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Abstract: Mapping coastal regions is important for environmental assessment and for monitoring
spatio-temporal changes. Although traditional cartographic methods using a geographic information
system (GIS) are applicable in image classification, machine learning (ML) methods present more
advantageous solutions for pattern-finding tasks such as the automated detection of landscape
patches in heterogeneous landscapes. This study aimed to discriminate landscape patterns along the
eastern coasts of Mozambique using the ML modules of a Geographic Resources Analysis Support
System (GRASS) GIS. The random forest (RF) algorithm of the module ‘r.learn.train’ was used to
map the coastal landscapes of the eastern shoreline of the Bight of Sofala, using remote sensing (RS)
data at multiple temporal scales. The dataset included Landsat 8-9 OLI/TIRS imagery collected in
the dry period during 2015, 2018, and 2023, which enabled the evaluation of temporal dynamics.
The supervised classification of RS rasters was supported by the Scikit-Learn ML package of Python
embedded in the GRASS GIS. The Bight of Sofala is characterized by diverse marine ecosystems
dominated by swamp wetlands and mangrove forests located in the mixed saline–fresh waters along
the eastern coast of Mozambique. This paper demonstrates the advantages of using ML for RS data
classification in the environmental monitoring of coastal areas. The integration of Earth Observation
data, processed using a decision tree classifier by ML methods and land cover characteristics enabled
the detection of recent changes in the coastal ecosystem of Mozambique, East Africa.

Keywords: machine learning; ensemble learning; GRASS GIS; Scikit-Learn; Python; random forest;
satellite image; image processing; Africa; image classification
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1. Introduction
1.1. Background

Remote sensing (RS) data have long been an important and efficient source of infor-
mation for environmental monitoring, being one of the main data sources for mapping
and detecting patterns in biodiversity across large spatial areas [1]. The information from
the Earth Observation satellite missions, which is provided quickly and effectively, has
sufficient coverage, and the high quality of images has ensured numerous applications of
RS data in modern geospatial studies and cartographic works [2]. Information derived
from satellite images enables the identification of landscape characteristics that affect bio-
diversity patterns, the structural and functional properties of landscapes, and the spatial
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extent of different components of ecosystems. Such advantages of RS data enable using
both high-resolution and medium-resolution products in vegetation and land cover map-
ping, in order to detect patterns in vegetation changes and to track ecological interactions
through time series analyses [3–5].

Applications of RS data in environmental analyses include diverse types of satellite
images, which can be used for the effective interpretation of Earth’s landscapes, including
Sentinel 2 data [6–8], a National Oceanic and Atmospheric Administration Advanced Very
High Resolution Radiometer [9,10], Satellite Pour l’Observation de la Terre (SPOT), [11],
and Landsat [12–16], as well as combinations thereof [17,18]. For instance, the recent Global
Land Cover 2000 map was based on an analysis of the vegetation sensor on board the
SPOT-4 satellite, using methods of digital image processing and GIS [19,20]. Moreover,
RS data can be integrated with information about the environmental setting for analysis,
mapping, and modeling purposes. For instance, Landsat scenes widely used for landscape
mapping include the data acquired from its various sensors, such as the Multispectral
Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and
recent products of the Operational Land Imager and Thermal Infrared Sensor (OLI/TIRS),
or used with data integration [21–23].

The Landsat OLI-TIRS satellite missions measured the surface reflectivity and scat-
tering in the multi-spectral bands, which resulted in its successful application during
recent decades [24]. Its capacity to discriminate between different vegetation types was
demonstrated in previous investigations [25–28]. In cloud-prone and rainy areas typical
of coastal regions of tropical African countries, however, the use of RS data is restricted
by atmospheric effects, such as the attenuation of signals and cloud coverage during wet
periods. Therefore, an analysis of vegetation should be based on cloud-free images or with
minimized cloudiness (below 10%). Moreover, the remaining atmospheric effects should
be minimized using advanced methods of computer vision. These include, for instance,
atmospheric scattering or haze, which occur as a result of suspended dust that accumulates
in relatively dry air. Such effects may lead to color distortion of the images and worsen
image quality through impaired visibility, which may affect image analysis.

As a result, the processing of such data requires advanced methods of satellite image
processing, e.g., removing noise, highlighting edges, and improving image contrast through
the correction of atmospheric effects. This is possible using computer vision and machine
learning (ML) algorithms for data processing and visualization due to their impressive
computational and spatial analysis capabilities [29–31]. The most important advantage
of ML techniques is that they are capable of automagically deriving information from
existing datasets. Moreover, ML methods apply programming algorithms that enable
them to excel in complex analyses and modeling of geospatial data [32]. In environmental
studies, valuable insights from ML include information extraction from complex terrain
and heterogeneous landscapes, such as coastal regions. Such features of ML facilitate
environmental analysis and enhanced planning and management of the coastal zones.

Establishing new methods of Earth Observation data processing, such as with ML, requires
the application of programming approaches that enable the automation of tasks [33,34]. Indeed,
the integrated use of programming scripts, ML capabilities, and cartographic methods
has provided powerful tools for RS data processing, with the aim of mapping, analyzing,
and monitoring coastal areas using the distinctive sensor responses of land cover types.
Thus, scripting and programming approaches enable overcoming the ambiguities in image
classification resulting from similarities in the spectral reflectance of various land cover
types, especially with medium-resolution Landsat data, maintaining the high-automation
streams of modeling. Advancements in computer processing; ML methods; and the
development of scripting languages, such as Python, used either alone or as integrated
tools and add-ons in a geographic information system (GIS), have allowed for an advanced
approach to cartography and image processing. Such methods support accurate satellite
data processing and analysis, which have made dynamic vegetation modeling possible [35].
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1.2. Related Works

Generally speaking, the accuracy of classification of the vegetation types in hetero-
geneous landscapes using satellite images mainly depends on the sensitivity of sensor
backscattering to differences between the phenological characteristics of plant leaves. Al-
ternatively, they should also be sensitive to the variations in structure of the other land
cover types such as bare land or urban areas with dominating impervious surfaces. Hence,
different interactions between the sensor backscatter and the structure of the canopy of
landscape patches can provide novel information on ecological structure. Nevertheless,
many recent studies [36–40] noted the evident advantages of using ML methods in image
processing. For instance, ref. [41] found that the use of deep learning (DL) modeling in
remote sensing data processing could improve the accuracy of the classification.

Earlier studies have also reported that the classification precision was significantly
improved when the computer vision algorithms of DL for image analysis and interpretation
were applied [42–44]. Similar studies also validated the potential of the use of ML methods
in cartographic applications of RS data processing for mapping various vegetation classes.
Thus, these methods were used for evaluation of the optimal combination of geospatial data
used for separating different land cover classes [45,46]. These and other results reported
in previous studies also indicated that the use of Python improves the performance of
the classification and attains the required automation and accuracy level in the process of
image classification [47–49]. Nevertheless, improvements and flexibility are achieved in
the Geographic Resources Analysis Support System (GRASS) GIS software, which presents
a smart combination of the existing Python libraries with cartographic toolsets and a
powerful image processing functionality.

Since the release of the first version of GRASS GIS in 1984 [50], this instrument has
been constantly improved, which resulted in a recent updated version of software 8.3.1.
Nowadays, GRASS GIS presents a powerful geospatial data processing engine with an
integrated suite of the existing modules for raster and vector data processing. The advances
in technical progress and the rapid development of cartographic instruments along with the
improvements in programming algorithms resulted in various types of modules of GRASS
GIS that include diverse geospatial data processing tools. The applications of such tools
can be found in a variety of case studies. To mention a few of them, the use of GRASS GIS
in geographic studies includes environmental monitoring [51,52], time series and massive
data analysis [53,54], hydrological modeling [55], computing landscape diversity, image
segmentation [56,57], and geomorphometric modeling [58]. These examples prove the
effectiveness of the GRASS GIS for image processing and remote sensing data analysis.

1.3. Objectives and Motivation

The primary objective of the present research is to determine the spatio-temporal
changes in the land cover types of coastal Mozambique through the application of machine
learning methods to remote sensing data analyses. In view of the advantages of the ML
methods briefly discussed above, this study applies such methods and presents the case
of image processing using the GRASS GIS module r.learn.train for image classification.
Specifically, the random forest (RF) algorithm of the ML method is employed in this study
with the sample coastal area of eastern Mozambique, Bight of Sofala. Using ML algorithms
embedded in the modules of GRASS GIS enables us to perform a supervised classification
using training pixels of raster tiles and the integrated Python Scikit-Learn library [59] for
modeling vegetation in coastal areas.

The goal of this study is to develop a workflow using several modules of GRASS
GIS for ML-based random forest techniques of image classification. To this end, the multi-
spectral Landsat 8–9 OLI/TIRS images are used for land cover mapping of the coastal
region of eastern Mozambique that encompasses the Bight of Sofala and cover a time gap
from 2015 to 2023. Since the area is located in a cloud-prone and rainy region affected by
occasional floods, the data are selected during the ‘dry’ period from August to September
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using optimal atmospheric conditions. Additionally, the images are corrected to improve
their quality. In total, three scenes are used for classification and ML-based processing.

The main aim of this study is to evaluate short-term temporal dynamics in the region
of the Bight of Sofala using advanced methods of cartographic scripting using the ML
modules of the GRASS GIS. The methodology includes the extraction of training data from
raster images, supervised ML methods that use ensemble classification, the regression
tree method using RF, and cross-validation tasks. Technically, this paper demonstrates
the advantages of using ML algorithms for RS data classification, as well as advanced
approaches of cartographic mapping for the environmental monitoring of coastal areas.
High robustness, versatility, and applicability of the RF algorithm motivated its application
for processing satellite images in the shoreline regions which are notable for highly vulner-
able environmental parameters. Due to the sensitivity of RF to noise and outliers in the
pixel matrix, its application to image processing is beneficial for reducing the overfitting by
averaging multiple decision trees, as demonstrated in this study. As a result, the use of RF
algorithm enabled us to reduce the data processing time and to increase the accuracy of the
Landsat 8–9 OLI/TIRS imagery.

2. Study Area

This study is located in the coastal area of Mozambique, western part of the Indian
Ocean. Specifically, it investigates the region of the Bight of Sofala, where the estuary of the
Beira river enters the Mozambique Channel (Figure 1).

Figure 1. Study area in the coastal region of the Bight of Sofala, Mozambique is indicated by the
cyan-colored rotated square. Mapping software: Generic Mapping Tools, version 6.4.0, creator: [60],
location: Palisades, NY 10964, United States. (GMT). Map source: author.



Coasts 2024, 4 131

As one of the developing countries of Africa, Mozambique is notable for its rapid land
cover changes related to the environmental effects and urbanization. As a result, landscape
dynamics have recently become one of the major issues of the country, which is reported
in many relevant studies [61–63]. Located on the southeast coast of Africa, Mozambique
represents a country with diverse topographic forms and landscape setting. The most
remarkable geomorphic features include a complex mix of the inland hills and low plateaus
situated along the narrow coastal strip which contrast with rugged highlands located in the
western parts of the country. Such variability in landscapes favors diversified vegetation
structures, increases the biodiversity richness, and creates unique land cover patterns that
are characteristic of Mozambique (Figure 2).

Figure 2. Land cover types in Mozambique according to the Food and Agriculture Organization
(FAO) data. Mapping software: QGIS, version 3.34, creator: QGIS Development Team, location:
London, England, U.K. Map source: author’s work.

The major geomorphic types of Mozambique include numerous highlands inter-
spersed with plateaus; covered with woodlands; and lowlands, which are situated mostly
to the south of the Zambezi River—the major river of the country. The Zambezi River
roughly separates the country into the northern and southern parts, which have notably
distinct ecosystems. Being the fourth-longest river in Africa with a complex hydrological
setting, it largely affects the distribution of plants and species in the surrounding land-
scapes and in the estuary zone, which is located to the north of the Bight of Sofala [64–66].
The hydrology of the Zambezi River is connected to the main channel and tributaries, and
water management involves the eight countries surrounding the basin [67]. Thus, through
the downstream and upstream movement of water that changes the local salinity and
suspended sediments, the hydrology of Zambezi strongly influences the coastal ecosystems
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of the Sofala Bank [68]. Nevertheless, the recent construction of artificial dams has had
significant environmental effects on the major floodplains. For instance, these include
reduced water supply and river discharge [69] and increased sedimentation of the coastal
landscapes of its estuary [70].

The coastal ecosystems in the Bight of Sofala are one of the most environmentally
vulnerable regions in Mozambique. This is caused by multiple impacts from the climate setting
and tidal hydrology [71] including tidal cycles, shelf circulation, and coastal currents [72].
In turn, the hydrological setting of the coastal ecosystems influence the patterns of primary
production and the distribution of zooplankton, phytoplankton, and nutrients in the shelf
waters [73]. Moreover, the rapid expansion of urban areas caused by population growth and
economic pressure changes the landscapes. Such social processes result in urban sprawl,
which changes the natural landscapes into artificial spaces [74]. Moreover, the Sofala Bank
is known for its industrial shallow-water shrimp fishery [75–77], which creates additional
pressure on the coastal ecosystems through the overexploitation of natural resources.

The repeated and severe floods and cyclones in western part of the Indian Ocean
have a great influence on the landscapes and distribution of vegetation along the coasts of
Mozambique. As a result, Mozambique is reported to be one of the most vulnerable south
African countries to flooding and tropical cyclones. Such climatic hazards cause damage
to the infrastructure and create additional factors to the disruption of ecosystems [78–80].
Another environmental issue in the coastal regions of Mozambique concerns the decline
of mangroves, which is caused by the cumulative effects from anthropogenic activities
and climate change [81]. At the same time, as highly productive coastal ecosystems with
unique fauna and flora, mangrove swamps are important sources of natural resources and
livelihoods for local people. Therefore, their decline and degradation negatively affect the
sustainability of coastal ecosystems.

Over recent decades, the consequences of floods in Mozambique include the de-
struction of landscape structures [82] and crops during the flood period [83]. Moreover,
this increased landscape fragmentation resulted in the continuous physical disintegration
of habitats into smaller patches with decreased size and isolation between habitat clus-
ters. The consequences of such processes negatively affect the biodiversity and species
richness [84] as well as lead to disruptions in the coastal ecosystems [85]. In terms of
social–economic aspects of Mozambique, climate-related natural hazards and disrupted
landscapes affect the farming sector, fishery, and agriculture activities in the coastal areas
of Mozambique.

All these factors are required for an effective environmental monitoring system. Specif-
ically for the coastal regions of Mozambique, a data analysis enables us to define the cost of
landscape restoration in the affected areas and to detect land cover changes. Proper land
planning in the coastal areas of Mozambique requires the costly process of evaluating land-
scape dynamics, performing a climate change assessment, and carrying out an integrated
socio-environmental analysis [86–89]. The lowest possible cost when monitoring the coastal
areas of Mozambique can be achieved by evaluating the difference between land cover
types and performing a patch analysis using the image classification and quantification of
landscape fragments [90]. This is possible using cartographic mapping and a time series
analysis of the satellite images [91–93]. Land surface topography, which varies significantly
in Mozambique, influences the distribution of vegetation types that can be considered
in agricultural planning, environmental management, and ecological monitoring of the
coastal regions. For instance, to preserve the vulnerable ecosystem of the narrow strip
along the coasts of the Bight of Sofala, operative monitoring using remote sensing data is a
useful technical tool [94].

3. Materials and Methods
3.1. Workflow

In this paper, multi-temporal Landsat 8–9 OLI/TIRS images were used for land
cover mapping in the coastal region of the Bight of Sofala, eastern Mozambique, Indian
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Ocean. The methodology included the extraction of the training data from raster images,
supervised ML using ensemble classification, the regression tree method using RF, and
cross-validation tasks. A schematic view of the workflow in cartographic and remote
sensing tasks is portrayed in Figure 3.

Figure 3. Workflow of the data processing. Diagram software: R, software version number 4.2.2,
creator: R Core Team, location: Vienna, Austria. Source: author’s work.

The workflow was completed using GRASS GIS software and includes the following
14 steps:

1. Image importation and interpretation using the Geospatial Data Abstraction Library
(GDAL) and reprojection of images: Since all the images must be registered in the
software and be coherent with each other, the registration procedure of the Landsat
images was performed using the ‘r.import’ module. The metadata of the satellite
images were set to the current region and checked to assess the suitability and quality
control: data acquisition, cloudiness, sun elevation and geographic extent. Technically,
this was carried out using the code “r.import input=/Users/<path>/ImageName.TIF
output=ImageName extent=region resolution=region”. Here the path to the original
image is provided in full; the resolution was set to the 30 m as for Landsat scenes.

2. Image preprocessing is a fundamental approach in remote sensing data analyses.
It aims to prepare the images for further processing and analyses. Here, the Land-
sat images were integrated with GDAL and preprocessed using the ‘i.landsat.toar’
module, which calculates the top-of-atmosphere spectral reflectance and temper-
ature for Landsat OLI/TIRS scenes. To this end, the information on sun eleva-
tion and the date of image acquisition were used from the metadata (product
date). The digital numbers (DN) of the image pixels were converted to the top-
of-atmosphere radiances (ToAR). The resulting output images were processed using
the ‘i.landsat.toar’ module and the DN of the images were transformed, which
calibrated the top-of-atmosphere reflectance.
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3. To analyze the land cover types visible on the Earth’s surface as a representation
landscape patches, color composites were created using bands of the satellite images.
The image composites were generated using ‘r.composite’ for natural and false color
composites using triplets of red, green, and blue bands merged into a single composite
raster map by the following code (the example is for the band combination 7-5-3):
“r.composite blue=L807 green=L805 red=L803 output=L8753 –overwrite”. Here, each
band was selected for each of the RGB triplets (red, green, and blue), which enabled us
to visualize the images in various combinations (natural and false color composites).

4. The landscapes of coastal Mozambique are characterized by a complex mosaic of het-
erogeneous land cover types that exhibit structural similarities in spectral reflectance.
Therefore, a radiometric partition of the images was performed using the unsuper-
vised k-means method with the ‘i.cluster’ module which employs computer vision
techniques for objective and automatic recognition of land cover types. This method
generates spectral signatures for different land cover types using a clustering algo-
rithm that identifies the differences between various values of spectral reflectance for
each pixels and assigns them to classes accordingly.

5. The generation of signature files for land cover types was performed using the ’sig-
naturefile’ function of the ‘i.cluster’ module. The profiles of the spectral backscatter
coefficient of the land cover types were generated and compared to the FAO classifica-
tion with 10 major identified land cover classes in the coastal regions of Mozambique.
Various characteristics of landscape patches were identified and compared for images
taken at different periods as a time series.

6. Image classification was performed to identify land cover classes using the maximum
likelihood method (‘i.maxlike’ module). This method was selected due to its versatility
and ability to produce fast and accurate results. In essence, the MaxLike classification
algorithm uses clusters generated in the previous step and classifies pixels in an
iterative self-organizing process of image partition to produce a set of spectral classes.
Afterwards, labels are assigned to the clusters automatically and maps are generated
using a defined color palette.

7. The generation of training pixels from an older land cover classification using the
‘r.random’ module was performed to generate a set of raster point maps. This mod-
ule creates a raster map which contains coordinates of points whose locations have
been randomly determined to ensure the objectivity and randomness of the repre-
sentative set of pixels. It includes randomly located cells and pixel points using a
non-deterministic random seed. Technically, it was implemented by the following
code: “r.random input=L8CL seed=100 npoints=1000 raster=L8CLroi”.

8. The creation of an imagery group with all Landsat OLI/TIRS multispectral bands that
have 30 m resolution, excluding panchromatic bands: this was performed using ‘i.group’
module with the following code: “i.group group=L82015 input=L801,<...>,L807”.

9. A random forest classification model was trained using the ‘r.learn.train’ approach
of the ML modules of the GRASS GIS. Practically, it was implemented using the
following code: r.learn.train group=L82015 training_map=L82015roi.
model_name=RandomForestClassifier n_estimators=500 save_model=rf_model.gz

10. Performing predictions using the ‘r.learn.predict’ module of GRASS GIS: This is an
essential part of the ML data processing that uses a fitted Scikit-Learn estimator de-
rived from Python to raster layers in a group of images. The implementation was
performed using the code “r.learn.predict group=L8_2015 load_model=rf_model.gz
output=rf_classification –overwrite”. The algorithm uses the training dataset gener-
ated in a previous step and applies the created model “rf_model.gz”. The main goal
is to apply a fitted estimator from the Python’s ML library Scikit-Learn to the imagery
group which was generated during the step “i.group”.

11. Checking raster categories using the module ‘r.category’: The category values and
labels are displayed for the raster layer requested for the generated images. This is
carried out by the command “r.category rf_classification”, which reports the data
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in the console output. In this case, 10 major land cover classes of the coastal area
of Mozambique were identified by the computer vision, which were automatically
applied to the classification results.

12. Visualization of the results was performed using the GRASS GIS module ‘r.colors’,
which copies the color scheme from the land class training map to the output maps.
For instance, the code for the maps of random forest classification was as follows:
“r.colors rf_classification color=plasma-e”.

13. The results were mapped using a set of modules—‘d.rast’, ‘d.legend’, and ‘d.mon’—that
represent the cartographic tools of GRASS GIS for mapping and the visual display
of data. The files were then saved using the module ‘d.out.file’ as bitmap graph-
ics. For instance, data visualization included the following snippets of code: “d.rast
rf_classification d.legend raster=rf_classification title=“Random Forest: 2018”
title_fontsize=14 font=“Helvetica” fontsize=12 bgcolor=white border_color=white”.

14. Interpretation of the results was based on the comparison of maps of land cover types
of the Bight of Sofala, Eastern Mozambique, for 2015, 2018, and 2023 to analyze the
spatio-temporal dynamics of land cover types in the coastal landscapes.

3.2. Data

In this study, three multi-temporal images of the Landsat Operational Land Imager
and Thermal Infrared Sensor (OLI/TIRS) were selected to produce a classification using
machine learning. The images were chosen due to the high quality of the data, availability
of the high-quality ’leaf-on’ data on coastal Mozambique, and coverage of the study area.
The most essential technical characteristics of the images are summarized in Table 1.

Table 1. Identifiers (ID) of the six Landsat 8–9 OLI/TIRS images on the study area of Mozambique,
obtained from the EarthExplorer USGS repository.

Date Landsat Product Identifier L1 Scene ID

9 July 2015 LC08_L2SP_167074_20150709_20200909_02_T1 LC81670742015190LGN01
19 September 2018 LC08_L2SP_167074_20180919_20200830_02_T1 LC81670742018262LGN00
24 August 2023 LC09_L2SP_167074_20230824_20230826_02_T1 LC91670742023236LGN00

The images are presented in Figure 4. Low cloudiness and acceptable resolution
depend on the acquisition techniques of Landsat ensured by the United States Geological
Survey (USGS).

(a) 2015 (b) 2018 (c) 2023
Figure 4. Landsat images on the coastal region of Beira, Mozambique: (a) 9 July 2015; (b) 19 Septem-
ber 2018; (c) 24 August 2023. The images show natural colors of the Landsat 8–9 OLI/TIRS.

The values of the cloud coverage were 0.01, 0.11, and 0.69 for the images from 2015,
2018, and 2023, respectively. The original satellite images are stored in Universal Transverse
Mercator (UTM) Zone 36 for Mozambique. The terrain data of the study area used for
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topographic visualization are based on the General Bathymetric Chart of the Oceans
(GEBCO) grid with high spatial resolution and accuracy (15 arc seconds) and visualized
as the digital terrain model Shuttle Radar Topography Mission (SRTM). The topographic
names are added according to the gazetteer of Digital Chart of the World (DCW).

3.3. Software

Traditional image processing methods rely on the use of GIS [95–97]. However, such
methods have some drawbacks in that the human-controlled maintenance of workflow is
required for image processing, classification, and analysis, which might be hard in case
of image series. In contrast, script-based image processing uses the automation of data
processing to derive information from the RS data [98]. An alternative approach is presented
by machine learning (ML), which can be used as a descriptor of pixel values and partial
replacement of the traditional methods using programming [99,100]. The ML is based
on the algorithms of artificial intelligence, which include computer vision and statistical
analyses. This study applies ML using the latest available version of GRASS GIS 8.3.1.

The installation of the program was performed using the ‘sudo port install grass’ with
compilations, which includes the dependencies of the essential Python’s libraries and ML
packages. The programming is implemented in the GRASS GIS as scripts. This automates
the repeated steps of image processing to improve the workflow [101,102]. The data process-
ing was performed on the MacBook Apple Sonoma (arm64 architecture). The Cooperative
Computing Tools (CCTools), which enable large-scale distributed computations from clus-
ters, were updated and installed using the sudo command as follows: ‘sudo port clean
cctools’ and ‘sudo port -v install cctools’. After the CCTools and XCode were installed and
activated, all the necessary updates in the libSystem of MacPorts were performed including
the deactivated library libunwind-headers: ‘sudo port -f deactivate libunwind-headers’.

To employ the enhanced properties and improved functionality of GRASS GIS adjusted
for satellite image processing, the Python-based modules and the toolchain GNU Compiler
Collection (GCC) were used. The GCC 13 was installed accordingly for code compilation,
supporting library dependencies through linking and conversion of GRASS GIS scripts
into the binary executable format for assembly into executable files. The wxPython was
installed additionally using the ‘sudo port install py311-wxpython-4.0’ command called
from the MacPorts. The topographic map of the study area was made using the Generic
Mapping Tools (GMT) software developed by [60], which represents a toolbox for geospatial
data processing. The method used for mapping includes scripts that were derived from
earlier works [103–105].

3.4. Scripting

The advanced script-based cartographic ML methods of the GRASS GIS for monitoring
and mapping land cover types were built due to the growing demand for time- and cost-
effective approaches in the cartographic workflow and remote sensing data analyses. It
enables users to save time and resources while processing the geospatial datasets and to
use open-source satellite images. Three major script-based toolsets were used in this study
for the geospatial data analysis and environmental monitoring of West Africa:

1. GRASS GIS module ‘r.import’ was used for importing the data, Listing 1;
2. GRASS GIS module ‘r.composite’ was used for creating false and natural color com-

posites, Listing 2;
3. GRASS GIS modules of ‘i.cluster’ and ‘i.maxlik’ were used for unsupervised image

classification and accuracy assessment by computed rejection probability classes for
classified pixels, Listing 3;

4. A combination of GRASS GIS modules ‘d.rast’, ‘d.legend’, ‘r.colors’, ‘d.mon’, ‘g.region’,
and ‘d.out.file’ was used for mapping the output images, Listing 4;

5. GRASS GIS module ‘r.learn.train’ was used for random forest classification of machine
learning (ML)-based supervised image classification using the training data generated
in a previous step, Listing 5.
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The main idea of this framework is to perform in a single workflow both image
processing and mapping using scripts run from the console. This enables a user to reveal the
technical performance of the automated geospatial data processing using a programming
approach with three different programming suits of the script-based software. Such an
approach demonstrated that the inclusion of scripts speeds up cartographic plotting and
image processing and facilitates the research methodology. As mentioned earlier [106],
the main advantage of scripts consists in automation of the process and repeatability of
the workflow, which saves time. Using the information received from the automated
image analysis and interpretation, we were able to detect the changes in the analysis of
the landscapes of eastern Mozambique for evaluation of the environmental effects from
climate change. This was achieved through a time series analysis of the satellite images
taken for different years (2015–2023).

First, the GRASS GIS was started from the console, and then, the bands of the Landsat-
8 OLIimage on 2015 were imported stepwise using the ‘r.import’ module, as shown in
the script of Listing 1. The same algorithm was repeated for the Landsat images for 2018
and 2023.

Listing 1. GRASS GIS code for importing satellite images.

1 grass
2 r.import input=/ Users/polinalemenkova/grassdata/Mozambique/

LC08_L2SP_167074_20150709_20200909_02_T1_SR_B1.TIF output=L8_2015_01 extent=
region resolution=region

3 r.import input=/ Users/polinalemenkova/grassdata/Mozambique/
LC08_L2SP_167074_20150709_20200909_02_T1_SR_B2.TIF output=L8_2015_02 extent=
region resolution=region

4 r.import input=/ Users/polinalemenkova/grassdata/Mozambique/
LC08_L2SP_167074_20150709_20200909_02_T1_SR_B3.TIF output=L8_2015_03 extent=
region resolution=region

5 r.import input=/ Users/polinalemenkova/grassdata/Mozambique/
LC08_L2SP_167074_20150709_20200909_02_T1_SR_B4.TIF output=L8_2015_04 extent=
region resolution=region

6 r.import input=/ Users/polinalemenkova/grassdata/Mozambique/
LC08_L2SP_167074_20150709_20200909_02_T1_SR_B5.TIF output=L8_2015_05 extent=
region resolution=region

7 r.import input=/ Users/polinalemenkova/grassdata/Mozambique/
LC08_L2SP_167074_20150709_20200909_02_T1_SR_B6.TIF output=L8_2015_06 extent=
region resolution=region

8 r.import input=/ Users/polinalemenkova/grassdata/Mozambique/
LC08_L2SP_167074_20150709_20200909_02_T1_SR_B7.TIF output=L8_2015_07 extent=
region resolution=region

9 g.list rast

Second, the color composites were created using Listing 2 for false and natural color
composites with the case of an image from 2015. While true color composites show a
representation of the Earth visible naturally to human eyes, false color composites better
display selected features on the Earth (e.g., discrimination between water and land surfaces).
This is done through a combination of visible red, green, and blue bands that correspond to
the multispectral channels of the images.

Third, the next step included clustering the image using the ‘i.cluster’ module. The com-
putational region was set to the band of the Landsat image to match the scenes of the satellite
images. The bands of the Landsat channels were grouped using the ‘i.group’ module, which
is designed for grouping the data. The selected bands were used as grouped data during
the clustering process. The signature file was generated using the ’signaturefile’ command.
The image was classified into the 10 major classes of the classification scheme using the
information from FAO. The unsupervised automated classification was performed using
the ‘i.maxlik’ module. The complete script of this process is shown in Listing 3.
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Listing 2. GRASS GIS code for creating color composites.

1 r.composite blue=L8_2015_07 green=L8_2015_05 red=L8_2015_03 output=L8_2015_753 --
overwrite

2 d.mon wx0
3 d.rast L8_2015_753
4 d.out.file output=Mozambique_753 format=jpg --overwrite
5 # true color
6 r.composite blue=L8_2015_02 green=L8_2015_03 red=L8_2015_04 output=L8_2015_234 --

overwrite
7 d.mon wx0
8 d.rast L8_2015_234
9 d.out.file output=Mozambique_234 format=jpg --overwrite

10 # false color: NIR band B05 in the red channel , red band B04 in the green channel and
green band B03 in the blue channel

11 r.composite blue=L8_2015_03 green=L8_2015_04 red=L8_2015_05 output=L8_2015_345 --
overwrite

12 d.mon wx0
13 d.rast L8_2015_345
14 d.out.file output=Mozambique_345 format=jpg --overwrite

Listing 3. GRASS GIS code for grouping bands and clustering.

1 g.region raster=L8_2015_01 -p
2 i.group group=L8_2015 subgroup=res_30m \
3 input=L8_2015_01 ,L8_2015_02 ,L8_2015_03 ,L8_2015_04 ,L8_2015_05 ,L8_2015_06 ,L8_2015_07
4 i.cluster group=L8_2015 subgroup=res_30m \
5 signaturefile=cluster_L8_2015 \
6 classes =10 reportfile=rep_clust_L8_2015.txt --overwrite
7 i.maxlik group=L8_2015 subgroup=res_30m \
8 signaturefile=cluster_L8_2015 \
9 output=L8_2015_cluster_classes reject=L8_2015_cluster_reject --overwrite

Mapping and visualization of the output data was performed using a combination of
the GRASS GIS modules ‘d.rast’, ‘d.legend’, ‘r.colors’, ‘d.mon’, ‘g.region’, and ‘d.out.file’,
as shown for the Landsat image 2023 for a map produced using the classification and
accuracy assessment with rejection probability classes (Listing 4). The same procedure was
repeated for images taken in 2018 and 2023, respectively.

Listing 4. GRASS GIS code for data display, visualization and mapping.

1 d.mon wx0
2 g.region raster=L9_2023_cluster_classes -p
3 r.colors L9_2023_cluster_classes color=roygbiv -e
4 d.rast L9_2023_cluster_classes
5 d.legend raster=L9_2023_cluster_classes title=‘‘24 August 2023’’ title_fontsize =14

font=‘‘Helvetica ’’ fontsize =12 bgcolor=white border_color=white
6 d.out.file output=Mozambique_2023 format=jpg --overwrite

The accuracy assessment for the unsupervised classification was performed using the
’reject’ function of the ‘i.maxlik’ modules of GRASS GIS, which calculates the output raster
map holding the reject threshold results. The aim of this step is to evaluate the confidence
level at which each cell in the raster image is categorized during the classification process.
The algorithm generates the reject threshold map layer, which contains the index to a
computed confidence level for each classified pixel in the satellite scene. The predefined
confidence intervals include sixteen values. The rejection probability image indicated the
values of pixels between the acceptable at one, i.e., the pixel is kept up to 16, which means
that the pixel is rejected.

The final part of the workflow included the machine learning (ML) approach of
random forest (RF) classification of GRASS GIS, which was performed using a set of
modules: ‘r.random’, ‘r.learn.train’, ‘r.learn.predict’, ‘r.category’, and auxiliary modules of
data processing and visualization (Listing 5).
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Listing 5. GRASS GIS code for random forest classification of the Landsat 8–9 OLI/TIRS images
using machine learning (ML) approach of remote sensing data processing.

1 g.list rast
2 g.region raster=L8_2015_01 -p
3 r.random input=L8_2015_cluster_classes seed =100 npoints =1000 raster=training_pixels
4 # Next , create the imagery group with all Landsat -8 OLI/TIRS bands:
5 i.group group=L8_2015 input=L8_2015_01 ,L8_2015_02 ,L8_2015_03 ,L8_2015_04 ,L8_2015_05 ,

L8_2015_06 ,L8_2015_07 --overwrite
6 r.learn.train group=L8_2015 training_map=training_pixels model_name=

RandomForestClassifier n_estimators =500 save_model=rf_model.gz --overwrite
7 r.learn.predict group=L8_2015 load_model=rf_model.gz output=rf_classification
8 # check raster categories - they are automatically applied to the classification

output
9 r.category rf_classification

10 # copy color scheme from landclass training map to result and display
11 r.colors rf_classification raster=L8_2015_classes_roi
12 d.mon wx1
13 r.colors rf_classification color=plasma -e
14 d.rast rf_classification
15 d.legend raster=rf_classification title=‘‘Random Forest: 2015’’ title_fontsize =14

font=‘‘Helvetica ’’ fontsize =12 bgcolor=white border_color=white
16 d.out.file output=RF_Mozambique_2015 format=jpg --overwrite

The training of a random forest classification model was performed using ‘r.learn.train’.
The training data were generated from the previous step of land cover classification. The
scheme of the training pixels was applied to perform the classification on the target satellite
image. The prediction was performed using the ‘r.learn.predict’ module of the GRASS GIS.

4. Results

The color composites created using a combination of bands for false and natural color
composites are shown in Figure 5 with the case of an image from 2015. The image dates
were distributed throughout the important stages of the vegetation growth period in order
to obtain temporal profiles of each kind of land cover type to analyze the separability
among classes. The particular characteristics of Mozambique consists of its longitudinal
extent, with the coastline stretching for ca. 2000 km, 11◦ S to 27◦ S. Moreover, the effects
from tropical ocean currents were directed southwards along the length of the country
influence environmental setting. Therefore, regional characteristics naturally differ within
the country.

(a) 2015 (b) 2018 (c) 2023
Figure 5. Color composites of the Landsat-8 OLI/TIRS image on 2015 on the coastal region of Beira,
Mozambique: (a) Bands 7-5-3; (b) Bands 2-3-4; (c) Bands 3-4-5. Major band designations for the
Landsat-8 are Band 1—coastal aerosol; Band 2—blue; Band 3—green; Band 4—red; Band 5—near
infrared (NIR); Band 6—shortwave infrared (SWIR) 1; Band 7—shortwave infrared (SWIR) 2.

Weather patterns in Mozambique vary due to the global warming and increase in
temperature. Nevertheless, the whole country broadly follows a southern African weather
pattern: wet period with heavy rainy between November and March and dry period from
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April to late November. Since Mozambique has a tropical climate which has two distinct
seasons, the images were taken during the dry period. Better cloudiness conditions and
dense vegetation coverage were observed during dry season, as shown in the images.

The results of the classification are shown in Figure 6. They were used as training data
for the next step of random forest (RF) modeling, which requires seed data. The land cover
types include the following classes: (1) mosaic cropland vegetation, (2) artificial surfaces
and associated areas; (3) rain-fed croplands; (4) open grasslands; (5) sparse vegetation;
(6) broad-leaved deciduous woodland; (7) mosaic forests, grassland and shrubland;
(8) water areas; (9) needle-leaved deciduous evergreen forests; and (10) repeatedly or
permanently flooded lands in brackish waters with broad-leaved forests or shrub lands.
The coastal areas are characterized by grassland or woody vegetation distributed in areas
of soil regularly flooded by fresh, brackish, or saline water.

Figure 7 shows the result of a chi square test on the accuracy assessment of the
classification on each discriminant result at various threshold levels of confidence. The
aim of the chi square test is to determine if a correlation exists between two qualitative
variables and if the existing associations are statistically significant. When using the
maximum likelihood classification method to classify the land cover types, the accuracy of
the classification depends on the quality of the training dataset and technical parameters of
the satellite image. Thus, evaluating the accuracy analysis presents an important step in
classification. The approach to accuracy assessments is based on the function embedded in
‘i.maxlik’, where pixels are classified according to the probability of their correct assignment
to each land cover class.

(a) 2015 (b) 2018 (c) 2023
Figure 6. Classified Landsat-8–9 OLI/TIRS images on the coastal region of Beira, Mozambique,
partitioned into 10 classes using k-means clustering approach: (a) 2015; (b) 2018; (c) 2023.

As can be seen in Figure 7 showing reject threshold results, the lowest rejection
values on the raster maps for three years—2015, 2018 and 2023—indicate the correctly
classified pixels while the highest rejection values indicate the erroneously classified pixels.
The analysis of Figure 7 indicates that the majority of the correctly indicated pixels belongs
to the river and inner water classes as well as vegetation types with distinct separability
properties. In contrast, the least secure pixels belong to the tidal region in the coastal waters
due to the spectral properties of shelf water areas where pixels might be misclassified and
with other land cover types due to the high similarity of spectral reflectance values.

This method is suitable for providing a sufficient estimation on the accuracy of training
samples that were used for the final steps of classification using random forest. The resulting
images of the random forest classification of Landsat 8–9 OLI/TIRS images by the ML
approach of GRASS GIS for the years 2015, 2018, and 2023 are presented in Figure 8.
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(a) 2015 (b) 2018 (c) 2023
Figure 7. Accuracy assessment using the rejection probability for pixels classified using k-means
clustering method for Landsat 8–9 OLI/TIRS images on the coastal region of Beira, Mozambique:
(a) 2015; (b) 2018; (c) 2023.

(a) 2015 (b) 2018 (c) 2023
Figure 8. Random forest classification using machine learning (ML) approach of GRASS GIS for the
Landsat 8–9 OLI/TIRS images on coastal region of Beira, Mozambique: (a) 2015; (b) 2018; (c) 2023.

Figure 8 shows the results of the land cover type classification of the coastal region
of Mozambique performed using the RF classifier approach of the ML method in GRASS
GIS. The land cover types in Mozambique were selected for random forest classification
with the estimator settings tab, providing access to the most pertinent parameters. These
affect the previously described algorithms, where landscape patches were classified using
the maximum likelihood classifier. The embedded Scikit-Learn library of Python contents
provide the estimator parameters that are supplied for classification. These parameters
were tuned using a grid search in the Landsat raster maps by inputting multiple regressors.
This enabled us to indicate the representativeness of the land cover classes, uniformity or
heterogeneity of patches, and the classification of pixels located far from the edges of the
raster scene.

The ML approach by the Scikit-Learn library of Python ensures that the confusion of
image pixels is avoided as much as possible compared to traditional classification methods.
Moreover, training pixels generated during clustering and used to perform the RF-based
classification separated the images into clusters of pixels. These groups were used both as a
decision tree training seed dataset for random forest classifiers and as a post-classification
accuracy assessment. In this way, the RF method avoided biased reference information of
the group of pixels.

5. Discussion

In this study, the ML method of random forest classification of GRASS GIS was applied
for the processing and analysis of three Landsat 8–9 OLI/TIRS images with the aim of
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land cover mapping in the coastal region of the Bight of Sofala, Mozambique. Quantitative
image processing and interpretation are not easy tasks due to the complex function of
multiple factors. These include, for instance, technical parameters of the image (sun, sensor,
and target geometry), regional environmental effects (cloudiness, wetness, heterogene-
ity, diversification and fragmentation of landscapes, topographic ruggedness, and slope
curvature) as well as sensitivity to leaf characteristics [107]. The ML approach of GRASS
GIS enabled us to perform a quantitative image classification using the random forest
algorithm, which evaluated the similarity of pixels and assigned them into classes using the
‘r.learn.train’ module. The statistical information was obtained from the raster data analysis
to represent the land cover types in Mozambique for the years 2015, 2018, and 2023.

Such an algorithm enabled us to model clusters of pixels, which were used to compare
the climate effects that cause changes in land cover classes and lead to spatio-temporal
landscape dynamics. This was achieved using the ensemble classification achieved by the
random forest approach. Each tree in this ensemble was based on a random subsample of
the training data that were initially obtained using the unsupervised classification as a part
of data processing. This work is comparable with investigations performed by the authors
of related works, for instance, those in [108,109].

Similar research [110–112] investigated the complementarities of the ML approach for
mapping coastal regions using a set of multi-resolution imagery from the Sentinel-2 Multi-
spectral Instrument (MSI) and Landsat-8 OLI. To continue these studies, the experiments
on image processing using the random forest approach reported in this article investigated
the landscape dynamics in the study area of eastern Mozambique. This was achieved using
a randomly selected subset of the predictors available during each node split in the ML-
based classification method of GRASS GIS. Other studies [113–115] used a neural network
as a technical approach to the classification of vegetation and land cover types. Such a
technique of remote sensing data processing aims to classify the land cover types using ML
methods and reports high accuracy. Hence, we used the emerging technologies of scripts
and programming algorithms for image processing through a set of GRASS GIS modules.

The demonstrated workflow was developed using a short series of the Landsat im-
ages. These images had various combinations of pixels which were evaluated by the ML
methods to analyze the land cover changes using prediction analyses. Each tree of the
algorithm produced a prediction. The final result of the image analysis was obtained by
selecting the mean values across all of the trees in the Landsat image raster using computer
vision. In other studies, a decision tree classifier was adopted to the RS data processing for
automatic classification using diverse software. For instance, ref. [116] used the ensemble
techniques of boosting and consensus filtering of the training data to improve the quality
of the training dataset. Ref. [117] compared the integrated use of the three classification
schemes based on RF, DL neural network, and convolutional neural network to distinguish
urban, natural, and heterogeneous landscape patches. Likewise, the ExtraTreesClassi-
fier has been used as a variant of the GRASS GIS ML algorithm. Here, each node split
during image processing includes the selected splitting rule, which is based on the most
optimal solution.

Such optimization applied to several randomly generated thresholds by the random
forest method presented advantages over the traditional unsupervised methods of image
classification when generating classes for image classification. For instance, ref. [118] re-
ports that the parameter-adjusted decision tree ensembles and RF ensembles performed
well for image segmentation and supervised and outperformed other approaches. Likewise,
the updates in the algorithms were reported using the improved decision tree algorithm
based on the fuzzy approach for a technical improvement in the performance [119]. Al-
though the study presented here is not intended to suggest that scripting methods replace
the traditional GIS, the integration of the scripting workflow of GRASS GIS with a satellite
image analysis and cartographic plotting provides a more effective approach. This study
demonstrated that the programming codes supplement the traditional cartographic meth-
ods used in the remote sensing software for monitoring coastal areas. Moreover, this work
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illustrated how the analysis of land cover changes can be visualized in the automatic way
using ML algorithms of GRASS GIS.

6. Conclusions

The application of programming for RS data processing provides new perspectives in
cartographic data processing. Such approaches are useful for mapping complex landscapes
in the entanglement of human-based factors and environmental processes that affect coastal
ecosystems. In view of this, the current study presented advanced mapping approaches
to spatial analysis and visualization of the RS data. The use of the ML and intelligence
classifiers of GRASS GIS increased the accuracy and precision of the produced thematic
maps through the high level of automation. Moreover, it improved the performance
of tasks using diversified modules and the application of RF algorithms for land cover
classifications. The satellite images were classified using the unsupervised and supervised
methods of the ML modules of GRASS GIS, including the random forest classifier.

The Bight of Sofala, located in the eastern coastal part of Mozambique, was selected as
the test area due to the variability and high heterogeneity of landscapes with a complex
mosaic of landscape patches. Ten types of land cover classes were identified on the Landsat
satellite images collected in the years 2015, 2018, and 2023. The data were classified using
the random forest algorithm of the machine learning (ML) methods supported by the
Scikit-Learn library of Python integrated with GRASS GIS. The clustering approach of
the machine-based classification was employed for training and validation of the result
of the RF classification. The benefits of the RS data used for environmental monitoring
consist of the fact that they provide an efficient way to map and visualize remotely located
regions such as coastal regions in East Africa. Scripts used as a methodological benchmark
of the automated image processing and cartographic workflow enabled us to focus on the
analysis of the coastal landscapes of Mozambique.

The coastal region of the Bight of Sofala and its surroundings were analyzed using the
classified series of satellite images in Landsat with the applied methods of automated data
analysis of the ML approach. The advantage of the proposed algorithms of GRASS GIS
scripts consists of their repeatability and applicability. The use of the supervised classifi-
cation by the ‘r.learn.train’ module can be extended to other regions and environmental
applications where satellite image processing is required. In this way, the ML method
classification of landscapes can be applied in studies that use a multi-temporal set of im-
ages. The advanced approach of the GRASS GIS scripts was introduced to evaluate the
environmental properties of the coastal landscapes of Mozambique. Changes in land cover
types caused by climate effects in East Africa were visualized using image processing by
the GRASS GIS modules ‘r.learn.train’ , ‘i.cluster’, ‘i.maxlik’, and other auxiliary modules.

The results visualize the dynamical behavior of land cover types in the coastal land-
scapes of Mozambique caused by climate effects, which act as drivers for desertification
and land degradation in the coastal ecosystems of East Africa. We also discussed the ways
in which the ML methods technically contrast with the traditional methods of the unsuper-
vised classification. For instance, these use k-means clustering as an approach to image
analysis for evaluating landscape changes using a series of images taken on different dates.
Thus, it has been demonstrated that the ML approach of GRASS GIS has high automation
in the sequential image processing workflow, which enables the effective use of RS data for
environmental monitoring of coastal regions.
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Abbreviations
The following abbreviations are used in this manuscript:

AVHRR Advanced Very High Resolution Radiometer
CCTools Cooperative Computing Tools
DCW Digital Chart of the World
DL Deep Learning
DN Digital Numbers
FAO Food and Agriculture Organization
GDAL Geospatial Data Abstraction Library
GEBCO General Bathymetric Chart of the Oceans
GRASS Geographic Resources Analysis Support System
GIS Geographic Information System
GCC GNU Compiler Collection
GMT Generic Mapping Tools
Landsat OLI/TIRS Landsat Operational Land Imager and Thermal Infrared Sensor
Landsat MSS Multispectral Scanner
Landsat TM Landsat Thematic Mapper
ML Machine Learning
NIR Near Infrared
NOAA National Oceanic and Atmospheric Administration
RF Random Forest
Sentinel MSI Sentinel Multispectral Instrument
SPOT Satellite Pour l’Observation de la Terre
SRTM Shuttle Radar Topography Mission
SWIR Shortwave Infrared
ToAR Top-of-Atmosphere Radiances
USGS United States Geological Survey
UTM Universal Transverse Mercator
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