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Abstract: We introduce the Open Research Knowledge Graph Agriculture Named Entity Recognition
(the ORKG Agri-NER) corpus and service for contribution-centric scientific entity extraction and
classification. The ORKG Agri-NER corpus is a seminal benchmark for the evaluation of contribution-
centric scientific entity extraction and classification in the agricultural domain. It comprises titles
of scholarly papers that are available as Open Access articles on a major publishing platform. We
describe the creation of this corpus and highlight the obtained findings in terms of the following
features: (1) a generic conceptual formalism focused on capturing scientific entities in agriculture that
reflect the direct contribution of a work; (2) a performance benchmark for named entity recognition
of scientific entities in the agricultural domain by empirically evaluating various state-of-the-art
sequence labeling neural architectures and transformer models; and (3) a delineated 3-step automatic
entity resolution procedure for the resolution of the scientific entities to an authoritative ontology,
specifically AGROVOC that is released in the Linked Open Vocabularies cloud. With this work we
aim to provide a strong foundation for future work on the automatic discovery of scientific entities in
the scholarly literature of the agricultural domain.

Keywords: information extraction; named entity recognition; natural language processing; dataset;
sequence labeling; scholarly knowledge graphs; open research knowledge graph

1. Introduction

Scientific innovations drive progress in companies, industries and the economy. Cur-
rently, the scholarly publication cycles are at an alarming rate of 2.5 million articles per
year [1]. Thus, the traditional documents ranked lists offered by scholarly search engines
no longer support efficient research and development (R&D). While they pinpoint indi-
vidual papers of interest from a mass of documents, they do not offer researchers a sense
of an overview of the field. Researchers seem to drown in the deluge of publications
as a consequence of the tediously long information assimilation cycle to manually scan
salient aspects of research contributions within information buried in static text. Thus,
enabling machine-actionability of scholarly knowledge is warranted now more than ever.
In this vein, the method of scholarly knowledge strategic reading powered by Natural
Language Processing (NLP) is being advocated for research, business, government, and
non-governmental organization (NGO) stakeholders [2]. Most current strategic reading
relies on human recognition of scientific terms from text, perhaps assisted with string search-
ing and mental calculation of ontological relationships, combined with burdensome tactics
of bookmarking, note-taking, and window arrangement. To this end, recently, an increasing
number of research efforts are geared toward putting in place next-generation Findable,
Accessible, Interoperable, and Reusable (FAIR) [3] scholarly knowledge representation
models as Knowledge Graphs (KGs) [4,5]. They advocate advanced semantic machine-
interpretability of publications via KGs to enable more intelligent automated processing
(e.g., smart information access). This development started in advanced scholarly digital
libraries (DL) such as the Open Research Knowledge Graph (ORKG, https://orkg.org/,
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accessed on 14 January 2024) [5], that crowdsources templated research contributions re-
sulting in tabulated surveys of comparable contributions (cf. Figure 1), thus demonstrates
strategic reading in practice.

Figure 1. Demonstration of strategic reading of machine-actionable representations of 3 scholarly
contributions on the problem of Question Answering in the Open Research Knowledge Graph
(ORKG), which generates aggregated comparative views from the graph-based semantic research
contribution descriptions.

To represent scholarly publications as KGs, from an Information Extraction (IE) per-
spective, named entity recognition (NER) over scholarly publications becomes a vital task
since entities are at the core of KGs. As an IE task, NER over scholarly documents is a
long-standing task in the NLP community–the Computer Science domain itself has been
addressed over a wide body of works with various knowledge capture objectives [6–19].
However, this well-established research area [20–23], thus far, has not seen any practical
applications in the Agricultural scholarly publications domain.

In the domain of agriculture, the gradual sophistication of food production and
agricultural methods led to an increasing demand for data exchange, processing and in-
formation retrieval. Thus the recording of knowledge as information islands via manual
notetaking had to evolve to the recording of relational knowledge in databases via pro-
tocols. These protocols facilitated standardized recording and exchange of knowledge
between different databases via purposefully invented data dictionaries and coding sys-
tems that assigned simple alphanumeric codes to products, varieties, breeds or crops. E.g.,
the ISOBUS [24]/ISO11783 [25] data dictionary or the European and Mediterranean Plant
Protection Organization (EPPO) codes of crops used for plant protection applications [26].
Today, however, we are faced with not only sophisticated agricultural practices but also vo-
luminous masses of agricultural research findings published worldwide. Hence the call for
the adoption of next-generation semantic web publishing model [27] of machine-actionable,
structured scholarly contributions content via the ORKG platform. Within this model,
a large-scale agricultural KG would be predicated on standardized templated subgraph
patterns for recording interoperable structured scholarly contributions in agriculture. The
custom-templated subgraphs ensure the standardized recording of comparable research
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contributions in an overarching interoperable graph of highly varied underlying research
domains. The research domains can include appraisals of agricultural products, e.g., A
chemotaxonomic reappraisal of the Section Ciconium Pelargonium (Geraniaceae) [28], or
the restoration and management of plant systems, e.g., mangrove systems. Table 1 lists
15 sub research domains of contemporary research in agriculture. An information mod-
eling objective ensures capturing contributions under a uniform set of salient properties
within a single domain, while allowing for the definition of varied sets of salient properties
across domains. This enables machine-assisted strategic reading within the semantic web
publishing model directly addressing the information ingestion problem over massive
volumes of findings for the researchers by smart machine assistance. E.g., as structured
contribution comparisons computed over the set of salient contribution properties in one
domain as depicted in Figure 1.

Table 1. A listing of 15 different research domains in the table columns that were observed in a corpus
of 5500 scholarly publication titles in Agriculture.

Agriculture Research Domains

fertilizers different natures of agricultural produc-
tion communities such as the winter-
rainfall desert community

restoration and management of plant
systems

microalgae refineries first reports on plant findings investigation of biochemical activities in
plant species

climatic factors such as fires affecting
food production

appraisals of agricultural products in vitro cultivation of plant species

land degradation and cultivation research competitive growth advantages of
paired cultivation

characterizing seeds or plant species

antibacterial and chemical byproducts
from plants

creation of taxonomic lists of crops importing new plant species across regions

The road to discovering contribution templates for research domains should be based
on a set of generic entity types being applicable across all domains that can be further
specialized and instantiated as domain-specific, full-fledged templates. In other words,
prior to obtaining research-domain-specific contribution template patterns, there needs
to be put in place a standardized set of generic entity types that can foster the further
development of the problem-specific contribution templates constituted by additional
semantic properties. As such the Agriculture Named Entity Recognition service of the
ORKG (the ORKG Agri-NER service), addressed seminally in this work, proposes a set
of seven generic entity types that encapsulate the contribution of a work extracted from
paper titles. The seven contribution-centric entity types are: RESEARCH PROBLEM, RESOURCE,
PROCESS, LOCATION, METHOD, SOLUTION, and TECHNOLOGY. Building on this idea, this
study makes two novel key contributions: (1) we propose for the first time an NER service
specifically tailored for the agricultural domain; and (2) predicated on seven contribution-
centric entities derived from paper titles and inspired from the top-level concepts of the
AGROVOC ontology (https://agrovoc.fao.org, accessed on 14 January 2024) of the Food
and Agriculture Organization of the United Nations (FAO, https://www.fao.org/home/
en/, accessed on 14 January 2024), we lay the groundwork for the discovery of domain-
specific contribution templates for the further specification of the generic entity types.

The ORKG Agri-NER service is an IE system of seven entity types such as research
problems, resources, location of study, etc., which since extracted from paper titles implicitly
encapsulate the contributions of scholarly articles. Conceptually, the shared understand-
ing around paper titles is that they are succinct summarizations of the contribution of a
work [18]. Thus when looking to formulate a contribution-centric entity extraction objective,
the first place to seek out this information is from paper titles. Specifically, ORKG Agri-NER
provides a conceptual ecosphere of seven entity types to begin to generically structure and

https://agrovoc.fao.org
https://www.fao.org/home/en/
https://www.fao.org/home/en/
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compare the contributions of scholarly articles in the domain of Agriculture as illustrated
in Figure 2. A striking feature of the proposed work is that it supports retrieving, exploring
and comparing research findings based on explicitly named entities of the knowledge
contained in agricultural scientific publications. If applied widely, ORKG Agri-NER can
have a significant impact on scholarly communication in the agricultural domain. It specifi-
cally addresses researchers who want to compare their research with related works, get an
overview of works in a certain field, or search for research contributions addressing a par-
ticular problem or having certain characteristics. Figure 3 gives a high-level overview of the
proposed semantic model by showing the seven core entity types in Agri-NER. The ORKG
Agri-NER service then is the first step in a long-term research agenda to create a paradigm
shift from document-based to structured knowledge-based scholarly communication for
the agricultural domain. Other than the discovery of contribution-centric template patterns
in the ORKG, the machine-readable description of research knowledge in the seven entity
types could support other services for analyzing scientific literature in the agricultural do-
main such as forecasting agricultural research dynamics, identifying key insights, informing
funding decisions, and confirming claims in news on contemporary agricultural research.
To facilitate further research, we contribute two resources to the community: (1) The
ORKG Agri-NER human-annotated gold-standard corpus which can be downloaded at
https://github.com/jd-coderepos/contributions-ner-agri (accessed on 14 January 2024) un-
der the CC BY-SA 4.0 license; and (2) The ORKG Agri-NER tool whose source code can be ac-
cessed at https://gitlab.com/TIBHannover/orkg/nlp/experiments/orkg-agriculture-ner
(accessed on 14 January 2024) under the MIT license, and which furthermore are available
as services to the community in two ways–the python package version of the service can
be accessed at https://orkg-nlp-pypi.readthedocs.io/en/latest/services/services.html
(accessed on 14 January 2024); also, it is possible to directly interact with the REST API
for the Agri-NER service directly via the interaction documentation page at https://orkg.
org/nlp/api/docs#/annotation/annotates_agri_paper_annotation_agriner_post (accessed
on 14 January 2024). The remainder of the paper explains both the creation of the dataset
resource and tool in detail.

Figure 2. Transition from document-based to contribution-centric named entity recognition service-
powered knowledge-based scholarly communication.

https://github.com/jd-coderepos/contributions-ner-agri
https://gitlab.com/TIBHannover/orkg/nlp/experiments/orkg-agriculture-ner
https://orkg-nlp-pypi.readthedocs.io/en/latest/services/services.html
https://orkg.org/nlp/api/docs#/annotation/annotates_agri_paper_annotation_agriner_post
https://orkg.org/nlp/api/docs#/annotation/annotates_agri_paper_annotation_agriner_post
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Figure 3. The seven core concepts proposed to capture contributions from scholarly articles in the
Agriculture domain.

2. Background

“Semantic Web ... does not require complex artificial intelligence to interpret
human ideas, but ‘relies solely on the machine’s ability to solve well-defined
problems by performing well-defined operations on well-defined data’ ”. [27,29]

The FAIRification guidelines [3] for scholarly knowledge publishing inadvertently
advocates for adopting semantic models for machine-actionable knowledge capture of
certain aspects of the article content such that they are findable, actionable, interoperable,
and reusable. Ontological or entity-centric conceptual schemas are an elegant demon-
stration of what “going FAIR” (https://www.go-fair.org/fair-principles/, accessed on 14
January 2024) means in practice across the broad spectrum of the researchers landscape
as long as they are involved in the publication of their work. These schemas, by going
beyond ‘data’ in the conventional sense, and instead applying to algorithms, tools, and
workflows that lead to the data which are traditionally captured in discourse text, bring
the recording of these aspects of scholarly knowledge in the FAIR landscape. Thereby,
transparency, reproducibility, and reusability of scholarly analytical pipelines are fostered.
Broadly, the research paradigms around the generation of FAIR data can be classified into
two broad types: (1) ontological models that can directly produce FAIR-compliant data
when instantiated; and (2) informal conceptual annotation models which are not character-
istically FAIR-compliant but which work on data instances that support the discovery of
ontologies in a bottom-up manner. These models equip experts with a tool for semantifying
their scholarly publications ranging from strictly-ontologized methodologies [30,31] to
less-strict, flexible conceptual description schemes [7,17], wherein the latter aim toward the
bottom-up, data-driven discovery of an ontology.

The remainder of this section is organized per these two broad paradigms.

2.1. Ontological Structuring of Scholarly Publications

Early works can be traced to the Dublin Core Metadata Terms (DCTerms) [32] ontology
(http://purl.org/dc/terms/, accessed on 14 January 2024). The original “Dublin Core”
was the result of a March 1995 workshop in Dublin, Ohio, which sought to define a generic
metadata record that was generic enough to describe a wide range of electronic objects [33].
Subsequent ontologies specifically modeled scholarly articles but inherited DCTerms in an
upper-level ontology space.

Some ontologies focused on modeling the scholarly document structure and rhetorics.
In this vein, the Document Components Ontology (DoCO) [34] is an ontology for describing
both structural and rhetorical document components in RDF. For structural annotations,
DoCO imports the Document Structural Patterns Ontology (https://sparontologies.github.
io/po/current/po.html, accessed on 14 January 2024) with classes such as Sentence, Para-
graph, Footnote, Table, Figure, CaptionedBox, FigureBox, List, BibliographicReferenceList
etc. The pattern ontology defines formally patterns for segmenting a document into atomic

https://www.go-fair.org/fair-principles/
http://purl.org/dc/terms/
https://sparontologies.github.io/po/current/po.html
https://sparontologies.github.io/po/current/po.html
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components, in order to be manipulated independently and reflowed in different con-
texts. For the rhetorical annotations, DoCO imports the Discourse Elements Ontology
(https://sparontologies.github.io/deo/current/deo.html, accessed on 14 January 2024)
which was written describing the major rhetorical elements of a document such as a jour-
nal article. Its classes include deo:Introduction, deo:Materials, deo:Methods, deo:Results,
deo:RelatedWork, deo:FutureWork, etc. These rhetorical components give a defined rhetori-
cal structure to the paper, which assists readers to identify the important aspects of the paper.
DEO reuses some of the rhetorical blocks from the SALT Rhetorical Ontology [35] and ex-
tends them by introducing 24 additional classes. In the context of structural and rhetorical
organization of scholarly articles, it was noted that the rhetoric organization of a paper
does not necessarily correspond neatly to its structural components (sections, paragraphs,
etc.). The Ontology of Rhetorical Blocks (orb) [36] introduces rhetorical classes to seman-
tify sections of scholarly publications. Eg., orb:Introduction, orb:Methods, orb:Results,
orb:Discussion to structure the Body of an article inspired after the IMRAD structure [37].
The hypothesis preceding this ontology is that the coarse rhetoric emerging from publi-
cations’ content have commonly shared semantics. Thus ORB provided a minimal set
of rhetorical blocks that could be leveraged from the Header, Body, and Tail of scholarly
publications. The Ontology of Scientific Experiments [38], EXPO, advocated that the de-
velopment of ontology of experiments–which are testbeds for cause-effect relations–is a
fundamental step in the formalization of science. Reported scientific findings with their
salient attributes buried in discourse is made explicit increasing the findability of problems
with formal, semantic annotations supported by EXPO. It then constitutes the intermediate
layer of a general ontology of scientific experiments with ontological concepts such as
experimental goals, experimental methods and actions, types of experiments, rules for
experimental design, etc., that are common between different scientific areas.

With the ontologies discussed, one observes that each ontology defines an information
scope for formalization. The current level of formalization varies greatly in granularity and
between the sciences. Ontology reuse [39] addresses in a sense the extent to which general-
ization or specification can occur depending on the level of the ontology model they are
applied in, nonetheless is a key realizer in what would otherwise seem an impossible goal
to design an ontology for Science. One of the first attempts to address the description of the
whole publishing domain is the introduction of the Semantic Publishing and Referencing
(SPAR) ontologies (http://www.sparontologies.net/, accessed on 14 January 2024). SPAR
is a suite of orthogonal and complementary OWL2 ontologies that enable all aspects of
the publishing process to be described in machine-readable metadata statements, encoded
using RDF. It includes FaBiO, CiTO proposed by [40], BiRO, C4O proposed by [41], among
others. Another noteworthy example that followed best practices in ontology development
by reusing related ontologies [39] listed in the Linked Open Vocabularies (LOV) was Sem-
sur, the Semantic Survey Ontology, proposed by [30,42]. It introduced the semantification
model for survey articles as a core ontology for for describing individual research problems,
approaches, implementations and evaluations in a structured, comparable way. It modeled
metadata based on DCTerms, Semantic Web for Research Communities (SWRC) [43] and
Friend of a Friend (FOAF) (http://xmlns.com/foaf/0.1/, accessed on 14 January 2024)
ontologies. The inner structure of scientific articles was partially modeled by Discourse Ele-
ments Ontology (DEO) (http://www.sparontologies.net/ontologies/deo, accessed on 14
January 2024) and Linked Science Core (LSC) [44] to model publication workflows. Survey
articles have been the traditional method for documenting overview of research progresses.
However with the document-based publishing model, much of the data points presenting
research progress remained buried in discourse, as a result were forever statically encoded.
Semsur aimed to offer machine-actionability to these key resources.

2.2. Entity-Centric Annotation Models of Scholarly Publications

The trend towards scientific terminology mining methods in NLP steered the release
of phrase-based annotated datasets in various domains. An early dataset in this line of

https://sparontologies.github.io/deo/current/deo.html
http://www.sparontologies.net/
http://xmlns.com/foaf/0.1/
http://www.sparontologies.net/ontologies/deo
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work was the ACL RD-TEC corpus [8] which identified seven conceptual classes for terms
in the full-text of scholarly publications in Computational Linguistics, viz. Technology and
Method; Tool and Library; Language Resource; Language Resource Product; Models; Measures
and Measurements; and Other. Another dataset focused on the research dynamics discovery
around scientific terminology in Computational Lingistics included the FTD corpus [7]
annotated with Focus, Task and Domain of application entity types. Similar to terminology
mining is the task of scientific keyphrase extraction. Extracting keyphrases is an impor-
tant task in publishing platforms as they help recommend articles to readers, highlight
missing citations to authors, identify potential reviewers for submissions, and analyse
research trends over time. Scientific keyphrases, in particular, of type Processes, Tasks and
Materials were the focus of the SemEval17 corpus annotations [10]. The dataset comprised
annotations of the full text articles in Computer Science, Material Sciences, and Physics.
Following suit was the SciERC corpus [12] of annotated abstracts from the Artificial Intelli-
gence domain. It included annotations for six concepts, viz. Task, Method, Metric, Material,
Other-Scientific Term, and Generic. Subsequently, based on this conceptual formalism, large-
scale knowledge graphs such as AI-KG [14] and CS-KG [45] were generated. Recently,
tackling the multidisciplinary discovery of entities, the STEM-ECR corpus [15] was intro-
duced notably including the Science, Technology, Engineering, and Medicine domains. It
was annotated with four generic concept types, viz. Process, Method, Material, and Data
that mapped across all domains, and further with terms grounded in the real-world via
Wikipedia/Wiktionary links. Furthermore, along the lines of the motivation of Agri-NER
is the CS-NER service [18,19] that addresses the extraction of seven contribution-centric
entities applicable in the Computer Science research field, viz. Research problem, Resource,
Method, Tool, Dataset, Language, and Solution entity types from Computer Science paper
titles and abstracts. These seven entity types were proposed to foster the discovery of
research-domain-specific contribution templates in Computer Science.

Leaderboards construct of progress trackers taken up for the recording of results in the
field of empirical Artificial Intelligence (AI) at large is a case in point of the development
of templates arising from contribution-centric entities. This construct underlies the Pa-
persWithCode https://paperswithcode.com/ (accessed on 14 January 2024) framework,
as well as the ORKG Benchmarks https://orkg.org/benchmarks (accessed on 14 January
2024) feature. The construct defines the recording of results around four entity types viz.
Task, Dataset, Metric, and Score from the full text of scholarly articles. The entities were then
combined within the full-fledged semantic construct of a Leaderboard with between three
or all four types for machine learning [13,17,46–48].

The Agri-NER service is situated within this latter broad paradigm of obtaining
structured comparable, FAIR descriptions of scholarly contributions for the agricultural
domain with the aim of bottom-up discovery of template patterns. However, it also relies
on the first paradigm of scholarly knowledge structuring by mapping the automatically
extracted terms to the AGROVOC ontology [49] which offers a controlled vocabulary
designed to cover unambiguous semantic descriptions for terminology under the FAO’s
areas of interest. The following desiderata guided the creation of Agri-NER. (1) Manual
curation of Agriculture named entities from 5500 article titles that reflect the contribution
of a work enabling machine learning model training and development. (2) Associating
terms within the AGROVOC ontology allowing for conceptual enrichment for the terms.
(3) Allowing for ongoing, collaborative expert curation of named entities termwise and for
their typing. (4) Juxtaposing a contribution-centric information extraction objective with
term standardization in ontologies - why a simple term normalization against authoritative
ontologies does not serve the objective of obtaining contribution-centric models? The rest
of paper discusses how these requirements were accomplished.

In essence, our work’s focus on FAIR principles, advanced NLP techniques, and
the integration of machine-actionable knowledge capture aligns well with the core tenets
of Industry 5.0, specifically in terms of its influence on agriculture [50,51]. Industry 5.0
emphasizes personalized and sustainable solutions, blending human-centric approaches

https://paperswithcode.com/
https://orkg.org/benchmarks
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with advanced technological innovations [52]. The focus of the ORKG Agri-NER service,
proposed in this work, on creating interoperable, reusable, and machine-interpretable
models of scholarly contributions in agriculture fits into this paradigm by enabling more
nuanced, efficient, and collaborative research practices. This approach can lead to more
tailored agricultural practices and innovations, reflecting the personalized and sustainable
ethos of Industry 5.0.

3. Materials and Methods

This section details the research methodology followed to develop the ORKG Agri-
NER service. Our approach aligns with the typical methods used in Computer Science
(CS) research within the field of NLP. This paper specifically addresses the development of
a machine learning system for the automatic extraction of agricultural research-relevant
entity types from scholarly articles, contributing to the ORKG database. The methodology
adopted here is empirical and consists of four primary steps. The initial step involved
defining the Agri-NER objective by selecting appropriate entity types pertinent to agri-
culture, based on theoretical considerations of various entity source types. This process
is thoroughly explained in Section 3.1. Subsequently, from the theoretically identified
entities, a set of seven specific entity types were chosen to formalize the ORKG Agri-NER
goal, which we then defined. The chosen entity types and their definitions are detailed in
Section 3.2.1. The third step entailed creating a human-annotated, gold-standard corpus of
paper titles tagged with these seven entity types. Our aim was to build a corpus of high
quality and size to facilitate the development of effective and robust machine learning
models, as elaborated in Section 3.2.2. The final step involved training a machine learning
system using this annotated corpus, which is discussed comprehensively in the dedicated
section, Section 4.

3.1. Theoretical Paradigm: The AGROVOC Ontology and the ORKG Agri-NER Model

The work discussed in this paper seeks to integrate two paradigms of information rep-
resentation: ontologized knowledge indexing supported by the AGROVOC ontology [49],
and contribution-centric entity-based knowledge extraction supported by the ORKG Agri-
NER model. The latter is the focus of this work. In both projects, the source material is taken
from scholarly publications. The domain in both contexts is Agriculture where it is known
that AGROVOC domain coverage is an amalgamation of the following related domains,
viz. Agriculture, Fisheries, Forestry, and Environment. Detailed information about the
respective projects i.e., AGROVOC [53–56] and ORKG [5,57] can be obtained elsewhere.

In a system like the ORKG (https://orkg.org/, accessed on 14 January 2024), it is
impossible to exhaustively predict in advance which entity types will be needed to se-
mantically model scholarly contributions in the vast domain of Agriculture. The list of
entity types, for instance, is in principle open-ended for the main reason that scholarly
innovations are continuously made. However, this implication also holds true for the
AGROVOC ontology since, as research progresses, the existing agricultural terminology is
constantly evolving, on the one hand, and new concepts are constantly discovered, on the
other hand. In the context of the ORKG, our initial hypothesis is that starting out with an
initial set of candidate entity types in Agri-NER as recommendations offer researchers a
rough sketch to design templates aggregating one or more of the suggested entity types and
define new types in addition to standardize the process of describing innovations across
research papers addressing the same research problem or in the same domain, for instance.
Given this, the workflow of Agri-NER will be constantly evolving as new entity types
introduced by researchers describing their contributions will be periodically reviewed and
fed back as input to retrain the models. In a sense, the evolution of AGROVOC is indeed
based on the same principles.

Finally, we note that the notion of entity types from Agri-NER and concepts in
AGROVOC are not equivalent. A concept in AGROVOC pertains to a real-world entity with
alternate names. E.g., Maize https://agrovoc.fao.org/browse/agrovoc/en/page/c_12332

https://orkg.org/
https://agrovoc.fao.org/browse/agrovoc/en/page/c_12332
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(accessed on 14 January 2024) is a concept in AGROVOC with alternate names such as
“corn”. In contrast, entity types in ORKG Agri-NER refer to the functional role of various
real-world entities in the context of the contribution of a work which depends on the
publication sentence discourse describing the contribution.

3.2. The ORKG Agri-NER Specifications

In this subsection, we first offer definitions for each of the seven entity types considered
in ORKG Agri-NER. Following which, we discuss the annotation process and conclude
with corpus statistics.

3.2.1. The Seven ORKG Agri-NER Entity Type Definitions

The Agri-NER model is structured around the following seven core entity types.

• RESEARCH PROBLEM. It is a natural language mention phrase of the theme of the
investigation in a scholarly article [42]. Alternatively, in the Computer Science domain
it is referred to as task [17] or focus [7]. An article can address one or more research
problems. E.g., seed germination, humoral immunity in cattle, sunbird pollination,
seasonal and inter-annual soil CO2 efflux, etc. Generally, RESEARCH PROBLEM men-
tions are often found in the article Title, Abstract, or Introduction in the context of
discourse discussions on the theme of the study; otherwise in the Results section in
the context of findings discussions on the theme of the study.

• RESOURCE. They are either man-made or naturally occurring tangible objects that are
directly utilized in the process of a research investigation as material to facilitate a
study’s research findings. “Resources are things that are used during a production
process or that are required to cover human needs in everyday life” [53]. E.g., RE-
SOURCE ‘pesticides’ used to study the RESEARCH PROBLEM ‘survival of pines’; the
PROCESS ‘repeated migrations’ studied over RESOURCE ‘southern African members of
the genus Zygophyllum’; RESOURCE ‘Soil aggregate-associated heavy metals’ studied
in LOCATION ‘subtropical China’. Resources are used to either address the RESEARCH

PROBLEM or to obtain the SOLUTION.
• PROCESS. It is defined as an event with a continuous time-frame that is pertinent with

a specific function or role to the theme of a particular investigation or research study.
As defined in the AGROVOC ontology [53], a PROCESS can be a set of interrelated
or interacting activities which transforms inputs into outputs, or simply a naturally
occurring phenomenon that is studied. E.g., irradiance, environmental gradient,
seasonal variation, quality control, salt and alkali stresses, etc.

• LOCATION. Includes all geographical locations in the world seen similar to the
AGROVOC location concept [49] as a ‘point in space’. Often LOCATION, in terms
of relevance to the research theme, is the place where the study is conducted or a
place studied for its RESOURCE or PROCESSes w.r.t. a RESEARCH PROBLEM. LOCATION

mentions can be as fine-grained as having regional boundaries or as broad as having
continental boundaries. E.g., Cape Floristic Region of South Africa, winter rainfall
area of South Africa, sahel zone of Niger, southern continents, etc.

• METHOD. This concept imported from the Computer Science domain pertains to
existing protocols used to support the solution [19]. The interpretation or definition
of the concept similarly holds for the agricultural domain. It is a predetermined way
of accomplishing an objective in terms of prespecified set of steps. E.g., On-farm
comparison, semi-stochastic models, burrows pond rearing system, bradyrhizobium
inoculation, electronic olfaction, systematic studies, etc.

• SOLUTION. It is a phrasal succinct mention of the novel contribution or discovery of
a work that solves the RESEARCH PROBLEM [19]. The SOLUTION entity type is char-
acterized by a long-tailed distribution of mentions determined by the new research
discoveries made. The SOLUTION of one work can be used as a METHOD or TECHNOL-
OGY or comparative baselines in subsequent research works. Of all the entity types
introduced in this work, SOLUTION like RESEARCH PROBLEM is specifically tailored
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to the ORKG contribution model. E.g., radiation-induced genome alterations, artifi-
cially assembled seed dispersal system, commercial craftwork, integrated ecological
modeling system, the MiLA tool, next generation crop models etc.

• TECHNOLOGY. Practical systems realized as tools, machinery or equipment based on
the systematized application of reproducible scientific knowledge to reach a speci-
fiable, repeatable goal. In the context of the agriculture domain, the goals would
pertain to agricultural and food systems. E.g., stream and riverine ecosystem services,
hyperspectral imaging, biotechnology, continuous vibrating conveyor, low exchange
water recirculating aquaculture systems, etc.

3.2.2. The ORKG Agri-NER Corpus Annotation Methodology

Having introduced the seven contribution-centric entity types used in ORKG Agri-
NER, we now elicit the methodology for producing the instance annotations for the entity
types from a corpus of paper titles.

Raw Dataset

The first step entailed downloading a raw corpus comprising paper titles of scholarly
articles published in the agricultural domain. For this, a sample size needed to be defined.
In this regard, the corpus size needed to satisfy two criteria: a large enough sample size
to train a machine learning model and a small enough sample size such that the human
annotation task was feasible. As such after discussions with the human annotator a
sample size of 5500 titles was arrived at. A corpus with thousands of data points easily
satisfies the objective of obtaining a robust machine learning system. This we concur based
on our prior work with training NER machine learning systems in a multidisciplinary
setting [15,58] and a single domain setting [19]. Thus 5500 articles in text format and
restricted only to the articles with the CC-BY redistributable license on Elsevier were
first downloaded using the following list https://github.com/jd-coderepos/stem-ner-60
k/blob/main/raw-data/Elsevier-ccby-articles-w-domain-mapping.tsv (accessed on 14
January 2024). Next, our aim was to obtain the seven entity type annotations for only the
titles in this corpus of publications. For this, a raw dataset of the article titles was created
https://github.com/jd-coderepos/contributions-ner-agri/tree/main/raw-data (accessed
on 14 January 2024).

Corpus Annotation

With a corpus of titles in place, we were then first and foremost faced with a blank
slate of entity types to annotate since there was no reported prior work for NER in the
agricultural domain. A natural question here is how did we arrive at the seven en-
tity types, viz. RESEARCH PROBLEM, RESOURCE, PROCESS, LOCATION, METHOD, SO-
LUTION, and TECHNOLOGY, defined earlier? This was done based on the following
3-step methodology.

1. A list of entity types used in our prior work [19] on contribution-centric NER for the
Computer Science (CS) domain was created as a reference list. This list included the
following CS-domain-specific contribution-centric types, viz. SOLUTION, RESEARCH

PROBLEM, METHOD, RESOURCE, TOOL, LANGUAGE, and DATASET. We identified this
as a suitable first step owing to the strong overlap of the annotation aim between
our prior work on the CS domain and our present work on the agriculture domain,
i.e., that of identifying contribution-centric entities from paper titles. We hypothesized
that some entity types, e.g., RESEARCH PROBLEM, that satisfy the functional role of
reflecting the contribution of scholarly articles by nature of their genericity could be
applicable across domains. As such the listed CS-domain contribution-centric entity
types were tested for this hypothesis. Furthermore, based on the successful annotation
outcomes of paper titles offering a rich store of contribution-centric entities, this work
focusing on a new domain, i.e., agriculture, similarly based its entity annotation task
on paper titles. Thus, with an initial set of entities in place, our task was then to

https://github.com/jd-coderepos/stem-ner-60k/blob/main/raw-data/Elsevier-ccby-articles-w-domain-mapping.tsv
https://github.com/jd-coderepos/stem-ner-60k/blob/main/raw-data/Elsevier-ccby-articles-w-domain-mapping.tsv
https://github.com/jd-coderepos/contributions-ner-agri/tree/main/raw-data
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identify the entities that were generic enough to be transferred from the CS domain to
the domain of agriculture.

2. Considering that some new agriculture domain-specific entity types would also
need to be introduced, a list of the 24 top-level concepts in the AGROVOC on-
tology [53] as the reference standard was drawn up. This list included concepts
such as FEATURES (https://agrovoc.fao.org/browse/agrovoc/en/page/c_331061,
accessed on 14 January 2024), LOCATION (https://agrovoc.fao.org/browse/agrovoc/
en/page/c_330988, accessed on 14 January 2024), MEASURE (https://agrovoc.fao.
org/browse/agrovoc/en/page/c_330493, accessed on 14 January 2024), PROPERTIES

(https://agrovoc.fao.org/browse/agrovoc/en/page/c_49874, accessed on 14 January
2024), STRATEGIES (https://agrovoc.fao.org/browse/agrovoc/en/page/c_330991,
accessed on 14 January 2024), etc. The focus was maintained only on the top-level
concepts, since traversing lower levels in the ontology led to specific terminology
defined as a concept space such as Maize https://agrovoc.fao.org/browse/agrovoc/
en/page/c_12332 (accessed on 14 January 2024). Since specific terminology do not
serve the purpose of reflecting a functional role, hence by their inherent nature were
ruled out as conceptual candidates for contribution-centric entity types.

3. Given the two reference lists of generic CS domain entity types and domain-specific
AGROVOC concepts from steps 1 and 2, respectively, the third step involved selecting
and pruning the lists to arrive at a final set of contribution-centric entity types to
annotate agricultural domain paper titles with. There were two prerequisites defined
for arriving at the final set of entity types: (a) it needed to include as many of the generic
entities as were semantically applicable; and (b) introduce new domain-specific types
complementing the semantic interpretation of the generic types such that the final set
could be used as a unit for contribution-centric entity recognition. Concretely, these
requisites were realized as a pilot annotation task over a set of 50 paper titles performed
by a postdoctoral researcher. Starting with the CS domain inspired list of generic
entities, the pilot annotation task showed that the CS domain TOOL, LANGUAGE, and
DATASET types were not applicable to agricultural domain. This left a set of four types,
viz. SOLUTION, RESEARCH PROBLEM, METHOD, and RESOURCE for the final annotation
task. For the domain-specific entities, via the pilot annotation exercise, it was fairly
straightforward to prune out most of the AGROVOC concepts on the basis of the
following three criteria. (a) Six concepts did not fit in the criteria of offering a functional
role that reflected the contribution of a work. These were entities, factors, groups,
properties, stages, state. (b) Nine concepts indicated that they were more paper content-
specific than title-specific. These were activities, events, features, measure, phenomena,
products, site, systems, and time. And, (c) since our objective was to capture the most
generic entity satisfying the functional role of reflecting the paper contribution, some of
the top-level AGROVOC concepts could be subsumed by others. Specifically, the four
types viz. objects, organisms, subjects, substances were subsumed as AGROVOC resources.
Also strategies was subsumed as AGROVOC methods. In the end, from an initial list of
25 types, pruning out 15 types and subsuming 5 types, we were left with a set of five
types for the final annotation task, viz. location, methods, processes, resources, technology.
Then the generic and domain-specific lists were resolved as follows: SOLUTION and
RESEARCH PROBLEM originating from the CS domain were retained as is for the
agriculture domain; AGROVOC methods was resolved to the generic METHOD type and
AGROVOC resources was resolved to RESOURCE; the remaining AGROVOC entities
were first lemmatized for plurals (e.g., processes → PROCESS) and otherwise retained as
is for LOCATION and TECHNOLOGY types.

https://agrovoc.fao.org/browse/agrovoc/en/page/c_331061
https://agrovoc.fao.org/browse/agrovoc/en/page/c_330988
https://agrovoc.fao.org/browse/agrovoc/en/page/c_330988
https://agrovoc.fao.org/browse/agrovoc/en/page/c_330493
https://agrovoc.fao.org/browse/agrovoc/en/page/c_330493
https://agrovoc.fao.org/browse/agrovoc/en/page/c_49874
https://agrovoc.fao.org/browse/agrovoc/en/page/c_330991
https://agrovoc.fao.org/browse/agrovoc/en/page/c_12332
https://agrovoc.fao.org/browse/agrovoc/en/page/c_12332
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With the final list of seven contribution-centric entity types arrived at for the agri-
cultural domain, the raw dataset of 5500 paper titles could then be annotated. Note that
among the seven entity candidates, three or four entity types applied at most for annotating
a paper title for its entities with a possibility for repeated occurrences of one or more types.
To offer the reader an insightful look into our corpus, Table 2 illustrates with the help
of color codes for the entity types, five annotated paper title instances as examples. To
facilitate further research on this topic, our corpus is publicly released with the CC BY-SA
4.0 license at https://github.com/jd-coderepos/contributions-ner-agri (accessed on 14
January 2024).

Table 2. Six example instances in the ORKG Agri-NER corpus of annotated paper titles with the
seven contribution-centric entity types, viz. RESOURCE, RESEARCH PROBLEM, PROCESS, LOCATION,
METHOD, SOLUTION, and TECHNOLOGY.

Annotated Paper Titles

PICS bags safely store unshelled and shelled groundnuts in Niger
TECHNOLOGY: PICS bags
RESOURCE: unshelled and shelled groundnuts
LOCATION: Niger

On-farm comparison of different postharvest storage technologies in a maize farming system of Tanzania Central Corridor
METHOD: On-farm comparison
RESEARCH PROBLEM: postharvest storage technologies
TECHNOLOGY: maize farming system
LOCATION: Tanzania Central Corridor

Comparing pressures on national parks in Ghana and Tanzania: The case of Mole and Tarangire National Parks
RESEARCH PROBLEM: Comparing pressures on national parks
LOCATION: Ghana, Tanzania, Mole and Tarangire National Parks

Ecological connectivity across ocean depths: Implications for protected area design
RESEARCH PROBLEM: Ecological connectivity
RESOURCE: ocean depths
SOLUTION: protected area design

The truth about cats and dogs: Landscape composition and human occupation mediate the distribution and potential impact
of non-native carnivores
PROCESS: Landscape composition, human occupation
RESEARCH PROBLEM: distribution and potential impact of non-native carnivores

Potential of metal contamination to affect the food safety of seaweed (Caulerpa spp.) cultured in coastal ponds in Sulawesi,
Indonesia
RESEARCH PROBLEM: metal contamination to affect the food safety
RESOURCE: seaweed (Caulerpa spp.)
LOCATION: coastal ponds in Sulawesi, Indonesia

The Agri-NER Corpus Statistics

Our corpus characteristics are further examined in terms of the overall corpus statistics
shown in Table 3. From a raw dataset of 5500 paper titles, a total of 15,261 entity annotations
were obtained with 10,406 of them being unique. The annotation rate in terms of number
of entities annotated per title is at 2.93 entities. Of the 5500 titles, eight could not be
annotated with any of the seven contribution-centric entity types. Hence the minimum
number of entities/title shows a 0 count statistic. These eight titles were outliers in our
corpus. Consider the two-token title “Garden Masterclass” as one example among the eight
unannotatable titles of which the others similarly reflected a peculiar characteristic such as,
for instance, being too short.

https://github.com/jd-coderepos/contributions-ner-agri
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Table 3. Overall statistics of the gold-standard Open Research Knowledge Graph Agriculture Named
Entity Recognition (ORKG Agri-NER) corpus.

Statistic Parameter Counts

Num. Title Tokens overall 71,632
Max., Min., Avg. Num. Tokens/Title 65, 2, 13.75
Num. Entity Tokens overall 47,608
Max., Min., Avg. Num. Tokens/Entity 15, 1, 3.12
Num. Entities 15,261
Num. Unique Entities 10,406
Max., Min., Avg. Num. Entities/Title 9, 0, 2.93

Corpus statistics in terms of instantiated entities per entity type are shown in Table 4.
We see that among the seven entity types, RESOURCE and RESEARCH PROBLEM are highly
predominant as contribution-centric entity annotations.

Table 4. Statistics of the gold-standard Open Research Knowledge Graph Agriculture Named Entity
Recognition (ORKG Agri-NER) corpus per the seven entity types annotated. The parenthesized
numbers represent the unique entity counts.

Entity Type Counts

Num. RESOURCE 5490 (4073)
Num. RESEARCH PROBLEM 4707 (3403)
Num. PROCESS 1789 (1525)
Num. LOCATION 1525 (776)
Num. METHOD 1364 (940)
Num. SOLUTION 250 (221)
Num. TECHNOLOGY 136 (113)

4. Results

With an annotated corpus in place, various neural machine learning models were
evaluated to create the ORKG Agri-NER service. This section is devoted to discussions
about our machine learning experimental setup and results from the various trained models
to obtain an optimal ORKG Agri-NER automated service.

4.1. Experimental Setup
4.1.1. Dataset

The ORKG Agri-NER corpus presents a sequence labeling scenario. For learning a
sequence labeler, each sentence is tokenized as a set of words where each word is assigned
a classification symbol. The series of classification decisions over the words are then
aggregated in a final step to extract classifications for phrases. Thus, in a first step, our raw
annotated data had to be converted into a suitable format for machine learning. The most
common representation format adopted for sequence labeling is called the CONLL format
introduced in the CONLL 2003 shared task series [59]. Per the prescribed format, each line
in the data file consists of tab-separated values with the tokenized word to be classified in
the first column, features such as the part-of-speech (POS) tag in the columns in between,
and the classification token in the last column. Sequences of tokenized words constitute
consecutive lines in the data file. And an empty line separates sentence sequences. To create
our data in this format, for tokenization the titles were simply split on spaces. In addition
since we were interested in testing additional features as informative to the task or not,
we obtained POS tags and NER tags for the tokens with the help of the Stanford Stanza
library [60]. These features constituted the second and the third columns of our data file.
Finally, the fourth column constituted the classification tag. For this we experimented with
two well-known formats, viz. IOB and IOBES. The IOB tagging sequence [61] is the one
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where the B- tag is used in the beginning of every phrasal entity type, I- prefix before a
tag indicates that the tag is inside a phrasal entity type, and O tag indicates that a token
belongs to no entity type. E.g., if the a phrase is of type METHOD, the tag for the first token
of the phrase will be B-METHOD and all the remaining tokens of the phrase will be tagged
I-METHOD. On the other hand, the IOBES tagging sequence [62] is the one with the tags
B, E, I, S or O where S is used to represent a chunk containing a single token. Chunks of
length greater than or equal to two always start with the B tag and end with the E tag.

Once our data was converted to the CONLL format, the annotated gold-standard
collection of 5500 annotated titles was randomly split as 5000 titles in the training set,
200 titles in the development set for the tuning of hyperparameters of the machine learning
models, and 300 titles in the test set. The resulting dataset is also part of the community
release and can be accessed here https://github.com/jd-coderepos/contributions-ner-
agri/tree/main/NCRFpp-input-format (accessed on 14 January 2024).

4.1.2. Models

In this age of the “deep learning tsunami” [63], neural sequence labeling models are
the state-of-the-art technique. The neural models completely alleviated the traditional
method of manual feature engineering. Instead in neural models, features are extracted
automatically through network structures including long short-term memory (LSTM) [64]
and convolution neural network (CNN) [65]. As such various network architectures have
evolved with each class of models outperforming the others. One class of models belongs to
word-level neural networks [66] where words of a sentence are given as input to a Recurrent
Neural Network (RNN), specifically, an LSTM and each word is represented by its word
embedding. Another class of models belongs to character-level neural networks [67] where
a sentence is taken to be a sequence of characters. This sequence is passed through a CNN,
predicting labels for each character. Character labels are transformed into word labels via
post processing. The third and most successful class of models belongs to a combination
of word+character neural networks [68,69] where the first layer represents words as a
combination of a word embedding and a convolution over the characters of the word,
following this with a Bi-LSTM layer over the word representations of a sentence.

Thus inspired from state-of-the-art neural sequence labelers [68–71], we leveraged
the outperforming architectural variant, i.e., the “Char CNN + Word BiLSTM + CRF”
neural sequence labeling model architecture. The model has three layers. 1. Character
Sequence Layer which relies on CNN neural encoders for character sequence information.
Specifically, the sliding window approach captures local features, which are then max-
pooled to obtain an aggregated encoding of the character sequence. 2. Word Sequence
Layer which relies on bidirectional LSTMs as the word sequence extractor. Since word
contexts are a crucial feature to build optimal sequence labelers, the bidirectional LSTMs
are shown to be most effective since they encode both the left and right context information
of each word. The hidden vectors for both directions on each word are concatenated to
represent the corresponding word. Further, the word representations were computed
one of two ways: either directly from the data, or as precomputed vectorized embedding
representations. We used GloVe embeddings [72]. And 3. Inference Layer as the last layer
for token classification by taking the extracted word sequence representations as features
and assigning labels to the word sequence. In this layer, we leverage Conditional Random
Fields (CRFs). Since CRFs are able to capture label dependencies in the output layer
which leads to better predictions, their usage has resulted in many state-of-the-art neural
sequence labeling models [69,71,73]. For implementation purposes, we leveraged the
open-source toolkit called NCRF++ [74] (https://github.com/jiesutd/NCRFpp, accessed
on 14 January 2024) based on PyTorch. Our experimental configuration files for model
hyperparameter details including learning rate, dropout rate, number of layers, hidden
size etc., are released as config files here https://gitlab.com/TIBHannover/orkg/nlp/
experiments/orkg-agriculture-ner/ (accessed on 14 January 2024).

https://github.com/jd-coderepos/contributions-ner-agri/tree/main/NCRFpp-input-format
https://github.com/jd-coderepos/contributions-ner-agri/tree/main/NCRFpp-input-format
https://github.com/jiesutd/NCRFpp
https://gitlab.com/TIBHannover/orkg/nlp/experiments/orkg-agriculture-ner/
https://gitlab.com/TIBHannover/orkg/nlp/experiments/orkg-agriculture-ner/
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Aside from experimenting with different neural architectures, another class of mod-
els that have proven to be the state-of-the-art for sequence labeling are the transformer-
based BERT language models [75]. These models are pretrained for language compre-
hension with a masked language modeling objective on a large-scale corpus comprising
millions of articles and billions of tokens. As such there are variants of the pretrained
transformer language models released. We test two model variants: the original BERT
model trained on the BookCorpus [76] plus English Wikipedia; and a pretrained variant
released over scientific text called SciBERT [77] trained on 1.14 M papers from Semantic
Scholar [4] which consists of 18% papers from the computer science domain and 82%
from the biomedical domain. The large-scale transformer language models obtained
pretrained deep bidirectional representations from the unlabeled text by jointly condi-
tioning on both left and right context in all layers. To obtain state-of-the-art models for
downstream tasks, the pretrained model parameters are then finetuned via a task-specific
architecture taking as input a task-specific dataset. For NER sequence labeling, the fine-
tuning model consists of three components: (a) a token embedding layer comprising a
per-sentence sequence of tokens, where each token is represented as a concatenation of
BERT word embeddings and CNN-based character embeddings [68], (b) a token-level en-
coder with two stacked bidirectional LSTMs [64], and (c) a Conditional Random Field
(CRF) based tag decoder [68]. Note the two features columns discussed earlier in the
dataset section are not relevant for BERT models, thus can be removed from the data
or replaced by dummy tokens. The dataset for BERT models is also released https:
//github.com/jd-coderepos/contributions-ner-agri/tree/main/BERT-input-format (ac-
cessed on 14 January 2024). For implementation purposes, we use the scikit-learn wrapper
to finetune the two BERT variants based on the https://github.com/charles9n/bert-sklearn
(accessed on 14 January 2024) package. Furthermore, we experiment with BERT-base-cased
and SciBERT-base-cased pretrained models, respectively. The best model hyperparameters
are released in our Jupyter notebook created for experimental purposes also available in
our code repo.

Summarily, to investigate a state-of-the-art neural sequence labeler, we experiment
with the “Char CNN + Word BiLSTM + CRF” neural architecture which were an early
class of models offering best performances on sequence labeling tasks, where the word
embeddings are computed directly on the training corpus or obtained from fixed word
embedding models, e.g., GloVe. As a second class of models we experiment with a BERT-
based transformer sequence labeler that obtains contextualized embeddings from a large-
scale pretrained model and is finetuned on our downstream Agri-NER task based on our
annotated corpus. A pictorial depiction of our end-to-end sequence labeling architecture is
shown in Figure 4.

4.1.3. Evaluation Metrics

Evaluations are considered in two main settings: 1. strict, i.e., exact match; and
2. relaxed, i.e., inexact match where the gold answer is checked to be contained in the
predicted answer. We elaborate on the relaxed match setting with an example. Given a title
“Woody vegetation dynamics in a communally utilised semi-arid savanna in Bushbuckridge,
South Africa" where “Woody vegetation dynamics” is annotated as research problem, if the
machine predicts “vegetation dynamics”, then this is marked as a true inexact match since
two of the tokens in the gold-standard annotation are present in the prediction. In both
settings, the standard Precision, Recall, and F1 score metrics are applied at the phrase level.
Our phrase-based evaluation script can be accessed at https://github.com/jd-coderepos/
contributions-ner-agri/blob/main/scripts/evaluate.py (accessed on 14 January 2024).

https://github.com/jd-coderepos/contributions-ner-agri/tree/main/BERT-input-format
https://github.com/jd-coderepos/contributions-ner-agri/tree/main/BERT-input-format
https://github.com/charles9n/bert-sklearn
https://github.com/jd-coderepos/contributions-ner-agri/blob/main/scripts/evaluate.py
https://github.com/jd-coderepos/contributions-ner-agri/blob/main/scripts/evaluate.py
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Figure 4. The traditional “Char CNN + Word BiLSTM + CRF” neural sequence labeling architecture
for the input “Woody vegetation dynamics”.

4.2. Experiments

In this section, we present the results and discuss observations from our two main
sequence labeling strategies, respectively, and further contrast them w.r.t. each other.
On the one hand, the “Char CNN + Word BiLSTM + CRF” sequence labeler resulted in
16 core experiments: one with no additional features, one with additional POS features,
one with additional generic domain NER tag features, one with both POS and NER tags.
Each of the four experiments were conducted in two scenarios: without and with GloVe
embeddings. And each of the eight experiments were repeated in two tag encoding
scenarios as IOBES and IOB tags. On the other hand, the BERT-based sequence labeler
resulted in four total experiments: one with the BERT model variant and a second with
the SciBERT model variant. And the two experiments repeated in the two tag encoding
scenarios as IOBES and IOB tags. Thus overall 20 main experiments were conducted with
additional sub-experiments within each category for model hyperparameter tuning.

The 16 core experiment results from the “Char CNN + Word BiLSTM + CRF” sequence
labeler are reported in Table 5. And the four core experiment results from the transformer
models are reported in Table 6. In the two tables, respectively, the best results for each of
the precision, recall, and f-score metrics are highlighted in the bold, with the best F-scores
overall in the exact versus inexact evaluation settings underlined. Next we discuss the
experimental results with respect to five main research questions (RQ).
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Table 5. Results from the state-of-the-art “Char CNN + Word BiLSTM + CRF” Neural Sequence Labeler.
Numbers in bold are the highest score for each metric; numbers underlined are the overall highest exact
and inexact match scores, respectively.

IOBES IOB

Exact Match Inexact Match Exact Match Inexact Match
P R F1 P R F1 P R F1 P R F1

no features 56.38 62.27 59.18 59.1 65.27 62.03 54.62 59.47 56.94 58.52 63.71 61.0
+GloVe 57.74 62.79 60.16 60.86 66.19 63.41 57.9 63.49 60.57 61.64 67.59 64.48

POS 57.11 61.88 59.40 60.24 65.27 62.66 56.0 60.53 58.18 60.42 65.3 62.76
+GloVe 57.5 63.58 60.38 60.09 66.45 63.11 56.63 63.11 59.7 60.45 67.38 63.73

NER 56.12 61.1 58.5 58.39 63.58 60.88 56.43 61.59 58.9 60.44 65.96 63.08
+GloVe 57.5 63.58 60.38 60.09 66.45 63.11 58.32 63.49 60.8 62.09 67.59 64.72

POS + NER 56.66 61.75 59.09 59.52 64.88 62.09 55.93 61.77 58.71 59.88 66.14 62.85
+GloVe 58.23 63.71 60.85 60.98 66.71 63.72 55.93 61.77 58.71 59.88 66.14 62.85

Table 6. Results from the state-of-the-art BERT-based Transformer Language Models. Numbers in
bold are the highest score for each metric; numbers underlined are the overall highest exact and
inexact match scores, respectively.

IOBES IOB

Exact Match Inexact Match Exact Match Inexact Match
P R F1 P R F1 P R F1 P R F1

BERT-Base-Cased 58.74 66.71 62.47 62.64 71.15 66.63 60.58 68.25 64.19 64.09 72.2 67.91

SciBERT-SciVocab-Cased 58.78 66.06 62.2 62.49 70.23 66.13 59.15 66.09 62.43 63.63 71.11 67.17

RQ1: How effective were the additional POS tag and generic domain NER tag features in
the “Char CNN + Word BiLSTM + CRF” neural sequence labeler?

To answer this question, we examine the results reported in Table 5. Both tagging
settings i.e., IOBES and IOB obtained improved scores with the additional features. On
the one hand, the IOB tag representation experiments reported highest performances from
NER tags. On the other hand, the IOBES tag representations, which constituted a larger
classification space, benefited from the enriched feature representation space including
both POS and the generic NER tags.

RQ2: Was initializing the word embeddings space with statically encoded embeddings
from GloVe beneficial to the “Char CNN + Word BiLSTM + CRF” neural sequence labeler?

Contrasting the alternative rows in Table 5, we see that for each experimented feature
setting, initialization of the word embeddings space with the precomputed GloVe embed-
dings obtained a better performing sequence labeler. Thus projecting the words in our
dataset into an externally predefined semantic space formed from a larger external corpus
was indeed more beneficial than computing words embeddings from the restricted space
of the just the Agri-NER corpus.

RQ3: Which of the tag sequence representations, i.e., IOB versus IOBES, constituted the
most effective task representation?

From the “Char CNN + Word BiLSTM + CRF” sequence labeler results reported in
Table 5, the results were not conclusive. In the exact match settings, the IOBES tag sequence
reported an insignificant 0.05% improvement with 60.85% F1 over the results from the
IOB tag representation. In the inexact match settings, the IOB tag representation reported
a 1% improvement with 64.72% F1 over the results from the IOBES tag representation.
From the BERT-based sequence labeler results reported in Table 6, the results showed
the IOB tag representation was the better format. In the exact match settings, the results
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with the IOB representation was at 64.19% F1—2 points above the results with the IOBES
representation at 62.47% F1. In the inexact match settings, again the results with the IOB
tag representation was better at 67.91% F1—1 point above the results with the IOBES
representation at 66.63% F1.

RQ4: Which method contrasting the results from the “Char CNN + Word BiLSTM + CRF”
neural sequence labeler versus the BERT-based labeler produced the best results?

We examine the underlined results reported in Tables 5 and 6 from the “Char CNN
+ Word BiLSTM + CRF” sequence labeler and the BERT-based labeler, respectively. The
BERT-based model significantly outperforms the “Char CNN + Word BiLSTM + CRF” in
both settings including exact match with 64.19% F1 versus 60.85% and inexact match with
67.91% F1 versus 64.72% F1.

In light of the better performing BERT-based sequence labeler, revisiting RQ3, we
claim that the IOB tag sequence representation is ideal given the ORKG Agri-NER corpus.

RQ5: Was a sequence labeler finetuned on a scholarly domain pretrained BERT variant
more effective than a pretrained BERT variant on the generic domain?

Finally, comparing results between the scholarly domain SciBERT versus the generic
domain BERT, we see that the generic domain BERT variant outperformed SciBERT. We
can attribute these unexpected results observation on the fact that SciBERT is pretrained on
data largely from the biomedical domain which is different from the agricultural domain.
It remains to be explored in future work whether we can achieve boosted performances of
our Agri-NER task given a large-scale pretrained model also covering agriculture.

Our source code is publicly released here https://gitlab.com/TIBHannover/orkg/
nlp/experiments/orkg-agriculture-ner (accessed on 14 January 2024) with the MIT license.
Based on the experimental results, the best model is released as the ORKG Agri-NER service
available in two formats: 1) as a Python package at https://orkg-nlp-pypi.readthedocs.
io/en/latest/services/services.html (accessed on 14 January 2024), and as a REST API
that can be invoked directly online via the interactive documentation at https://orkg.org/
nlp/api/docs#/annotation/annotates_agri_paper_annotation_agriner_post (accessed on
14 January 2024).

5. Discussion

“The first step is putting data on the Web in a form that machines can naturally
understand, or converting it to that form. This creates what I call a Semantic
Web—a web of data that can be processed directly or indirectly by machines”. [29]

The Web flourished based on the hypertext linked information principle. Hypertext
linking of information on the Web as a global information space revolutionized infor-
mation access by enabling users to traverse, search, share, and browse information with
the all-pervasive technology of web browsers. With the formalization of the Semantic
Web [29], these same principles that applied to information represented as document de-
scriptions are being applied to data. This has fostered the evolution of the Web as a global
information space of only linked documents to one where both documents and data are
linked. A prerequisite to realizing the Semantic Web is what is called as establishing a
Linked Open Data Cloud (LOD Cloud). Linked Data constitutes the LOD. In other words,
the LOD Cloud is a KG that manifests as a Semantic Web of Linked Data via a small set
of standardized technologies: URIs and HTTP as identification and access mechanism for
data resources on the web, and RDF as content representation format. Thus Linked Data
realizes the vision of evolving the Web into a global data commons as what is defined as
the Semantic Web, allowing applications to operate on top of an unbounded set of data
sources, via standardised access mechanisms [78]. The LOD Cloud https://lod-cloud.net/
(accessed on 14 January 2024) constitutes the central hub that allow users to start browsing
in one open-access submitted data source and then navigate along links into related data
sources. This global data space connects data from diverse domains such as geography,

https://gitlab.com/TIBHannover/orkg/nlp/experiments/orkg-agriculture-ner
https://gitlab.com/TIBHannover/orkg/nlp/experiments/orkg-agriculture-ner
https://orkg-nlp-pypi.readthedocs.io/en/latest/services/services.html
https://orkg-nlp-pypi.readthedocs.io/en/latest/services/services.html
https://orkg.org/nlp/api/docs#/annotation/annotates_agri_paper_annotation_agriner_post
https://orkg.org/nlp/api/docs#/annotation/annotates_agri_paper_annotation_agriner_post
https://lod-cloud.net/
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government, life sciences, linguistics, media, scholarly publications, social networks etc.
Without the Linked Data creation tools and technologies, earlier data creation processes
always resulted in data silos worldwide with no access means of interaction or interoper-
ability. Now, however, leveraging a small standardized set of technologies of the Linked
Data creation paradigm, any data source can be submitted to the LOD Cloud fostering the
building of the Semantic Web. In light of these technological inventions, the FAIR guiding
principles [3] for scientific data creation can indeed be a practice.

The next natural question is, is the ORKG Agri-NER corpus released in the LOD
Cloud? The response is not yet. However in this last concluding section of the paper,
we set the stage for realizing the vision of releasing the ORKG Agri-NER corpus within
the LOD Cloud to be taken up in future work. The research paradigms underlying the
NLP production of data and the Semantic Web production of data over a new domain are
particularly beset by several steps of methodological and technological considerations. This
merits dedicated discussions of the respective paradigm research processes and outcomes.
The NLP data production lifecycle focuses on instantiated data annotation and all the steps
that precede it including selecting a task and defining a conceptual annotation space for the
task. While the Semantic Web data production lifecycle focuses on data representation in a
strict machine-readable semantic representation language such as RDF or OWL to facilitate
axiomatic machine reasoning. In other words, it is a natural product of the following
ingredients. (1) Open Standards—such as URI, URL, HTTP, HTML, RDF, RDF-Turtle (and
other RDF Notations), the SPARQL Query Language, the SPARQL Protocol, and SPARQL
Query Solution Document Types. And, (2) A modern DBMS platform—Virtuoso from
OpenLink Software or Neo4J (https://neo4j.com/, accessed on 14 January 2024) as a graph
database management system.

This work has described the NLP NER research paradigm over the novel agricultural
domain. As such it entailed presenting the selected contribution-centric NER task for the
agricultural domain, defining the selected entity types for annotation, and annotating a
corpus of 5500 paper titles as instantiated data for Agri-NER. In following work, the aim is
to address the Semantic Web research paradigm such that scholarly contribution resources
in the agricultural domain will be made into FAIR and reusable Linked Data. Linked
Data refers to data published on the Web in such a way that it is machine-readable, its
meaning explicitly defined, it is linked to other external data sets, and can in turn be
linked to from external data sets [78]. Machine-readability will utilize URIs and HTTP as
identification and access mechanisms and RDF content representation. Meaning definition
will be handled via a schema model. Links to external datasets will be handled as linking
to the AGROVOC ontology [49] as it is the only other semantic representation model
for the agricultural domain. As already alluded to, Agri-NER and AGROVOC prescribe
different conceptual spaces for how the entities are expected to be processed by machines.
Specifically, AGROVOC enables the processing of the entities within a terminologically
defined semantic space. It provides concepts resolved to URIs and supplemented with
RDF descriptions of thousands of terms in the FAO’s area of interest. While ORKG Agri-
NER permits the processing of the entities w.r.t. their functional role as reflecting the
contribution of a scholarly work. By aiming to link the entities in our ORKG Agri-NER
corpus to AGROVOC, we enable users to fetch an enriched representation of the terms
such as: What is its terminological definition?, or What are the alternative term namings
across languages?, or Which other data linkings can be facilitated via the Linked Data
source in consideration? For instance, “Borneo” a LOCATION entity type from Agri-NER
is first resolved to AGROVOC concept for Borneo as https://agrovoc.fao.org/browse/
agrovoc/en/page/c_1017 (accessed on 14 January 2024). This Linked Data enriches the
term with its definition, alternate names of Borneo in various languages, etc. Furthermore,
the AGROVOC Linked Data connects to the DBpedia Linked Data source [79]. Thus
via AGROVOC the concept Borneo is enriched via a DBpedia knowledge source link
https://dbpedia.org/page/Borneo (accessed on 14 January 2024) which offers additional
information such as its total geographical area, geo-coordinates, the total population size

https://neo4j.com/
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etc. In this way, by adopting data linking the Linked Data principles will foster scaling
the development approach of Agri-NER beyond a fixed, predefined data silo of capturing
contribution-centric entities, to encompass a larger number of relevant structured knowledge
sources on the LOD cloud comprising heterogeneous data models that each constitute
unique semantic spaces for the machine-actionability of terms.

Toward FAIR, Reusable Scholarly Contributions in Agriculture, for machine readabil-
ity and semantic representation, the schema and URI space will be implemented via global
property and resource identifiers within the ORKG web ecosphere at https://orkg.org/
(accessed on 14 January 2024). And for obtaining Linked Data, AGROVOC will be utilized.
In this section, we offer concrete implementation details that contrast ORKG Agri-NER
and AGROVOC models as potential related Linked Data sources. The preliminary findings
discussed in this paragraph are obtained w.r.t. the following research question. RQ6: How
many ORKG Agri-NER entities can be mapped to AGROVOC? To answer the question, a
programmatic process flow depicted in Figure 5 was established. The process was fairly
straightforward. Given the terms annotated in the Agri-NER model, query the concept
nodes in AGROVOC with the terms. For those terms that were found as a whole, the
corresponding AGROVOC concept URI is the desired retrieval unit. For the terms that
were not found as a whole, they were iteratively split as the longest spanning subphrases
with subphrase lengths as: original phrase length − 1 ≤ range ≤ 1. The link retrieval
step was stopped when one or more of the subphrases for a specified subphrase length
could be resolved to one or more AGROVOC concepts. Resultingly, some statistical in-
sights shown in Table 7 were obtained. This will form the basis of Linked Data creation
in future work toward realizing FAIR, Reusable Scholarly Contributions in Agriculture.
Of all the entities annotated in Agri-NER, 16% of them are found as AGROVOC concepts.
And 53.75% of the Agri-NER entities are found as subphrase AGROVOC concepts. Per
Agri-NER entity type, the ones that were most linkable involved the least amount of subjec-
tivity in phrasal boundary determination. One way of gauging the subjective boundary
determination decisions for Agri-NER entity types from the least to most can be based
on the proportion of the Agri-NER entity type terms that could be directly resolved to
AGROVOC. From the least to the most, they were: LOCATION, TECHNOLOGY, PROCESS,
METHOD, RESEARCH PROBLEM, RESOURCE, and SOLUTION. The corpus used in the analysis
is publicly released https://github.com/jd-coderepos/contributions-ner-agri/tree/main/
AGROVOC-linked-data-analysis (accessed on 19 January 2024).

Table 7. Statistics of the terms in the Open Research Knowledge Graph Agriculture Named Entity
Recognition (ORKG Agri-NER) corpus that were linkable to the AGROVOC ontology overall (first
three rows) and per the seven entity types annotated. The parenthesized numbers represent the
proportion of entity phrases that could only be resolved to AGROVOC by one or more of their longest
span subphrases.

Statistic Parameter Counts

% Entities resolved (% Entities resolved as subphrases) 16.06% (53.75%)
Max., Min., Avg. phrase length resolved 5, 1, 1.55
Max., Min., Avg. subphrase length resolved 5, 1, 1.23
% LOCATION resolved (% LOCATION resolved as subphrases) 31.82% (41.57%)
% TECHNOLOGY resolved (% TECHNOLOGY RESOLVED AS SUBPHRASES) 17.99% (46.04%)
% PROCESS resolved (% PROCESS resolved as subphrases) 16.57% (52.22%)
% METHOD resolved (% METHOD resolved as subphrases) 15.11% (41.07%)
% RESEARCH PROBLEM resolved (% RESEARCH PROBLEM resolved as subphrases) 13.77% (60.5%)
% RESOURCE resolved (% RESOURCE resolved as subphrases) 13.68% (55.35%)
% SOLUTION resolved (% SOLUTION resolved as subphrases) 3.19% (60.56%)

https://orkg.org/
https://github.com/jd-coderepos/contributions-ner-agri/tree/main/AGROVOC-linked-data-analysis
https://github.com/jd-coderepos/contributions-ner-agri/tree/main/AGROVOC-linked-data-analysis
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Figure 5. Process flow for linking Agri-NER entities to the AGROVOC ontology concept terms as an
authoritative Linked Data source in the domain of Agriculture.

Future Directions

As we advance in the field of Agriculture NER, the integration and utilization of large lan-
guage models (LLMs) present a promising avenue for future research and development [80].
These models, known for their deep learning capabilities and extensive training on diverse
datasets, offer significant potential in enhancing the accuracy and scope of entity recognition
in agricultural texts. The application of LLMs could revolutionize the way we extract, process,
and interpret complex scientific entities, leading to more nuanced and contextually aware
recognition systems. In context of furthering Agri-NER research, a key direction for future
work is the customization of LLMs to better understand and interpret the unique terminolo-
gies and concepts specific to agriculture. This involves training models on domain-specific
datasets such as ours, including scholarly articles and technical documents in the agricultural
sector. Such specialized training would enable LLMs to accurately identify and classify a
wide range of agricultural entities, thereby enhancing the overall quality and reliability of
knowledge extraction in this field.

6. Conclusions

In this paper, we have introduced the Open Research Knowledge Graph Agriculture
Named Entity Recognition (ORKG Agri-NER) corpus and service for contribution-centric
scientific entity extraction and classification in the agricultural domain. The ORKG Agri-
NER corpus is a benchmark for evaluating scientific entity extraction and classification in
agriculture, using a generic conceptual formalism. This paper presents a baseline set of
results on the benchmark leveraging state-of-the-art sequence labeling neural architectures
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and transformer models. The paper also presents a 3-step automatic entity resolution
procedure for mapping scientific entities to the AGROVOC ontology. The goal of this work
is to provide a foundation for future research on automatic discovery of scientific entities
in agricultural literature.

In conclusion, the development of the ORKG Agri-NER corpus and service represents
a significant advancement in the field of agricultural NER. The utilization of machine-
actionable representations and strategic reading techniques has demonstrated the potential
to enhance the accessibility and interpretability of scholarly contributions in agriculture.
The establishment of standardized entity types and the utilization of machine learning
systems have shown promising results in the extraction and classification of scientific
entities. Moving forward, the FAIR and reusable scholarly contributions in agriculture,
facilitated by the ORKG Agri-NER service, hold the potential to significantly impact
research, business, and organizational stakeholders within the agricultural domain.
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R&D research and development
NLP Natural Language Processing
NGO non-govermental organization
FAIR Findable, Accessible, Interoperable, and Reusable
KGs Knowledge Graphs
ORKG Open Research Knowledge Graph
IE Information Extraction
NER Named Entity Recognition
EPPO European and Mediterranean Plant Protection Organization
Agri Agriculture
DCTerms Dublin Core Metadata Terms
DoCO Document Components Ontology
DEO Discourse Elements Ontology
ORB Ontology of Rhetorical Blocks
EXPO Ontology of Scientific Experiments
SPAR Semantic Publishing and Referencing
LOV Linked Open Vocabularies
SWRC Semantic Web for Research Communities
FOAF Friend of a Friend
LSC Linked Science Core
AI Artificial Intelligence
CS Computer Science
POS part-of-speech
LSTM ong short-term memory
CNN convolution neural network
RNN Recurrent Neural Network
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