ×

2. Discussion
2.1. Potential Drug Pathways from DR-SCLs Based on Anatomical Eye Features

The eye is a complex organ, both anatomically and functionally [Figure 1]. Never-
theless, devising a drug delivery strategy for it poses significant challenges. The primary
contact surface between a DR-SCL and the eye consists mainly of the cornea and the bulbar
conjunctiva. Therefore, it is crucial to understand the anatomical features of the cornea and
bulbar conjunctiva in order to develop DR-SCLs effectively. Several potential routes for
drugs released from DR-SCLs exist. (a) Drugs traverse the cornea and eventually accumu-
late in the aqueous humor, which is the fluid found between the cornea and the crystalline
lens in the anterior chamber of the eye, and between the iris and the crystalline lens in the
posterior chamber of the eye. Subsequently, drugs within the chamber pass through either
the crystalline lens or the ciliary zonule into the vitreous body, and then reach the retina
[Figure 2].
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Figure 1. The anatomy of the eye. 
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Figure 2. The pathways of drugs released from drug-releasing soft contact lenses (DR-SCLs) to the 
retina involve various parts of the eye, including the cornea, the vitreous body, the sclera, and the 
choroid. The uvea comprises the iris, the ciliary body, and the choroid. Briefly, route (a) follows the 
crystalline lens pathway. Route (b) traverses the non-crystalline lens pathway. Route (c) involves 
the vitreous body pathway, crossing the bulbar conjunctiva, sclera, and choroid. Route (d) follows 
the non-vitreous body pathway through the bulbar conjunctiva and layers of sclera and choroid. 

The cornea is composed of the corneal epithelium, the parenchyma of the cornea, and 
the corneal endothelium. Substances traverse the cornea through passive diffusion or ac-
tive transport mechanisms in the transcellular pathway, as well as passive diffusion in the 
paracellular pathway. Certain amino acids cross the cornea via carrier-mediated transport 
utilizing L-amino acid transporter 1 (LAT1), ATB0,+, and alanine serine cysteine transporter 
1 (ASCT1) [8]. ATB0,+ belongs to the amino acid transporter branch of the SLC6 family 
[Figure 3]. In the corneal epithelium, solute carrier (SLC) transporters such as LAT1, 
ATB0,+, peptide transporter 1 (PEPT1), monocarboxylate transporters (MCTs), and concen-
trative nucleoside transporter 3 (CNT3) are primarily expressed, while efflux transporters 
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Figure 2. The pathways of drugs released from drug-releasing soft contact lenses (DR-SCLs) to the
retina involve various parts of the eye, including the cornea, the vitreous body, the sclera, and the
choroid. The uvea comprises the iris, the ciliary body, and the choroid. Briefly, route (a) follows the
crystalline lens pathway. Route (b) traverses the non-crystalline lens pathway. Route (c) involves the
vitreous body pathway, crossing the bulbar conjunctiva, sclera, and choroid. Route (d) follows the
non-vitreous body pathway through the bulbar conjunctiva and layers of sclera and choroid.

The cornea is composed of the corneal epithelium, the parenchyma of the cornea,
and the corneal endothelium. Substances traverse the cornea through passive diffusion or
active transport mechanisms in the transcellular pathway, as well as passive diffusion in the
paracellular pathway. Certain amino acids cross the cornea via carrier-mediated transport
utilizing L-amino acid transporter 1 (LAT1), ATB0,+, and alanine serine cysteine transporter
1 (ASCT1) [8]. ATB0,+ belongs to the amino acid transporter branch of the SLC6 family
[Figure 3]. In the corneal epithelium, solute carrier (SLC) transporters such as LAT1, ATB0,+,
peptide transporter 1 (PEPT1), monocarboxylate transporters (MCTs), and concentrative
nucleoside transporter 3 (CNT3) are primarily expressed, while efflux transporters such
as multiple drug resistance 1 (MDR1, P-glycoprotein) are also present [9]. MDR1 in the
corneal epithelium captures hydrophobic low-molecular-weight substances that are passing
through the plasma membrane [10], subsequently exporting them into tear fluid [Figure 3].
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Therefore, the passive diffusion of hydrophobic low-molecular-weight substances across
the corneal epithelium is hindered by MDR1. Carrier-mediated transport using SLC
transporters or receptor-mediated endocytosis/transcytosis could serve as a promising
strategy for facilitating the transepithelial transport of substances across the cornea. A
study reported the internalization of Aspergillus flavus spores into corneal epithelial cells via
actin-mediated endocytosis [11]. Moreover, bioadhesive glycosylated nanoformulations ap-
plied topically were observed to traverse corneal epithelial cells and reach the parenchyma
of the cornea via transcytosis in in vivo assays using rats [12]. Nanoparticles encapsulating
indomethacin have shown transcorneal penetration via three energy-dependent endocy-
tosis pathways: clathrin-dependent endocytosis, caveolae-dependent endocytosis, and
micropinocytosis. Among these pathways, caveolae-dependent endocytosis appears to be
the most predominant in the penetration process [13].
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Figure 3. The transcellular pathways of drugs via carrier-mediated transport using solute carrier (SLC)
transporters or efflux by efflux transporters such as multiple drug resistance 1 (MDR1, P-glycoprotein)
in the corneal epithelium, the ciliary body, or the bulbar conjunctiva.

Concerning the crystalline lens, lens epithelial cells and lens fiber cells, originating
from lens epithelial cells, are enclosed within the lens capsule, which contains collagen
IV. The main proteins in the crystalline lens are α-crystallin, β-crystallin, and γ-crystallin,
comprising approximately 1/2 to 1/3 of the crystalline lens by weight. It is understood
that intermediate-sized macromolecules, such as proteins, penetrate the crystalline lens
through the lens capsule. Neutral compounds like dextrans penetrate the lens capsule more
rapidly than negatively charged compounds such as recombinant epidermal growth factor
and single-stranded DNAs [14]. Collagen IV carries a positive charge due to lysine and
arginine [15]. Hydrophobic substances, including neutral compounds, cross the lipid bi-
layer via passive diffusion, whereas hydrophilic substances, including charged compounds,
cannot cross it via passive diffusion. Thus, substances can traverse the crystalline lens
into the vitreous body through the layers of the lens capsule, lens epithelial cells, and lens
fiber cells, probably via passive diffusion due to experimental size dependence leading to a
molecular sieve effect. The route via the cornea and the crystalline lens into the vitreous
body is unlikely to be suitable for high-molecular-weight substances such as nanoparticles
or monoclonal antibodies. Nanoparticles positioned between the DR-SCL and the cornea
might cause discomfort to the patients. However, several cases of DR-SCLs loaded with
nanoparticles have been reported. Nanoparticles can be loaded into DR-SCLs, offering gen-
erally various intelligent approaches based on modifications to induce receptor-mediated
endocytosis/transcytosis or to control the loaded drug release [16,17]. This strategy em-
ploying nanoparticle-loaded DR-SCL is applicable to corneal diseases such as keratitis. If
the encapsulated drugs are released from the nanoparticles before they reach the crystalline
lens, the impermeability issue based on size would not occur in the crystalline lens.
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(b) As a non-crystalline lens pathway, some substances might transition from the
ciliary body or the choroid to the vitreous body and subsequently to the retina [Figure 2].
In fact, the pathway from the anterior chamber of the eye to the ciliary body might be
more prevalent than that from the anterior chamber of the eye to the crystalline lens, as the
crystalline lens is likely not suitable as a route for medicine due to its internal anatomy. The
ciliary body plays a crucial role in producing aqueous humor to nourish the cornea and the
crystalline lens, maintain eye pressure, and adjust the shape of the crystalline lens during
focusing. It houses a variety of drug transporters, including SLC transporters such as
organic anion transporters, organic anion-transporting polypeptides, bile acid transporters
(such as apical sodium-dependent bile salt transporter (ASBT) and sodium taurocholate co-
transporter), organic cation transporters (such as novel organic cation transporter (OCTN)
and multidrug and toxin extrusion transporter (MATE)), and peptide transporters, as
well as efflux transporters like MDR1 [Figure 3]. MDR1 in the capillary endothelium is
associated with the BAB, whereas the tight junctions of the capillary endothelium of the
iris and the ciliary body epithelium form the BAB [18]. The bilayered ciliary epithelium
predominantly transports solutes and, secondarily, water from the underlying stroma to
the aqueous humor [19]. Therefore, transport across the ciliary body from the anterior
chamber of the eye may predominantly occur through routes involving passive diffusion.
Hydrophobic substances in the anterior chamber of the eye would diffuse across the ciliary
body membrane, as opposed to the crystalline lens, which is predominantly filled with
water and exhibits thermodynamically stable behavior. Additionally, the choroid [20] is
a thin layer situated between the sclera and the retina, rich in blood vessels that supply
oxygen and nutrients to the retina. The choroid comprises four distinct layers: the in-
nermost Bruch’s membrane, the choriocapillaris layer, Sattler’s layer, and the outermost
Haller’s layer.

On the other hand, (c) drugs might successively cross the bulbar conjunctiva, the
sclera, and the uvea, particularly the choroid, into the vitreous body [Figure 2]. The
bulbar conjunctiva possesses relatively leaky epithelium, lacking tight junctions, thereby
enabling the entry of not only low-molecular-weight substances but also larger hydrophilic
drugs such as siRNAs and peptides [21]. Several transporters such as PEPT1, amino acid
transporters, and MDR1 are recognized in the bulbar conjunctiva [Figure 3]. In fact, amino
acids, D-glucose, monocarboxylates, nucleosides, and dipeptides are facilitated by several
ion-coupled SLC transporters in the bulbar conjunctiva [22]. The uvea comprises the iris,
the ciliary body, and the choroid. The uvea is rich in blood vessels, and some absorbed
drugs might enter the systemic circulation.

Alternatively, (d) a hydrophobic pathway through the sclera via the bulbar conjunctiva,
bypassing the vitreous body, is possible [Figure 2]. This strategy is likely restricted to non-
high-molecular-weight amphipathic substances to traverse long distances along the sclera.

The main components of the vitreous body are water (>90%) and solid fibrillar compo-
nents such as glycosaminoglycans (including anionic hyaluronic acid) and collagen, form-
ing a viscoelastic hydrogel structure through which not only light but also substances move
to reach the retina [23]. Overall, the trajectories of drugs administered from the outside
are impeded by multilayered barriers consisting of hydrophobic membranes, hydrophilic
cytosols, hydrophilic aqueous humor, and the hydrophilic vitreous body. Therefore, de-
signed drugs should possess both moderate hydrophobicity and moderate hydrophilicity,
in addition to being of a suitable size to pass through gel regions such as the crystalline
lens and the vitreous body. As an extension of knowledge, their physical properties, such
as the log partition coefficient (logP) and molecular weight (MW), could be defined accord-
ing to Lipinski’s rule of five [24,25]. This rule evaluates drug-likeness concerning orally
administered drugs that cross several barriers, such as (i) solubility in the small intestine
and the systemic circulation and (ii) the permeability of the small intestinal epithelium
and the portal vein. It empirically suggests calculated logP (less than 5) and MW (less
than 500) as suitable physical properties. Compounds with a logP value less than 5 are
not so hydrophobic that they can be dissolved in water. Compounds with MW less than 5
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are not so large that they can go through certain substances such as phospholipids in the
membrane without undergoing large steric hindrance.

2.2. Drug-Releasing Soft Contact Lenses (DR-SCLs)

DR-SCL therapy maintains medication concentrations at the ocular surface by inhibit-
ing drainage through tear fluid and excretion via the nasolacrimal duct [26,27]. Surprisingly,
the development history of DR-SCLs is relatively old. Ocusert® [28,29], a contact lens-like
intraocular indwelling preparation, was launched in 1969 for the treatment of glaucoma
and can sustain local intraocular pilocarpine concentration within the effective range for
1 week. Pilocarpine is released via a polymer membrane covering the drug reservoir. How-
ever, the development of DR-SCLs with drugs has been less extensive than expected, with
exceptions for infections [30,31], inflammation in rabbits [32], and glaucoma as mentioned
below. Therefore, research on DR-SCLs with drugs should be pursued more actively.

The simplest method for preparing drug-loaded CLs is the traditional immersion
method. There is a wide range of CL materials available to meet users’ needs. Generally, sil-
icone hydrogel CLs consist of silica-based materials such as polydimethylsiloxane (PDMS),
tris(trimethylsiloxysilyl)propylvinylcarbamate (TPVC), and tris(trimethylsiloxy)methacrylo
xypropylsilane (TRIS), as well as hydrophilic materials such as 2-hydroxyethylmethacrylate
(HEMA), N,N-dimethylacrylamide (DMA), and 1-vinyl-2-pyrrolidinone (NVP) [33]. HEMA
is one of the most important hydrogel materials for CLs. Combination prescriptions can
be freely adjusted depending on the type of drugs and applicable diseases. Menicon, a
Japanese CL manufacturer, has developed DR-SCLs composed of 2-hydroxyethyl methacry-
late (with a molar ratio of more than 0.5), methyl acrylate, and ethyl acrylate as monomers.
These lenses are designed to accommodate anti-allergy drugs such as ketotifen, chlor-
pheniramine, olopatadine, and levocabastine. Ketotifen released from the DR-SCLs was
evaluated using rabbit eyes. The importance of hydrophobicity in DR-SCLs for appropri-
ately controlling drug release was suggested [34].

2.3. Ocular Diseases and DR-SCLs
2.3.1. Age-Related Macular Degeneration (AMD)

AMD [35] is a medical condition that leads to vision loss in older individuals due
to macular degeneration in the retina. Wet AMD is characterized by bleeding associated
with the development of new blood vessels, while dry AMD involves gradual atrophy
caused by nutritional deficiencies and the accumulation of waste products due to retinal
cell degeneration.

Abnormal vascular proliferation is induced by vascular endothelial growth factor
(VEGF). Neovascular vessels do not exist in the normal retina and are so fragile that their
components leak out and accumulate, or they are prone to bleeding. Thus, anti-VEGF
therapy is a promising approach for wet AMD. Currently, anti-VEGF drugs such as be-
vacizumab (anti-VEGF monoclonal antibody), aflibercept (soluble decoy VEGF receptor),
ranibizumab (anti-VEGF monoclonal antibody Fab fragment), brolucizumab (humanized
anti-VEGF monoclonal single-chain variable fragment), and faricimab (bispecific mono-
clonal antibody targeting VEGF and Ang-2) are clinically used for the treatment of wet
AMD [36,37]. However, they are administered via vitreous injection because monoclonal
antibodies characterized as high-molecular-weight compounds cannot cross the membrane
via passive diffusion due to large molecular size and hydrophilicity, which may not be
patient-friendly. There is a need for more patient-friendly administration methods. It is
well known that low-molecular-weight compounds can cross the membrane via passive
diffusion or carrier-mediated transport using SLC transporters. At present, several low-
molecular-weight VEGF inhibitors are clinically approved for cancer therapy, although they
appear to be hydrophilic [Figure 4] [38]. DR-SCLs loaded with such low-molecular-weight
VEGF inhibitors could be an alternative strategy for wet AMD. It is speculated that VEGF
inhibitors released from DR-SCLs might pass through the vitreous body to the retina via
(a) the crystalline lens and/or (b) the ciliary body [Figure 2].
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Figure 4. The structures of clinically available low-molecular-weight VEGF inhibitors for cancer
therapy. MW stands for molecular weight. ClogP values are calculated using software (ChemDraw
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Several drugs for dry AMD are undergoing clinical trials [39]. Dry AMD is a complex
multifactorial disease, and its pathogenesis is not completely understood. Oxidative stress,
inflammation, and other factors are suggested to exacerbate its pathology. It is well known
that lipoproteins called drusen accumulate behind the retina in the early stages of dry
AMD. Complement components 3 (C3) and 5 (C5) in drusen are activated, leading to the
progression of dry AMD through the induction of inflammation. Avacincaptad pegol,
a pegylated RNA aptamer against C5, was approved for the treatment of geographic
atrophy secondary to AMD by the U.S. Food and Drug Administration (FDA) in 2023.
However, avacincaptad pegol requires administration via vitreous injection. Nonetheless,
the investigation into DR-SCLs with RNAs is not likely to be active. Antioxidant agents
such as supplements containing ZnO, CuO, vitamin C, vitamin E, and β-carotene (AREDS,
NCT00000145), as well as supplements containing ZnO, CuO, vitamin C, vitamin E, lutein,
and zeaxanthin (AREDS2, NCT00345176), completed phase 3 clinical trials with promising
results. Another antioxidant agent, OT-551 [Figure 5] [40] (NCT00306488), completed a
phase 2 clinical trial. Typically, OT-551 is formulated as a daily topical eye drop for patients
with dry AMD. Therefore, DR-SCLs with supplements used in the AREDS2 clinical trial or
OT-551 can enhance bioavailability in a non-invasive manner.
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2.3.2. Diabetic Retinopathy (DR)

DR [41] is one of the most common complications of diabetes, resulting in vision loss
and blindness. The aldehyde group of glucose is supposed to react with certain proteins
through glycation and the Maillard reaction. As a result, glucotoxicity due to protein
glycation in the retina occurs, thereby inducing microangiopathy in cases of diabetes
where glucose metabolism is insufficient due to insulin deficiency VEGF released to restore
microangiopathy ironically enhances the formation of brittle neovascular vessels that
deteriorate DR due to bleeding. Currently, anti-VEGF therapy is effective in the late stages
of DR. Clinically available anti-VEGF agents for the treatment of DR include bevacizumab
(anti-VEGF monoclonal antibody), ranibizumab (anti-VEGF monoclonal antibody Fab
fragment), and aflibercept (soluble decoy VEGF receptor) [42]. However, all anti-VEGF
agents are regularly administered via intravitreal injections. Therefore, DR-SCLs with
low-molecular-weight VEGF inhibitors [Figure 4] could be an alternative strategy for DR,
as mentioned previously regarding AMD.

2.3.3. Cataract

A cataract [43] is a dense clouding of the crystalline lens due to the aggregation of
crystalline proteins, making it difficult to see clearly. Cataract treatment includes drug
therapy and surgery. As symptoms progress, the cloudy parts are removed through surgical
procedures. Phacoemulsification, a common cataract surgery method using ultrasound
to remove the cloudy parts, was first developed by Dr. Charles Kelman in 1967 [44].
However, in the early stages of symptoms, eye drop treatments are administered to slow
down progression. Pirenoxine (an inhibitor of the sulfhydryl combination of quinoid
substances with lens proteins) or glutathione (an antioxidant) [Figure 6] are clinically used
for early cataracts [45]. Cataracts are progressive chronic diseases. Therefore, DR-SCLs
with pirenoxine or glutathione can be useful formulations to improve the bioavailability
and drug adherence of patients.
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Figure 6. The structures of pirenoxine and glutathione, used in eye drop treatments for early cataracts.
MW stands for molecular weight. ClogP values are calculated using software (ChemDraw Ultra
version 7.0.1. provided by CambridgeSoft Corporation).

2.3.4. Glaucoma

Glaucoma [46] is a progressive disease that leads to the death of retinal ganglion cells
due to elevated intraocular pressure, resulting in a narrowed visual field and eventually
blindness. Irregularities in aqueous fluid flow contribute to increased intraocular pressure.
The prevalence of glaucoma increases with age. The most common treatment for glaucoma
is prescription eye drops that lower intraocular pressure, in addition to laser treatment and
surgery. The methods to lower the intraocular pressure are the enhancement of aqueous
humor and the aqueous humor production inhibition (β-adrenergic blocking agents, car-
bonic anhydrase inhibitors, α-adrenergic agonists). Aqueous humor produced in the ciliary
body is excreted through the main outflow channel from trabecular meshwork to blood ves-
sels (trabecular meshwork outflow pathway) (muscarinic acetylcholine receptor agonists,
Rho-associated protein kinase inhibitors) and the secondary outflow channel from root
of the iris to the ciliary body muscle tissue (uveoscleral outflow pathway) (F-prostanoid
subtype 2 receptor agonists, E-prostanoid subtype 2 receptor agonists) [47–49]. Drugs
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used to treat glaucoma include pilocarpine (muscarinic acetylcholine receptor agonist),
latanoprost (F-prostanoid subtype 2 receptor agonist), omidenepag isopropyl (E-prostanoid
subtype 2 receptor agonist), timolol (β-adrenergic blocking agent), brinzolamide, dorzo-
lamide (carbonic anhydrase inhibitors), brimonidine (α-adrenergic agonist), and ripasudil
(Rho-associated protein kinase inhibitor) [Figure 7] [47–49]. These drugs lower intraocular
pressure via each mechanism shown in parentheses.
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Figure 7. The structures of representative low-molecular-weight drugs used in the treatment of
glaucoma, which employ various mechanisms to reduce intraocular pressure (IOP). MW stands
for molecular weight. ClogP values are calculated using software (ChemDraw Ultra version 7.0.1.
provided by CambridgeSoft Corporation).

DR-SCLs with such low-molecular-weight drugs might enhance bioavailability. In
fact, Ocusert® with pilocarpine was developed for the treatment of glaucoma [28,29],
indicating the feasibility of this technology. Pilocarpine elicits shrinking pupils and in-
traocular pressure-lowering effects based on direct action to the pupillary sphincter and
ciliary muscle by binding the muscarinic acetylcholine receptor of the parasympathetic
nervous system via route (b) [Figure 2] from DR-SCLs. Ciliary muscle contractions make
trabecular meshwork widen to enhance aqueous humor outflow, resulting in intraocular
pressure reduction. Furthermore, latanoprost and timolol were simultaneously released
from methoxypolyethylenglycol-polylactic acid (mPEG-PLA) micelles-laden CLs for glau-
coma treatment, demonstrating a sustained reduction in intraocular pressure for over
168 h. In an in vivo pharmacokinetic study on rabbit eyes, the mean residence time and
bioavailability of timolol and latanoprost delivered by CLs were improved 79.6-fold and
122.2-fold, respectively, compared to eye drops [50]. Similarly, brinzolamide and timolol
were simultaneously released from methoxypolyethylenglycol-polycaprolactone (mPEG-
PCL) micelles-laden CLs. The mean bioavailability for brinzolamide and timolol delivered
by CLs was improved 1.41-fold and 2.71-fold, respectively, compared to eye drops in
an in vivo pharmacokinetic study [51]. Additionally, timolol and dorzolamide released
simultaneously from vitamin E-loaded CLs decreased intraocular pressure by inhibiting
the production of aqueous humor in a Beagle model of glaucoma [52].
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Prostanoids such as latanoprost and omidenepag isopropyl are typically designed
based on prodrug strategy. Isopropyl esters are introduced to increase hydrophobicity to
permeate the plasma membrane of the corneal epithelium and the corneal endothelium
via passive diffusion. In aqueous humor, prostanoid prodrugs are de-esterified to form the
parent drugs with free carboxylates. The parent drugs are too hydrophilic to permeate the
plasma membrane via passive diffusion and, therefore, are located in the anterior chamber
of the eye. Eventually, they bind receptors on the surface of cells in the ciliary muscle
through the uveoscleral outflow pathway, leading to the increase in aqueous humor outflow
due to ciliary muscle relaxation [53]. Thus, prostanoid prodrug-loaded DR-SCLs would
enhance their bioavailability through route (b) [Figure 2] by avoiding the dilution with
tear fluid and the excretion through the nasolacrimal duct and via the escape from MDR1
capture due to the repetition of passive diffusion and MDR1 transportation.

β-Adrenergic-blocking agents such as timolol inhibit aqueous humor secretion by
binding β-adrenergic receptors as a blocker on the surface of ciliary epithelial cells [54].
Furthermore, carbonic anhydrase inhibitors such as brinzolamide and dorzolamide inhibit
carbonic anhydrase in the ciliary epithelial cells of the ciliary body. HCO3

− plays an
important role in aqueous humor production, involving fluid transport of Na+ into the
posterior chamber of the eye. Carbonic anhydrase inhibitors exhibit their activity in cells
and, thus, have to cross the plasma membrane of ciliary epithelial cells, although brinzo-
lamide and dorzolamide are likely to be hydrophilic. An extraction recovery of 30 µL of
dorzolamide (dorzolamide hydrochloride ophthalmic solution, 2%) 1 h after a single topical
ocular administration in rabbit ocular tissues showed that dorzolamide was distributed
in the cornea (10.31 µg/g), conjunctiva (10.10 µg/g), aqueous humor (1.49 µg/g), sclera
(anterior) (9.12 µg/g), sclera (posterior) (0.460 µg/g), retina (anterior) (1.02 µg/g), retina
(posterior) (0.023 µg/g), vitreous (anterior) (0.07 µg/g), vitreous (posterior) (0.0096 µg/g),
and optic nerve (0.657 µg/g). On the other hand, an extraction recovery of 30 µL of
brinzolamide (brinzolamide ophthalmic suspension, 1%) 1 h after a single topical ocular
administration in rabbit ocular tissues showed that that brinzolamide was distributed in the
cornea (7.99 µg/g), conjunctiva (6.77 µg/g), aqueous humor (0.530 µg/g), sclera (anterior)
(1.57 µg/g), sclera (posterior) (0.140 µg/g), retina (anterior) (0.821 µg/g), retina (posterior)
(0.015 µg/g), vitreous (anterior) (0.034 µg/g), vitreous (posterior) (undetected drug level),
and optic nerve (0.269 µg/g) [55]. Thus, these findings suggested the accuracy of the
distribution of drugs released from DR-SCLs [Figure 2]. Moreover, α-adrenergic agonists
such as brimonidine bind α-adrenergic receptors on the surface of ciliary epithelial cells and
consequently reduce aqueous humor secretion. Intriguingly, a combination of brimonidine
and β-blockers such as timolol reduced the intraocular pressure by 15.4% greater than
the contralateral timolol-treated eye in a randomized, double-masked, placebo-controlled
study of 20 human subjects [56].

Rho-associated protein kinase inhibitors such as ripasudil increase aqueous humor
outflow through the trabecular meshwork outflow pathway [57]. Rho-associated protein
kinases are inhibited in cells. Thus, inhibitors have to enter the cells across the plasma mem-
brane. Rho-associated protein kinases are activated by the binding of the GTP-bound Rho
phosphorylate myosin light chain (MLC) and Lin-1/Isl-1/Mec-3 kinase (LIMK), leading to
tissue contraction and stiffness.

Low-molecular-weight drugs used in the treatment of glaucoma might be suitable for
DR-SCLs, because the target sites are adjacent to the anterior chamber of the eye that drugs
released from DR-SCLs can reach just across the cornea through route (b) [Figure 2].

2.3.5. Dry Eye Disease

Dry eye disease [53,54,58,59] is a condition where tears are unevenly distributed due
to either aqueous tear deficiency or an imbalance in tear quality. Typical symptoms include
a dry, gritty, burning, or bright sensation in the eyes, redness, eye fatigue, eye pain, or
teary eyes.
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SCLs physically prevent moisture evaporation to prevent corneal desiccation, although
they are recognized as one of the causes of dry eye disease. SCLs used for treating dry eye
disease do not necessarily need to be drug-loaded CLs. Silicone hydrogel lenses have very
high oxygen permeability. Currently, products such as HYPER-CL (EyeYon Medical, Ness
Tziona, Israel) for physically protecting the cornea, Acuvue Theravision with Ketotifen
(ATK) (Johnson & Johnson Vision Care, Inc., Jacksonville, FL, USA) containing a histamine
H1 receptor antagonist, Acuvue Oasys Lenses made from silicone hydrogel (Johnson &
Johnson Vision Care, Inc.) for physically protecting the cornea, and others are commercially
available for DR-SCLs [55,60].

There are three targets for drug therapy for dry eye: the lipid layer, the aqueous/mucus
layer, and the corneal epithelium [56,61]. Mild symptoms can be improved with eye drops.
Diquafosol sodium [Figure 8] is a dinucleotide, purinoreceptor P2Y2 receptor agonist that
promotes tear and mucin secretion via elevated intracellular Ca2+ concentrations [57,62].
This eye drug can be used while wearing normal SCLs because preservatives are also
technologically difficult to adsorb to normal SCLs. When DR-SCLs with diquafosol sodium
are used, they would extend the efficacy time of the drug longer than diquafosol sodium
eye drops alone, with or without normal SCLs.
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Figure 8. The structure of diquafosol sodium. MW stands for molecular weight. ClogP value is
calculated using software (ChemDraw Ultra version 7.0.1. provided by CambridgeSoft Corporation).

2.3.6. Neurotrophic Keratitis

Neurotrophic keratitis [58,63] is a degenerative corneal disease characterized by dam-
ages such as corneal epithelial defects, corneal stromal melting, or corneal perforation due
to disorders of the trigeminal nerve caused by the herpes virus and other factors. Conse-
quently, significant vision loss occurs. Nerve growth factors via eye drops are currently
being developed. Cenegermin [59,64] is a recombinant human nerve growth factor that
is the first FDA-approved drug for the treatment of neurotrophic keratitis. Cenegermin
(MW 13 kDa) is composed of 118 amino acids with three disulfide bonds [60,65]. Thus, DR-
SCLs could be loaded with cenegermin. On the other hand, udonitrectag (MW 353.37 Da)
[Figure 9] is a low-molecular-weight synthetic peptido-mimetic of human nerve growth
factor [61,66]. DR-SCLs could be loaded with udonitrectag due to its smaller size compared
to cenegermin.
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2.3.7. Neuropathic Corneal Pain

Pain is generally categorized into nociceptive pain, neuropathic pain, and psychogenic
pain. Neuropathic corneal pain [62,67] is a condition characterized by pain without a
noxious stimulus due to abnormal nerve function. Corneal nerve damage resulting from
inflammatory diseases, neurological diseases, or surgical interventions often causes neuro-
pathic corneal pain. The nerve terminals are located within the corneal epithelium [63,68].
While tricyclic antidepressants and carbamazepine (anticonvulsant) are first-line agents
for neuropathic corneal pain, low-dose naltrexone (opioid antagonist for the µ-opioid
and κ-opioid receptors) and tramadol (weak µ-opioid agonist) are second-line agents.
Furthermore, gabapentin, pregabalin (calcium channel α 2-δ ligands), duloxetine, venlafax-
ine (serotonin-norepinephrine inhibitors), and mexiletine (sodium channel blocker) are
third-line agents [Figure 10] [64,69]. Some of these low-molecular-weight drugs can be
administered using DR-SCLs.
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Nortriptyline [Figure 10], a tricyclic antidepressant, demonstrated efficacy in relieving
neuropathic corneal pain symptoms in thirty patients when administered orally [65,70].
Thus, if nortriptyline can effectively target the ophthalmic nerve (CNV1) branching from
the trigeminal nerve, DR-SCLs containing nortriptyline might offer better efficacy than oral
administration, as they could potentially ensure more accurate distribution.

3. Conclusions

Many patients worldwide, particularly in developing countries, suffer from ocular
diseases because unmet medical needs persist due to barriers such as the BRB and the
BAB hindering intravenous and oral administration, or due to the low bioavailability of
eye drops caused by dilution with tear fluid, excretion through the nasolacrimal duct,
and poor membrane permeability. Therefore, innovative approaches to eye drug delivery
are necessary. Although SCLs are typically used for correcting refractive errors, they can
also serve as a vehicle for clinical treatment due to their continuous contact with the eyes.
DR-SCLs can gradually release medications into the eyes either through the cornea or the
bulbar conjunctiva, minimizing loss due to dilution with tear fluid and excretion through
the nasolacrimal duct. Eye drugs released from DR-SCLs can be delivered into the eye
in a non-invasive manner without intravitreous injection and without being impeded by
the BRB. Thus, the use of DR-SCLs for treating eye diseases shows promise in addressing
issues such as low bioavailability, off-target side effects, and medication adherence [Table 1].
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However, research on DR-SCLs has not been pursued actively. The problem is whether
there will be people who will try, although DR-SCLs were developed in the 1960s. I hope
that this perspective review inspires readers to initiate such research efforts soon. Moreover,
there are concerns that DR-SCLs also can cause infections similar to normal SCLs. Off-target
side effects may arise when drugs enter the systemic circulation via well-vascularized areas
such as the choroid, the bulbar conjunctiva, or the nasal mucosa.

The plausible pathways of drugs released from DR-SCLs to the retina pass through
various parts of the eye, including the cornea, the vitreous body, the sclera, and the choroid.
The uvea comprises the iris, the ciliary body, and the choroid. Briefly, route (a) follows the
crystalline lens pathway. Route (b) traverses the non-crystalline lens pathway. Route (c)
involves the vitreous body pathway, crossing the bulbar conjunctiva, sclera, and choroid.
Route (d) follows the non-vitreous body pathway through the bulbar conjunctiva and
layers of sclera and choroid [Figure 2]. Low-molecular-weight substances rather than
high-molecular-weight substances might be well distributed through these routes due to
size limitations. Nonetheless, the features of drugs would depend on the target sites such
as the retina for wet AMD and the crystalline lens for cataracts. Therefore, the fine design
of drug-loaded DR-SCLs is important for conducting appropriate drug delivery to the
target sites.

Non-low-molecular-weight substances such as anti-VEGF monoclonal antibodies
are extensively utilized in the treatment of AMD and DR, particularly through intrav-
itreous injections that are burdensome on the patients. Therefore, DR-SCLs containing
low-molecular-weight substances such as VEGF inhibitors, which have been approved for
other medical conditions including cancers, can offer an alternative non-invasive approach.
The indications for drugs will be expanded to eye diseases. Furthermore, the efficacy
of treatments for ocular diseases, for which low-molecular-weight eye drop drugs are
employed, can potentially be enhanced by utilizing DR-SCLs in conjunction with them. At
present, eye drops are prescribed for ocular diseases such as cataracts, glaucoma, dry eye
disease, neurotrophic keratitis, and neuropathic corneal pain.

Multidisciplinary approaches are particularly needed in eye drug discovery and de-
velopment. Pharmaceutical scientists and medicinal chemists should possess knowledge of
the anatomical structure and features of the eyes, as well as the physical properties of SCLs
and drugs, and the biological features of cells comprising functional proteins, the mucin
layer, membranes, the cytosols, aqueous humor, and other components. These aspects
are regulated by the biological structuralism advocated by Dr. Lévi-Strauss [3,4]. The
eyes are anatomically unique organs, and preliminary verification based on structuralism
could be highly effective in their treatment. Consequently, substances created through
properly conducted drug design can perform as intended. Ultimately, innovative eye
drugs produced through such processes will reduce the incidence of blindness and offer
bright prospects for disease recovery. Furthermore, smart contact lenses with built-in
artificial intelligence would control drug release to the eye spatiotemporally in the future
when technology advances. The materials composed of polymers used in DR-SCLs can
exhibit the same function by implanting subcutaneously or by coming into contact with
mucous membranes.
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