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Abstract: The use of enzymes to hydrolyze the plant cell matrix is a method known for extracting
bioactive substances. The current work used this strategy to produce a rose petal extract rich in
anthocyanins that is stable in the presence of marine polysaccharides and has a high antioxidant
activity. The process evaluation was carried out sequentially, initially comparing water, ethanol,
and their mixtures to anthocyanins extracted in the presence or absence of enzymes. Then, a
multi-objective desirability function optimized experimental conditions such as solvent and enzyme
concentrations. This study is the first report describing the use of a statistical tool, the central
composite rotatable design (CCRD), to optimize anthocyanin extraction from rose petals. This
method obtained a maximum extraction of 9.99 mg/g of phenols. The stability of the rose petal
extract when using marine polysaccharides retained 60% of the anthocyanins over 28 days without
deterioration when protected from sunlight but was practically degraded upon exposure to sunlight.
The rose petal extract demonstrated a very high antioxidant capacity of 3.19 µg/mL, close to the
literature data for citrus compounds, known to be high in antioxidant compounds for cosmetic
food purposes.
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1. Introduction

From the diversity of cut flowers which are planted in the open air, roses are some of the
most important, being popular and traded worldwide in various colors and varieties [1,2].
The rose is one of the most commercial ornamental flowers, and these kinds of roses are
part of the huge quantities of flowers that are discarded as waste at temples, mosques,
churches, dargahs, gurudwaras, hotels, banquets, and houses [3].

Currently, with urgent proposals for the sustainability of planetary consumption, the
use of waste is imperative. Every year, tons of flowers are produced around the world
and consequently discarded [4]. Flowers need more time for their commercialization, as
well as adequate transport and climate conditions [5]. These factors mean that a portion
of the flowers that are not sold is discarded in large distribution centers. The search for
ecological alternatives for reusing and consequently valuing these kinds of waste has
become essential [6].

As an alternative, components from the plant biomass of roses are extracted for
industrial use. Structurally, roses have compounds responsible for the huge diversity in
rose dyeing the flavonoids, especially the anthocyanins peonin and cyanin (Figure 1) [7,8].

Anthocyanins, found in red-to-purple fruits and vegetables [8,9], have an intense
red color and a strong color-fixing capacity [10] and are known for hypoglycemic, anti-
inflammatory, and antioxidant properties, increasing their consumption [11,12]. These
properties are beneficial for preventing neural cancer, diabetes, and inflammatory and
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cardiovascular diseases [13,14]. Recent studies indicate that the antioxidant capacity of
anthocyanins is even higher than that of vitamins C and D [15,16].
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Figure 1. Chemical structures of anthocyanins and their radicals, peonine or cyanin. 
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require the addition of small amounts of hydrochloric or formic acid to prevent the deg-
radation of non-acylated anthocyanins [18]. Thus, new, gentler processes for extracting 
these biomolecules from roses are of great interest to the cosmetic and food industries. 

Regarding other alternatives, the enzymes for extraction processes are more effective 
since their interaction with the compound of interest occurs more smoothly, reducing the 
probability of the degradation of more unstable structures [19], such as anthocyanins. 

Enzymes have catalytic properties that bind to the cell matrix, promoting hydrolysis 
of the cell wall and a rupture which releases metabolites into the external environment. 
This process allows for better solvent absorption into the cell wall, facilitating the extrac-
tion process of the bioactive compounds of interest [20]. This method, as it is gentler, helps 
conserve the chemical structures of bioactive compounds and provides a better perfor-
mance [21]. 

The potential applicability of enzymes in extractions of a variety of products for in-
dustrial application has been verified for various biological matrices such as carotenoids 
from marigold flower [22], grape seed oil [23], vanillin from green pods from vanilla [24], 
and polyphenols from Geranium sibiricu Linne [25]. Based on the literature, the extraction 
of bioactive enzymes from other plant sources is very promising and commercially attrac-
tive [26–28]. 

Enzymes have also shown promising results in the extraction of anthocyanins from 
different plant sources, such as saffron tepals [29], the skin of Babeasca neagra grapes [30], 
mulberry wine residues [31], the leaf of monguba [32], blueberries [31], roselle samples 
[33], and raspberry wine residues [34]. 

This work proposed a clean and gentle process of the enzymatic maceration of rose 
petals to obtain a non-degraded extract rich in anthocyanins. This process’ evaluation was 
carried out sequentially, initially comparing water, ethanol, and their mixtures to antho-
cyanins extracted in the presence or absence of enzymes. Then, experimental conditions 
such as solvents and enzyme concentrations were optimized using a multi-objective 
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However, these properties give it a highly unstable structure, making extracting them
efficiently and ecologically difficult [17]. Recently, many extraction methods have been
investigated using non-thermal energies (microwave and ultrasound) and neoteric solvents
(supercritical fluids, for example), which can obtain a high amount of extract in a short
time [13–15]. However, these methods often require expensive equipment or the use of large
amounts of solvents such as methanol and ethanol for extraction, which, in turn, require the
addition of small amounts of hydrochloric or formic acid to prevent the degradation of non-
acylated anthocyanins [18]. Thus, new, gentler processes for extracting these biomolecules
from roses are of great interest to the cosmetic and food industries.

Regarding other alternatives, the enzymes for extraction processes are more effective
since their interaction with the compound of interest occurs more smoothly, reducing the
probability of the degradation of more unstable structures [19], such as anthocyanins.

Enzymes have catalytic properties that bind to the cell matrix, promoting hydrolysis of
the cell wall and a rupture which releases metabolites into the external environment. This
process allows for better solvent absorption into the cell wall, facilitating the extraction pro-
cess of the bioactive compounds of interest [20]. This method, as it is gentler, helps conserve
the chemical structures of bioactive compounds and provides a better performance [21].

The potential applicability of enzymes in extractions of a variety of products for in-
dustrial application has been verified for various biological matrices such as carotenoids
from marigold flower [22], grape seed oil [23], vanillin from green pods from vanilla [24],
and polyphenols from Geranium sibiricu Linne [25]. Based on the literature, the extrac-
tion of bioactive enzymes from other plant sources is very promising and commercially
attractive [26–28].

Enzymes have also shown promising results in the extraction of anthocyanins from
different plant sources, such as saffron tepals [29], the skin of Babeasca neagra grapes [30],
mulberry wine residues [31], the leaf of monguba [32], blueberries [31], roselle samples [33],
and raspberry wine residues [34].

This work proposed a clean and gentle process of the enzymatic maceration of rose
petals to obtain a non-degraded extract rich in anthocyanins. This process’ evaluation
was carried out sequentially, initially comparing water, ethanol, and their mixtures to
anthocyanins extracted in the presence or absence of enzymes. Then, experimental condi-
tions such as solvents and enzyme concentrations were optimized using a multi-objective
desirability function [35]. This is the first report describing the use of this statistical tool to
optimize anthocyanin extraction from rose petals.
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2. Methods and Materials
2.1. Materials

Roses (Rosaceae) were obtained from a local flower market. The enzymes viscozyme®

and ultrazyme® from Sigma-Aldrich (St. Louis, MO, USA). We also obtained ethanol 95.6%
of DPPH (2,2′-diphenylpicrylhydrazyl) from Sigma-Aldrich, PA, commercial Pectin from
Adicel, commercial marine polysaccharides, and Folin-Denis reactive from Êxodo científica.

2.2. Experimental

The first set of experiments consisted of a comparison of different conditions for the
extraction of anthocyanins: only water (aqueous system), alcoholic system, hydroalcoholic
system (1, 5, and 10% v/v ethanol), and in the presence of 1% w/v of each carbohydrase
product (aqueous system). The processes were carried out at constant petal/solvent ratio
(1 g/3 mL), temperature (50 ◦C), and agitation speed (200 rpm) for one hour.

Additional screening experiments were also performed, combining two enzymes,
viscozyme® and ultrazyme® (separated or as a mixture of them, 0.5% of each enzyme, in
this case), with the best solvent detected in the first set of experiments. All the experiments
were carried out in triplicate, and the mean and standard deviation were calculated for
each test in this work.

After the initial tests, a central composite rotatable design (CCRD) (Table 1) was estab-
lished using the software Statistica 6.0, in which the factors were the petal/solvent ratio
(g/ mL), the ethanol content in the solvent (% ethanol), and the enzyme concentration (%
enzyme, in % w/v), aiming to obtain optimized operational conditions. The response vari-
ables were the concentration of phenolic compounds (g/L), the concentration of reducing
sugars (g/L), and the total solids’ contents (% w/w).

Table 1. Central composite rotatable design (CCRD) of the enzymatic maceration of rose petals.

Factors −1.68 −1 0 +1 +1.68

Rose petals/solvent 0.10 0.14 0.2 0.26 0.30
%Ethanol (v/v) 0 2 5 8 10

%Enzyme 0 0.2 0.5 0.8 1.0

With the operational conditions defined, stability tests were carried out by adding citric
pectin (5% w/v) and commercial algae extract, rich in marine polysaccharides, supplied
by the Assessa company, in dilutions of 2, 4, and 8 times the original concentration before
light sun exposure and shelter for 7, 14, and 28 days.

2.3. Analytical Methods

The total reducing sugars and phenolic compounds were quantified according to
Somogyi’s [36] and Folin-Denis’s [37] methods. The total solids’ content (% w/w) was
determined according to the AOAC method [38]. The antioxidant capacity of the an-
thocyanin extracts was evaluated through the kinetics of decompositions of DPPH (2,2′-
diphenylpicrylhydrazyl) from the total phenolics’ content in the rose petal extracts. This
determination was used for the calculation of the half-maximum inhibitory concentration
(inhibitory concentration) IC50 (the sample concentration which decomposes 50% of the
DPPH initial content) [39].

The variation in the anthocyanin quantity was measured in a UV–Visible spectropho-
tometer model 2800V (Shimadzu, Kyoto, Japan) and calculated based on the absorbance
shift between 520 and 700 nm of the samples and a blank (rose hydrolysate without stabi-
lizers before incubation), as shown in Equation (1). This protocol adapted the differential
pH method described by Wrolstad et al. [40].

%Anthocyanins = 100 × (1 −
(Abs520nm − Abs700nm)Blank − (Abs520nm − Abs700nm)Sample

(Abs520nm − Abs700nm)Blank
) (1)
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3. Results and Discussion

Enzyme extraction is an unconventional technique that has grown recently due to its
clean nature and simple application. The mechanism is based on the hydrolysis or weak-
ening of cell wall polysaccharides, such as cellulose, hemicellulose, and pectin, through
an enzyme. After this rupture or weakening of the structure, the bioactive compounds are
released and incorporated into the external environment, where extraction is facilitated by
dragging these components through solvents [24,26,29,32,33].

According to the results shown in Figure 1, the method that obtained the best extraction
of anthocyanins was the combination of the two enzymes with a maximum extraction of
3.75 g/L (11.25 mg/g rose petals) of total phenolics, followed by extraction with ethanol,
which presented approximately 3.18 g/L (3.18 mg/g) of total phenolics. According to the
results shown in Figure 2, it can be observed that the combination of enzymes allows an
optimization of the process, during which the two combined enzymes obtain an extraction
of total phenolics which is almost double compared to that obtained by the separate
enzymes, around 1.6 and 1.8 g/L for enzymes A and B, respectively. These data are
compatible with those reported in the literature for red rose petals, as in the study of
the ultrasound-assisted extraction of red rose petals using ethanol as a solvent and an
extraction temperature of 30 ◦C, during which 3.20 mg/g of anthocyanins rose petals was
obtained [41].
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Figure 2. Comparison of red rose petal anthocyanin extraction methods with different types of
solvents and enzymes.

Anthocyanins are polar molecules with hydroxyl, methoxyl, and carboxyl substituent
groups and glycosyls linked to their aromatic rings that provide greater solubility in polar
solvents [42]. In Figure 3A, it is possible to observe the visual comparison of the extraction
of anthocyanin from rose petals using combinations of solvents—(i) water, (ii) water and
pectinase, (iii) water and hemicellulase, and (iv) ethanol—with ethanol showing better
results than water. Based on the literature, ethanol is a solvent already used successfully
to extract anthocyanins [18], and it acts as a better solvent than water in the extraction of
anthocyanins. In the following tests, 1, 5, and 10% ethanol concentrations were tested in
water during enzymatic maceration to verify the best ethanol/water ratio for extracting
more anthocyanins and their stability. In Figure 3B–D, it can be observed that ethanol
positively influences the extraction of anthocyanins. However, the higher the ethanol
concentration, the slower the maceration becomes, as indicated by the decrease in sugar
and total solids’ concentrations.
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viscozyme; 3—water + ultrazym; and 4—100% ethanol. (B) Enzymatic maceration of rose petals in
the presence of ethanol with viscozyme. (C) Enzymatic maceration of rose petals in the presence of
ethanol with ultrazym. (D) Enzymatic maceration of rose petals in the presence of ethanol with a
combination of enzymes.

Regarding the enzymes, the results show that the combination of the two enzymes ob-
tained better results. Pectinase and hemicellulase, which are accessory enzymes, are known
for converting lignocellulosic materials into monomeric sugars [43]. The combination of
both would act on different parts of a biopolymer, favoring the extraction of anthocyanins.

According to the results obtained by the enzymatic maceration of rose petals in the
presence of ethanol, it can be observed that the presence of this solvent is important for the
process. Ethanol is included as a parameter to be studied during the experimental design,
in addition to the need for a minimum concentration of enzymes and the proportion of
petals/extractant liquids to reduce the costs. The results of this planning are shown in
Table 2; in bold are the settings in which the maximum amount of phenols was obtained.

Table 2. Results of enzymatic maceration of rose petals using central composite planning.

Assays Petals/Liq. % Ethanol %Enzyme Sugars
(g/L)

Phenols
(g/L)

Total Solids
(%)

1 0.14 2.0 0.20 6.03 5.33 1.08
2 0.14 2.0 0.80 6.13 4.36 1.25
3 0.14 8.0 0.20 6.77 6.50 1.78
4 0.14 8.0 0.80 7.40 6.69 1.44
5 0.26 2.0 0.20 9.07 8.76 2.43
6 0.26 2.0 0.80 9.20 7.26 2.37
7 0.26 8.0 0.20 8.76 8.82 2.27
8 0.26 8.0 0.80 8.50 9.99 2.71
9 0.10 5.0 0.50 5.92 6.07 1.19

10 0.30 5.0 0.50 9.06 6.44 2.56
11 0.20 0.0 0.50 8.39 6.95 1.80
12 0.20 10.0 0.50 8.29 5.80 2.06
13 0.20 5.0 0.00 6.79 7.90 1.51
14 0.20 5.0 1.00 8.87 7.66 1.57
15 0.20 5.0 0.50 9.16 8.13 2.68
16 0.20 5.0 0.50 9.07 8.14 2.65
17 0.20 5.0 0.50 9.10 8.11 2.70
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The optimization of the data can be seen in Figure 3, in which the three response
variables are combined into a new variable, called desirability, and the 3-D graphs use
this new variable and two factors: % ethanol and petals/liquid (Figure 4A); % enzyme
and petals/liquid (Figure 4B); and % ethanol and % enzymes (Figure 4C). According to
the graphs’ analysis, optimal conditions were generated: petal/extractor liquid ratio, 0.25;
ethanol concentration, 6.5%; and enzyme concentration, 0.7%. These parameters of optimal
conditions agree with the best result in the extraction of anthocyanins obtained by the
central composite design, in which a maximum concentration of phenols of 9.99 mg/g
was obtained.
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With the operating conditions already established, the stability test of the anthocyanins
in the rose petal extract was carried out. Two stabilizers were used, pectin and marine
polysaccharides (MP), which can act either by modifying the viscosity of the medium,
preventing the anthocyanins from self-oxidizing, or by ion exchange, since these polysac-
charides have functional groups such as carboxyl and sulfates which can interact with the
anthocyanins [25,44,45]. It was observed that the samples exposed to sunlight for 28 days
showed a marked decline in their anthocyanin content (Figure 5A), both for the samples
with polysaccharides and for the sample without the addition of a stabilizer, with a sharp
drop during the first seven days. The sample that maintained the greatest stability was
the one with 0.625% pectin, which, at the end of the 28 days, maintained an anthocyanin
content of 30%. All the samples in marine polysaccharide showed the lowest stability, with
a final anthocyanin content of around 10%. A yellowish-orange color, visible in Figure 5B,
became noticeable after exposure, confirming anthocyanin residues in all the samples.

Hubbermann et al. [46] carried out similar tests with exposure to sunlight, still using
currant and elderberry concentrates in an acetic acid buffer solution (0.2 mol/L, pH 3.9),
which established a color retention around 60% after 21 and 35 days, respectively.

Li et al. [17] investigated the stability of acylated anthocyanins extracted from rose
petals by an eutectic solvent—choline chloride/lactic acid—and purified, which were
modified through acylation by the enzymatic catalysis method to improve the stability
of anthocyanins. According to the tests, after 12 h of exposure to sunlight, around 50%
stability was observed; in contrast, the acylated anthocyanins showed a decay of around
10%. According to the data obtained in this work, the enzymatic extraction process can
provide excellent stability to the structure of anthocyanins.

The stability of the anthocyanins was checked for 28 days, protected from light, as
shown in Figure 6A, for the samples with pectin and marine polysaccharide stabilizers;
in these, it was possible to verify that the samples containing pectin and no stabilizers
showed an increase in absorbance from the seventh day, resulting in a higher concentra-
tion of anthocyanins. A hypothesis is that this result could have been due to microbial
contamination, which possibly hydrolyzed the anthocyanins (3,5-glycosylated) into antho-
cyanidins (aglycones), which have a higher molar absorptivity coefficient and, therefore,
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emit a greater absorbance in the visible light spectrum. A similar effect can be observed
when there is acid hydrolysis of anthocyanin [40,47]. This hypothesis can be supported by
the samples with marine polysaccharide stabilizers that did not develop microorganisms
and maintained anthocyanin levels around 55–60% after 28 days.

At the end of the 28 days of being protected from the light, in Figure 6B, it is possible
to observe that the samples still present an intense color tending towards red, corrobo-
rating the quantification results which detected the presence of anthocyanins with a final
concentration of around 60% of the initial concentration. Color intensity is important when
considering its applicability as a dye [10].

In the study of the degradation kinetics and antioxidant capacity of aqueous ex-
tracts based on purple carrot anthocyanins in comparison with synthetic and natural food
dyes [10], the behavior of anthocyanins was similar to that obtained by the samples exposed
to sunlight in this study, with a sharp drop during the first seven days and an almost total
degradation after 28 days.

Anthocyanins have an excellent antioxidant efficacy, as verified in several stud-
ies [48–50], and it has been demonstrated that they can be widely used as eco-friendly
natural pigments for various applications, such as food, pharmaceutical products, and
cosmetics [51].

The antioxidant capacity was calculated for the rose petal extracts at different
intervals—initial time, 60, and 120 days—obtaining IC50 results of 3.19, 5.41, and
5.59 µg/mL, respectively. These results were close to the IC50 of 5.06 µg/mL found
for tannic acid and that of 2.59 µg/mL for epigallocatechin gallate, used as standards. In
the study by Li et al. [17] on the antioxidant activity of anthocyanins and anthocyanin
acylated with a DPPH ethanolic solution, the IC50 of the anthocyanin was 22.917 µg/mL
and that of the acylated anthocyanin was 4.451 µg/mL.
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4. Limitations and Future Studies

This study has limitations in the characterization of anthocyanins obtained by the
enzymatic maceration of rose petals, so the identification of the structures obtained by the
proposed method could be carried out in future studies. Then, there are other studies about
stability tests, such as pH and temperature variation. Obtaining these structures will also
help us understand the high antioxidant capacity of the anthocyanins in this study, which
may make it possible to contribute to the literature in terms of understanding the extraction
process with a combination of viscozyme® and ultrazym® enzymes.

5. Conclusions

Enzymatic technology is an alternative to avoid the degradation of anthocyanins and
use a cleaner extraction method. Enzymes are proteins that participate in various biochem-
ical reactions, accelerate thermodynamically favored reactions, and have stereospecific
characteristics. Typically, enzymatic processes have a fast action, lack toxicity, and do not
generate environmental problems. In addition, they occur at mild temperatures and pHs
and act on a specific substrate with a low concentration of enzyme preparations. Therefore,
the enzymatic maceration of rose petals has proven to be a promising alternative in the
extraction of anthocyanins, as it is a clean and green process, which uses solvents such as
water and ethanol. According to the multi-objective desirability function statistical tool,
a maximum extraction of 9.99 mg/g of phenols was obtained. The stability of the rose
petal extract using marine polysaccharides as stabilizers retained 60% of anthocyanins over
28 days without degradation and maintained color intensity when protected from sunlight.
The rose petal extract demonstrated a high antioxidant capacity, close to the literature data
for citrus compounds, and is known to be high in antioxidant compounds for cosmetic
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food purposes. These results indicate that anthocyanins extracted by the proposed method
are a potential antioxidant dye for the pharmaceutical, food, and cosmetic industries.
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