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Abstract: Magnetic hopfions are three-dimensional topological solitons embedded into a homoge-
neously magnetized background. The internal structure of hopfions is distinguished by the linked
preimages—closed loops with a single orientation of the magnetization on the target space S2—and
is thus characterized by the integer Hopf index QH . Alternatively, hopfions can be visualized as a
result of the swirling of two-dimensional bimerons around the direction of an applied magnetic field.
Since the bimeron consists of a circular core and an anti-skyrmion crescent, two hopfion varieties can
be achieved with either bimeron constituent facing the hopfion interior. In bulk cubic helimagnets,
however, the applied magnetic field leads to a spontaneous collapse of hopfions, i.e., the eigen-energy
of hopfions has the minimum for zero hopfion radius R. Anti-hopfions with QH = −1, in this case,
pass through the intermediate toron state with two-point defects. Here, we demonstrate that the
competing cubic and exchange anisotropies inherent in cubic non-centrosymmetric magnets (e.g., in
the Mott insulator Cu2OSeO3) as a third level of the hierarchy of energy scales following the exchange
and Dzyaloshinskii–Moriya interactions, may shift the energy minimum into the region of finite
hopfion radii.
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1. Introduction

Isolated magnetic skyrmions are particle-like topological solitons with complex non-
coplanar spin structure [1–4] stabilized in noncentrosymmetric magnetic materials by
specific Dzyaloshinskii–Moriya interactions (DMI) [5]. Phenomenologically, DMIs are
expressed as the first derivatives of the magnetization m with respect to the spatial coordi-
nates, the so called Lifshitz invariants (LI):

L(k)i,j = mi∂mj/∂xk −mj∂mi/∂xk. (1)

The skyrmion “knots” are robust against small perturbations and cannot be continuously
unwound, i.e., DMI provides a viable stabilization mechanism, protecting skyrmions from
radial instability [1,2] and overcoming the constraints of the Hobart–Derrick theorem [6].

The skyrmion field configurations are elements of second homotopy group and can be
characterized by a topological charge or skyrmion number [7]:

Q =
1

4π

∫ ∫
d2rm · ∂m

∂x
× ∂m

∂y
, (2)

describing how many times the magnetization field m(r) within the single skyrmion wraps
around the sphere S2.
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Chiral interactions having the same functional form as (1) may appear also in many
other systems: in ferroelectrics with a non-centrosymmetric parent paraelectric phase, non-
centrosymmetric superconductors, multiferroics [8–10], or even in metallic supercooled
liquids and glasses [11]. Localized states in these systems are also named skyrmions by
analogy with the Skyrme model for mesons and baryons [12]. Chiral liquid crystals (CLC)
are considered as ideal model systems for probing the behavior of different modulated
structures on the mesoscopic scale [13].

The current focus of skyrmionics revolves around axisymmetric skyrmions within the
saturated ferromagnetic state of non-centrosymmetric magnets [2]. The magnetization twist
is localized in two spatial directions (2D) and the axes of skyrmions are co-aligned with an
applied magnetic field (in the present manuscript, the field is applied along x), i.e., the mag-
netization in the center is opposite to the field and gradually rotates to the field-aligned state
at the outskirt. Homogeneous extension of such magnetic textures into the third direction
along the field forms skyrmionic filaments or strings. Recently, hexagonal skyrmion lattices
(SkL) and isolated skyrmions (IS) of such a “standard” skyrmion variety were discovered
in bulk chiral magnets near the Curie temperature [14–16] and in nanolayered geome-
tries over larger temperature intervals [17–20]. The internal structure of such axisymmetric
skyrmions, which is generally characterized by the repulsive inter-skyrmion potential, has
been systematically investigated theoretically [1,2] and experimentally by spin-polarized
scanning tunneling microscopy in PdFe bilayers with induced Dzyaloshinskii–Moriya
interactions and strong easy-axis anisotropy [4,21]. It was found that the existence region
of axisymmetric ISs is restricted by strip-out instabilities at low fields and a collapse at high
fields. Due to the nanometer size of skyrmions, their topological stability, and possibility to
manipulate by electric currents, the magnetic skyrmions are considered promising objects
for the next-generation memory and logic devices [22–24].

In Ref. [25], however, it was contended that the saturated state may permit yet another
type of isolated skyrmions with their axes oriented perpendicular to the field. Such 2D
skyrmions are compelled to develop a non-axisymmetric shape in order to blend into the
spin pattern of the homogeneous state and to preserve their total topological charge |Q| = 1
computed in the plane xy (Figure 1a,c). Alternatively, the skyrmion cross-section can be
thought of as a pair of merons with the topological charges Q = 1/2. For example, starting
from the upper side of the depicted bimeron in the plane xy (Figure 1a), the magnetization
makes the full swing from 0 to 2π: it passes through the points A and B with the magneti-
zation parallel to the z axis, ψ = π/2 and 3π/2, which can be considered as centers of a
circular skyrmion core and an anti-skyrmion crescent, respectively. Unlike the repulsive ax-
isymmetric ISs, such non-axisymmetric skyrmions develop anisotropic skyrmion–skyrmion
interaction [25,26]. Depending on the relative orientation of two individual skyrmions, this
potential can be attractive, leading to the formation of biskyrmion or multiskyrmion chains,
aligned along the axis connecting points A and B, as well as repulsive in the perpendicular
direction (i.e., along y) [25]. Figure 1c exhibits the repulsive potential of two bimerons with
opposite topological charges oriented inward either with their crescents (red curve) or with
their cores (blue curve). Since the distorted crescent part is less spacious, the interaction
potential in the first case shows pronounced repulsion at much smaller distances between
bimerons (red curve). The distance d is measured at the magnetization value mx = −1
opposite to the field.

Interestingly, propagation of such skyrmion filaments into the third direction may
give rise to a number of exotic spin textures (Figure 1b). First of all, such skyrmions may
run perpendicular to the field (along the z axis in the present case, first panel in Figure 1b).
Such filaments were dubbed horizontal skyrmions in Ref. [27]. It was shown that isolated
horizontal skyrmions may attract/couple with ordinary skyrmions oriented along the field
and thus form clusters with mutually orthogonal orientations of constituent skyrmions. In
Ref. [28], the horizontal skyrmions were shown to swirl into “solenoids”/“springs” with
their axes parallel to the field (second panel in Figure 1b). Such spin “solenoids” may
exist in two varieties depending on which part of a curled 2D bimeron faces the interior.
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Subsequently, the solenoids may squeeze into ordinary skyrmions with both polarities (and
therefore, opposite topological charges): within the homogeneous state, however, only the
ISs with the negative polarity maintain although within the conical phase—both skyrmion
varieties are feasible [28]. The attraction between two skyrmion varieties may also lead
to a family of so-called target-skyrmions [28]: in this sense, the topological charge of the
horizontal skyrmion may either add or subtract from the topological charge of the skyrmion
along the field, i.e., “massive” targets with the multiple charges Q can also be created.
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Figure 1. (color online) (a) Magnetic structure of an isolated bimeron formed in the plane xy and
surrounded by the homogeneous state mx = 1. The field is applied along the x axis. The color
indicates mz-component whereas the white arrows show the magnetization projections onto the
plane xy. The composite parts of the bimeron structure are the circular core and the crescent.
(b) Schematic representation of different 3D structures formed by the proliferation of bimerons:
horizontal skyrmions (first panel) are bimeron tubes running perpendicular to the field direction
(along z axis in the present case); “solenoids” or “springs” (second panel) are the intermediate states
between the horizontal skyrmions and ordinary ISs with their axes along the field. They exist in
two varieties and may have a variable radius, which subsequently squeeze into ordinary skyrmions
with both polarities: hopfions (third panel) are torus-shaped 3D solitons obtained by the rotation
of bimerons around the field direction. (c) Interaction potential of two bimerons with the opposite
topological charges (inset shows the corresponding spin structures). Due to the strong deformations
of the bimeron cores facing the interior, such a bimeron pair exhibits a stronger repulsion (blue curve)
as compared with its counterpart (red curve). (d,e) Schematics showing how to obtain the initial states
for the relaxation procedures in mumax3. The characteristic points within the bimeron pair at the
distance 2R between them are connected by circular paths with the suitable magnetization alignment.
Then, two hopfion varieties with opposite Hopf indices and variable radii can easily be prepared.

In the present manuscript, we consider the swirling of horizontal skyrmions into the
doughnut-shaped hopfions, i.e., we just wind the 2D bimeron texture around the x axis
(the field direction) until it forms a localized object. We show that two types of hopfions
obtained by such a procedure (and thus having opposite Hopf indices (4)) have quite
distinct spin textures and internal properties. Most importantly, we pose the question
of whether hopfions represent metastable states (local energy minima) in bulk chiral
helimagnets, inevitably contract and transform into torons, or collapse altogether. We argue
that competing cubic and exchange anisotropies constitute a valid mechanism behind
hopfion metastability in chiral magnets. This would pave the way for possible applications
of hopfions in spintronic devices.

2. Phenomenological Model

The standard model for magnetic states in bulk cubic non-centrosymmetric ferromag-
nets is based on the energy density functional [5,29]
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w = A (grad m)2 + D m · rot m− µ0 Mm ·H, (3)

including the principal interactions essential to stabilize modulated states: the exchange
stiffness with constant A, Dzyaloshinskii–Moriya coupling energy with constant D, and the
Zeeman energy; m is the unity vector along the magnetization vector M = mM, and H is
the magnetic field applied exclusively along x-axis. The polar angle θ of the magnetization
is measured from the x axis, the azimuthal angle ψ—from the y axis.

For the forthcoming calculations, we use non-dimensional variables. The lengths
are expressed in units of LD = A/D, i.e., the length scales are related to the period of
the spiral state in zero field p0 = 4πLD, and reflect the fact that the ground state of the
system in the form of a single-harmonic mode is yielded as a result of the competition
between the counter-acting exchange and DM interactions in Equation (3). Thus, LD
introduces a fundamental length characterizing the magnitude of chiral modulations in non-
centrosymmetric magnets. h = H/HD, where HD = D2/(AM), is the reduced magnitude
of the applied magnetic field. Within the isotropic model (3), a conical single-harmonic
spiral with the wave vector along the field represents the global energy minimum. The
critical field value hcr = 0.5 marks the saturation of the conical phase into the ferromagnetic
state. Since we aim at hopfions surrounded by the homogeneous state, the field value is
taken, h ≥ 0.5.

As a main numerical tool to minimize the functional (3), we use the MuMax3 soft-
ware package (version 3.10), which calculates magnetization dynamics by solving the
Landau–Lifshitz equation using the finite-difference discretization technique (see for de-
tails Ref. [30]). The grid size is 256× 256× 256 and the cell size is equal along all coordinate
axes, ∆x,y,z = 0.2. As an initial “seed” for numerical procedures, we use 2D bimeron
pairs (as those depicted in Figure 1d,e) with opposite topological charges/polarities. We
prepared a set of such pairs with different distances d between them: first, we use default
initial states in the form of ordinary skyrmions with their axes along z; then, by applying
the field along x, we obtain bimeron configurations (this is the reason why we have chosen
the x direction for the magnetic field also for three-dimensional (3D) spin textures). To
prepare a 3D hopfion, we align the magnetization along circular trajectories connecting the
characteristic magnetization points in the plane xy; for example, mz = ±1, which corre-
spond to the centers of bimeron cores and crescents; additionally, we pin the magnetization
mx = −1 along the circle with the radius R, which later will be referred to as a hopfion
radius (Figure 1d). After the relaxation procedure, we obtain hopfions of two varieties
with variable radii R. As compared with the methods based on the Ansatz solutions for
hopfions [31], the present approach has a number of advantages: (i) a trajectory along
which one replicates bimerons can be entangled and encompass, for example, different
knotted structures; thus, the search for multidimensional solitons can be systematized;
it is often impossible to write an appropriate Ansatz for such particle-like states; (ii) one
can investigate addition and subtraction of hopfions and investigate “nested” spin dis-
tributions, i.e., around a hopfion with QH = ±1 one could wind another hopfion with
the opposite or the same Hopf index [31]; (iii) one could obtain a smooth transformation
between horizontal and vertical skyrmions and thus speculate about hopfions located in
other coordinate planes.

3. Internal Structure of Hopfions

The structure of obtained hopfions is characterized by the Hopf invariant QH , which
can be calculated from the Whitehead integral expression [32,33]:

QH = − 1
16π2

∫ ∫ ∫
d3rA · B. (4)

The components of the emergent magnetic field are given by Bx = −m · (∂ym× ∂zm) and
cyclic permutations for By and Bz [34]. A is the corresponding vector potential,∇×A = B.
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To find the components of A, one usually exploits the fact that the vector potential is far
from unique, i.e., one can choose a differentiable scalar function f on R3 to make zero
one of the components of A, e.g., Az [35]. Then, the other two components can easily be
obtained by integrating B. By performing the integration according to (4), we find that
two types of hopfions have Hopf indices of opposite sign, QH = ±1. In the following, the
soliton with QH = 1 will be called hopfion, whereas its counterpart – anti-hopfion.

Plots of the preimages of hopfions and anti-hopfions are shown in Figure 2. Preimage
is the spatial region of the ferromagnet’s 3D space with a single m(r)-orientation corre-
sponding to a point on S2 [31]. Preimages in Figure 2a,c correspond to θ = π/2 and varying
azimuthal angle ψ. The color scheme indicates the value of the my component varying
from −1 (blue) to 1 (red) with the step ∆ψ = π/8. Preimages in Figure 2b,d correspond to
the varying polar angle θ and ψ = 0; the color reflects the mx magnetization component
along the field with the same step ∆θ = π/8. Any pair of preimage curves links QH times
(in our case, just once), corroborating the interpretation of QH as a linking number. Still,
the network of preimages is obviously different.

x

x

x

(a) (b)

(c) (d)

Q  = 1
H

Q  = -1
H

Figure 2. Characteristic preimages for hopfions (a,b) and anti-hopfions (c,d). The toroids are formed
by the mx = 0 (θ = π/2) isosurfaces of the spin direction (a,c). The color indicates my magnetization
components varying from −1 (blue) to 1 (red). The hopfion normals are co-aligned with the field
(x direction). Since the hopfions and anti-hopfions have Hopf invariants QH = 1 and QH = −1,
respectively, each pair of preimages is linked exactly once. Preimages are also linked for ψ = 0 and θ

varying with the step π/8 from the direction along the field to the opposite direction (b,d). The color
codes mx-component in this case.

The internal spin patterns of hopfions and anti-hopfions are depicted in Figure 3 for
two cross-sections xy (Figure 3a,e) and yz (Figure 3b,f). Whereas in the former case, hopfions
look as pairs of coupled bimerons with opposite polarities and can be differentiated whether
the crescent faces exterior or the interior of a hopfion, in the latter case, hopfions represent
so-called target skyrmions [36,37] (alternatively called skyrmioniums [38]), in which the
magnetization undergoes a rotation by the angle 2π. Note that the magnetization rotation
occurs in accordance with the DMI, which prescribes the relation between the azimuthal
angle of the magnetization and the cylindrical coordinate system, i.e., ψ = ϕ + π/2.
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Figure 3. (color online) Internal structure of hopfions (upper row) and anti-hopfions (bottom row) in
bulk cubic helimagnets, kc = 0.2, h = 0.2759. (a,e) Magnetization distribution in the cross-section xy.
Color indicates mz-component with white arrows being the magnetization projections onto the plane
xy. (b,f) Hopfion cross-section in the plane yz perpendicular to the field direction h||x. Hopfions,
in this case, represent target-skyrmions with the magnetization rotation by the angle 2π from the
center to the outskirt. (c,g) The contour plots of the total energy density in the plane xy. For hopfions,
the positive energy density, which is computed with respect to the homogeneous state, is localized
within the “egg”-like shell. For anti-hopfions, the positive energy density forms a belt-like pattern
around the magnetization opposite to the field. (d,h) The contour plots of the DMI energy density for
the 2D cross-section xy. Hopfions clearly exhibit parts with the reverse rotational sense against one
chosen by the DMI, whereas anti-hopfions preserve only one rotational fashion.

Distribution of the total energy density (Figure 3c,g) and the energy density of the DMI
(Figure 3d,h) provide even more insight into distinct properties of hopfions. The hopfions
(Figure 3c,d) exhibit the parts with the unfavorable rotational sense against the DMI (red
regions in Figure 3d). The total energy density in Figure 3c acquires an “egg”-like pattern
with the positive energy density forming a shell. On the contrary, the anti-hopfion exhibits
only one sense of rotation as shown by its DMI energy density (Figure 3h). The positive
energy density is also localized to quite narrow parts surrounding the crescents.

4. Metastability of Hopfions in Bulk Helimagnets

Within the isotropic model (3), the total energy W of hopfions computed with respect
to the homogeneous state, W =

∫
(w− wFM)d3r, represents almost a straight line (dashed

black line in Figure 4a): as a result, both hopfion varieties contract and decrease their radii
to reduce the positive eigen-energy. Interestingly, the eigen-energies are degenerate and
stay the same up to quite small hopfion sizes for both hopfion types. In this case, constituent
bimerons (first and third panels in Figure 4b) are spatially localized and do not significantly
deform their internal structure. During the contraction process, the anti-hopfion transforms
into a toron (Figure 4c), which represents a localized particle consisting of two Bloch points
at a finite distance and a convex-shaped skyrmion stretching between them [39,40]. In the
transversal yz cross-section, the magnetization rotates from the state mx = −1 in the center
till the state mx = 1 at the outskirt as it would be in ordinary 2D skyrmions (second panel
in Figure 4c). The energy density distribution reflects a great energy penalty associated
with point defects (third panel in Figure 4c). The topological transition between the hopfion
and the toron states was recently studied in a chiral magnet nanodisk sandwiched by two
films with perpendicular magnetic anisotropy [41].
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Figure 4. (color online) (a) The eigen-energies of hopfions and anti-hopfions in dependence on the
hopfion radii within the isotropic model (3) (dashed black line) and including the cubic anisotropy
kc = 0.2 (dotted blue and solid red lines). The slope of W(R) curves is obviously modified by the
decreasing magnetic field and the cubic anisotropy. (b) The spin structures of hopfions without
(first and third panels) and with (second and fourth panels) the cubic anisotropy, which leads to
spatial extension of hopfions. With the pinning removed, the anti-hopfions transform into torons
with two point defects. (c) Toron internal structure is shown as the magnetization and energy
density distributions in different 2D cross-sections. (d) The simplified phase diagram including
the cubic anisotropy shows the drastic decrease in the saturation field hc2 of the conical phase.
hh is a field of the phase transition between the helical and the FM state. In the search for the
hopfion metastability, one should avoid the regions of the conical and/or helical spirals. In the
former case, hopfions transform into heliknotons; in the latter one, undergo elliptical instability
and elongate into helicoids. (e) The slope of the energy curves along the line hc2 is dependent
on the cubic anisotropy value. Rather flat energy curves are reached in the vicinity of kc = 0.2.
(f) Modification of the energy curves by the additional exchange anisotropy. For some critical
anisotropy values, the minimum corresponding to metastable hopfion appears.

The (QH = 1)-hopfion, however, simply collapses into the homogeneous state, the be-
havior being consistent with the transformation of “solenoids” considered in Ref. [28].

To realize hopfions in bulk chiral ferromagnets, therefore, one should find a parameter
range/region where static hopfions emerge as local or global minima of the free energy.
Here, we notice that alternatively. hopfions can be embedded into a helical or conical
background of chiral magnets and are called heliknotons [42]. We, however, concentrate on
the areas of phase diagrams with the homogeneous ferromagnetic background.

To make the search more systematic, we first pose the question, of whether the slope of
the energy curve in Figure 4a can be affected by additional anisotropies, which are inherent
in cubic helimagnets. In particular, it is known that the cubic anisotropy

wcub = kc(m2
xm2

y + m2
ym2

z + m2
xm2

z) (5)
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plays a significant role in bulk cubic helimagnets and may even lead to the thermodynamical
stability of skyrmions far from the ordering temperatures [43]. Recently, low-temperature
skyrmions have been observed in the Mott insulator Cu2OSeO3, accompanied by tilted
spirals. The theoretical explanation of SkL stability by the cubic anisotropy rather hinges
on the effect imposed on one-dimensional spiral states than on skyrmions. In fact, the ideal
magnetization rotation in the conical state is considerably impaired by the easy and hard
anisotropy axes, e.g., for the field along 〈100〉 crystallographic directions. Through this
mechanism, skyrmions, which are more resilient to anisotropy-induced deformations, due
to their two-dimensional nature, gain stability. For our purpose of searching for metastable
hopfions, this effect of cubic anisotropy on the conical state would also become helpful: we
would like to decrease the field value (to avoid any possible hopfion collapse as observed for
isolated skyrmions [2]) but still stay within the homogeneous state. In Cu2OSeO3, the easy
cubic axes are 〈100〉 (the anisotropy constant kc > 0), and the field co-aligned with one of
these axes leads to the first-order phase transition between the conical and homogeneous
states with the field value hc2 much lower than hcr = 0.5 in the isotropic case [43]. The
green line in Figure 4d shows the critical field hc2 in dependence on the cubic anisotropy.
In the following simulations, we will look for metastable hopfions exactly along this line.
Furthermore, indeed, we find that the slope of the hopfion eigen-energy decreases by the
simultaneous effect of the weaker magnetic field and the cubic anisotropy. In particular,
(QH = 1)-hopfion acquires the smallest slope possible in this case for kc ≈ 0.2 (red line
in Figure 4a): to relax such a hopfion with mumax3 no additional pinning is needed,
the relaxation procedure reaches some satisfactory accuracy and preserves hopfions; we
believe that in the experiments the observation of hopfions for these anisotropy values
would also become possible owing to larger relaxation times.

The anti-hopfion exhibits a slightly larger energy slope (dotted blue line in Figure 4a),
but the lower energy at smaller radii. This can be explained by the larger hopfion sizes for
the included cubic anisotropy (second and fourth panels in Figure 4b) and distortions of
bimeron cores. The field value h = 0.2759 for both curves corresponds to the line hc2 for
kc = 0.2.

The blue dashed line hh in Figure 4d signifies the phase transition between the FM
state and a helicoid with the wave vector perpendicular to the field. For relatively large
anisotropy values (to the right of the intersection point C), this field value becomes higher
than the field of the cone saturation hc2. Below the line hh, hopfions are found to undergo
elliptical distortions and elongations along the x direction as was pointed out for isolated
skyrmions: in this sense, ISs/hopfions serve as nuclei of the more energetically favorable
helical phase.

Figure 4e shows the variation in the slope of the curves W(R), ∆W(R)/∆R, depending
on the cubic anisotropy. At first, the slope drastically decreases following the tendency
of the critical field hc2. Then, it reaches the minimum and starts to grow again, which is
consistent with the inflection point of the line hc2.

As the second important step, to find the metastability region of hopfions, we engage
the exchange anisotropy. In Cu2OSeO3, the exchange anisotropy

wea = bea ∑
i
(∂mi/∂xi)

2 (6)

has easy 〈111〉 axes (i.e., bea < 0) and therefore competes with the cubic anisotropy (5).
Interestingly, neither the conical state nor the helicoid “feel” the exchange anisotropy:
energy of the exchange anisotropy is zero for the conical phase, since the magnetization
derivatives in (6) all vanish. Magnetization rotation in hopfions, on the contrary, acquires
the negative wea energy. At larger bea values, an energy minimum corresponding to
metastable hopfions appears (Figure 4f). The mechanism is based on the energy balance
between the cubic anisotropy and the exchange interaction, which make hopfions smaller,
and the exchange anisotropy trying to inflate hopfions in order to increase the extension of
rotational regions. We notice that the relatively large anisotropy values leading to hopfion
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metastability correspond to low temperatures in the bulk chiral host Cu2OSeO3. In Ref. [43],
the values kc = 0.15, bea ≈ −0.2 were found to reproduce the experimental results. Isolated
hopfions, in this case, will be surrounded by the clusters of skyrmions and the domains of
the tilted spiral states, which were experimentally shown to coexist in the low-temperature
interval [43]. This fact may impede direct and unambiguous observation of hopfions in
this bulk helimagnet.

5. Discussion and Conclusions

Nowadays, 3D hopfions are of great interest due to their potential application in three-
dimensional spintronic devices, the reason for this being the emergent electromagnetic
response and non-trivial dynamic properties under external stimuli. Hopfions have recently
been observed in magnetic [44], ferroelectric [45] and liquid crystals [31,39], and have been
studied in Bose–Einstein condensates [46]. Usually, one has to “create” some “special”
conditions to observe hopfions: (i) in chiral liquid crystals, the difference in elastic constants
alongside with the surface anchoring facilitate hopfion stability; (ii) in different nanos-
tructures [41] or multilayers [44], one modifies the perpendicular magnetic anisotropy to
create some energy barrier and prevent hopfion collapse; (iii) in frustrated systems [47,48]
with the competing exchange interactions, both senses of the magnetization rotation are
energetically equivalent and thus promote hopfions. Anyway, in these material systems,
one may create even more complicated hopfions with the bimeron pattern rotating along
the circular trajectory. In this case, the yz cross-section would exhibit target-skyrmions
with the anti-skyrmion fashion of rotation but no additional energy “penalty” due to the
Lifshitz invariants. In the cross-sections xy and xz, different bimeron parts will face the
hopfion interior.

In the present manuscript, we, however, use the standard Dzyaloshinskii model
for bulk cubic helimagnets. The hopfion texture can be conventionally characterized by
the linked set of preimages: the preimages corresponding to any point on a sphere S2

densely fill the surface of an associated withrus The calculated Hopf invariant equals 1
for hopfions and −1 for anti-hopfions. We, however, give another perspective on the
internal structure of hopfions. Hopfions are considered a result of the swirling of 2D
bimerons formed perpendicular to the applied magnetic field. Such a method allows us to
obtain not only the aforementioned (QH = ±1)-hopfions, but also speculate about more
exotic spin textures as “solenoids” and/or horizontal skyrmions. In particular, the smooth
connection of solenoids (which are essentially ordinary skyrmion filaments oriented along
the field) and the horizontal skyrmions can easily be imagined and, thus, one may attempt
to construct versatile 3D solitons. Moreover, the internal properties of hopfions can be
analyzed starting from the 2D bimeron patterns or 2D target-skyrmions, i.e., the stability
of 2D solitons is vital for the stability of 3D hopfions as well. In particular, we avoid spin
patterns obtained in a 2D hopfion cross-section, which do not comply with the Lifshitz
invariants for cubic helimagnets.

To find metastable hopfions surrounded by the homogeneous state, we supplement
the model by the cubic and exchange anisotropies, which are innate in B20 systems such
as Cu2OSeO3. The experiments invoked to indicate the hopfion presence in this bulk
helimagnet should, however, take into account skyrmion clusters and tilted spiral states,
which coexist with the homogeneous state in the suggested parameter range. At the same
time, the inhomogeneous magnetic environment may induce hopfion nucleation. A similar
strategy on hopfion observation was recently pursued in a cubic helimagnet FeGe [49],
in which the cubic anisotropy and the temperature-induced change in easy axes contribute
to the hopfion metastability. The fractional hopfions and their ensembles have been created
by flipping the external field or flowing a pulsed current.

At the same time, we admit that the influence of small anisotropic energy terms
(cubic and exchange anisotropies) on the hopfion structures and the related question of
hopfion stability are far from being completely answered in the present paper. Indeed,
depending on the control parameters, one may encounter many degenerate homogeneous
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states stabilized by the cubic anisotropy as well as a multitude of local energy minima
with states oblique with respect to the field (see for details Ref. [50]). Thus, by varying the
direction of the applied magnetic field with respect to the easy anisotropic axes, one may
“strengthen” some parts of a hopfion (will be performed elsewhere).

Funding: This research was funded by JSPS grant number 21K03406 for A.O.L.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: A.O.L. acknowledges JSPS Grant-in-Aid (C).

Conflicts of Interest: The author declares no conflict of interest.

References
1. Bogdanov, A.N.; Hubert, A. Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater. 1994,

138, 255. [CrossRef]
2. Leonov, A.O.; Monchesky, T.L.; Romming, N.; Kubetzka, A.; Bogdanov, A.N.; Wiesendanger, R. The properties of isolated chiral

skyrmions in thin magnetic films. New J. Phys. 2016, 18, 065003. [CrossRef]
3. Rößler, U.K.; Leonov, A.A.; Bogdanov, A.N. Chiral skyrmionic matter in non-centrosymmetric magnets. J. Phys. Conf. Ser. 2011,

303, 012105. [CrossRef]
4. Romming, N.; Hanneken, C.; Menzel, M.; Bickel, J.; Wolter, B.; von Bergmann, K.; Kubetzka, A.; Wiesendanger, R. Writing and

deleting single magnetic skyrmions. Science 2013, 341, 636. [CrossRef] [PubMed]
5. Dzyaloshinskii, I.E. Theory of helicoidal structures in antiferromagnets. I. nonmetals. Sov. Phys. JETP 1964, 19, 960.
6. Rajaraman, R. Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory; North-Holland Publishing

Company: Amsterdam, The Netherlands, 1982.
7. Nagaosa, N.; Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 2013, 8, 899. [CrossRef]

[PubMed]
8. Bogdanov, A.N.; Roessler, U.K. Chiral Symmetry Breaking in Magnetic Thin Films and Multilayers. Phys. Rev. Lett. 2001,

87, 037203. [CrossRef]
9. Bode, M.; Heide, M.; von Bergmann, K.; Ferriani, P.; Heinze, S.; Bihlmayer, G.; Kubetzka, A.; Pietzsch, O.; Blügel, S.; Wiesendanger,

R. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 2007, 447, 190. [CrossRef]
10. Wright, D.C.; Mermin, N.D. Crystalline liquids: The blue phases. Rev. Mod. Phys. 1989, 61, 385. [CrossRef]
11. Sethna, J.P. Frustration and Curvature: Glasses and the Cholesteric Blue Phase. Phys. Rev. Lett. 1983, 51, 2198. [CrossRef]
12. Skyrme, T.H.R. A Nonlinear field theory. Proc. Roy. Soc. Lon. 1961, 260, 127.
13. Oswald, P.; Pieranski, P. Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments; CRC Press:

Boca Raton, FL, USA, 2005.
14. Mühlbauer, S.; Binz, B.; Jonietz, F.; Pfleiderer, C.; Rosch, A.; Neubauer, A.; Georgii, R.; Böni, P. Skyrmion lattice in a chiral magnet.

Science 2009, 323, 915. [CrossRef] [PubMed]
15. Wilhelm, H.; Baenitz, M.; Schmidt, M.; Roessler, U.K.; Leonov, A.A.; Bogdanov, A.N. Precursor phenomena at the magnetic

ordering of the cubic helimagnet FeGe. Phys. Rev. Lett. 2011, 107, 127203. [CrossRef] [PubMed]
16. Kezsmarki, I.; Bordacs, S.; Milde, P.; Neuber, E.; Eng, L.M.; White, J.S.; Ronnow, H.M.; Dewhurst, C.D.; Mochizuki, M.; Yanai, K.;

et al. Neel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat. Mater. 2015, 14, 1116.
[CrossRef] [PubMed]

17. Yu, X.Z.; Onose, Y.; Kanazawa, N.; Park, J.H.; Han, J.H.; Matsui, Y.; Nagaosa, N.; Tokura, Y. Real-space observation of a
two-dimensional skyrmion crystal. Nature 2010, 465, 901. [CrossRef]

18. Yu, X.Z.; Kanazawa, N.; Onose, Y.; Kimoto, K.; Zhang, W.Z.; Ishiwata, S.; Matsui, Y.; Tokura, Y. Near room-temperature formation
of a skyrmion crystal in thin films of the helimagnet FeGe. Nat. Mater. 2011, 10, 106. [CrossRef]

19. Du, H.; Liang, D.; Jin, C.; Kong, L.; Stolt, M.J.; Ning, W.; Yang, J.; Xing, Y.; Wang, J.; Che, R.; et al. Electrical probing of field-driven
cascading quantized transitions of skyrmion cluster states in MnSi nanowires. Nat. Commun. 2015, 6, 7637. [CrossRef]

20. Liang, D.; DeGrave, J.P.; Stolt, M.J.; Tokura, Y.; Jin, S. Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed
by topological Hall effect. Nat. Commun. 2015, 6, 8217. [CrossRef]

21. Romming, N.; Kubetzka, A.; Hanneken, C.; von Bergmann, K.; Wiesendanger, R. Field-Dependent Size and Shape of Single
Magnetic Skyrmions. Phys. Rev. Lett. 2015, 114, 177203. [CrossRef]

22. Tomasello, E.M.R.; Zivieri, R.; Torres, L.; Carpentieri, M.; Finocchio, G. A strategy for the design of skyrmion racetrack memories.
Sci. Rep. 2014, 4, 6784. [CrossRef]

http://doi.org/10.1016/0304-8853(94)90046-9
http://dx.doi.org/10.1088/1367-2630/18/6/065003
http://dx.doi.org/10.1088/1742-6596/303/1/012105
http://dx.doi.org/10.1126/science.1240573
http://www.ncbi.nlm.nih.gov/pubmed/23929977
http://dx.doi.org/10.1038/nnano.2013.243
http://www.ncbi.nlm.nih.gov/pubmed/24302027
http://dx.doi.org/10.1103/PhysRevLett.87.037203
http://dx.doi.org/10.1038/nature05802
http://dx.doi.org/10.1103/RevModPhys.61.385
http://dx.doi.org/10.1103/PhysRevLett.51.2198
http://dx.doi.org/10.1126/science.1166767
http://www.ncbi.nlm.nih.gov/pubmed/19213914
http://dx.doi.org/10.1103/PhysRevLett.107.127203
http://www.ncbi.nlm.nih.gov/pubmed/22026794
http://dx.doi.org/10.1038/nmat4402
http://www.ncbi.nlm.nih.gov/pubmed/26343913
http://dx.doi.org/10.1038/nature09124
http://dx.doi.org/10.1038/nmat2916
http://dx.doi.org/10.1038/ncomms8637
http://dx.doi.org/10.1038/ncomms9217
http://dx.doi.org/10.1103/PhysRevLett.114.177203
http://dx.doi.org/10.1038/srep06784


Magnetism 2023, 3 307

23. Kang, W.; Huang, Y.; Zheng, C.; Lv, W.; Lei, N.; Zhang, Y.; Zhang, X.; Zhou, Y.; Zhao, W. Voltage Controlled Magnetic Skyrmion
Motion for Racetrack Memory. Sci. Rep. 2016, 6, 23164. [CrossRef] [PubMed]

24. Fert, A.; Cros, V.; Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 2013, 8, 152. [CrossRef] [PubMed]
25. Leonov, A.O.; Kezsmarki, I. Asymmetric isolated skyrmions in polar magnets with easy-plane anisotropy. Phys. Rev. B 2017,

96, 014423. [CrossRef]
26. Barton-Singer, B.; Schroers, B.J. Stability and asymptotic interactions of chiral magnetic skyrmions in a tilted magnetic field. SciPost

Phys. 2023, 15, 011. [CrossRef]
27. Sohn, H.R.O.; Vlasov, S.M.; Uzdin, V.M.; Leonov, A.O.; Smalyukh, I.I. Real-space observation of skyrmion clusters with mutually

orthogonal skyrmion tubes. Phys. Rev. B 2019, 100, 104401. [CrossRef]
28. Leonov, A.O.; Pappas, C.; Smalyukh, I. Field-driven metamorphoses of isolated skyrmions within the conical state of cubic

helimagnets. Phys. Rev. B 2021, 104, 064432. [CrossRef]
29. Bak, P.; Jensen, M.H. Theory of helical magnetic structures and phase transitions in MnSi and FeGe. J. Phys. C Solid State Phys.

1980, 13, L881. [CrossRef]
30. Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Garcia-Sanchez, F.; Van Waeyenberge, B. The design and verification of

MuMax3. AIP Adv. 2014, 4, 107133. [CrossRef]
31. Ackerman, P.J.; Smalyukh, I.I. Static three-dimensional topological solitons in fluid chiral ferromagnets and colloids. Nat. Mater.

2017, 16, 426. [CrossRef]
32. Whitehead, J.H.C. An Expression of Hopf’s Invariant as an Integral. Proc. Natl. Acad. Sci. USA 1947, 33, 117. [CrossRef]
33. Gladikowski, J.; Helmund, M. Static solitons with nonzero Hopf number. Phys. Rev. D 1997, 56, 5194. [CrossRef]
34. Balakrishnan, R.; Dandoloff, R.; Saxena, A. Exact hopfion vortices in a 3D Heisenberg ferromagnet. Phys. Lett. A 2023, 480, 128975.

[CrossRef]
35. Guslienko, K. Emergent Magnetic Field and Vector Potential of the Toroidal Magnetic Hopfions. Chaos Solitons Fractals 2023,

174, 113840. [CrossRef]
36. Leonov, A.O.; Roessler, U.K.; Mostovoy, M. Target-skyrmions and skyrmion clusters in nanowires of chiral magnets. EPJ Web Conf.

2014, 75, 05002. [CrossRef]
37. Zheng, F.; Li, H.; Wang, S.; Song, D.; Jin, C.; Wei, W.; Kovacs, A.; Zang, J.; Tian, M.; Zhang, Y.; et al. Direct Imaging of a Zero-Field

Target Skyrmion and Its Polarity Switch in a Chiral Magnetic Nanodisk. Phys. Rev. Lett. 2017, 119, 197205. [CrossRef]
38. Komineas, S.; Papanicolaou, N. Skyrmion dynamics in chiral ferromagnets. Phys. Rev. B 2015, 92, 064412. [CrossRef]
39. Ackerman, P.J.; Smalyukh, I.I. Diversity of Knot Solitons in Liquid Crystals Manifested by Linking of Preimages in Torons and

Hopfions. Phys. Rev. X 2017, 7, 011006. [CrossRef]
40. Leonov, A.O.; Inoue, K. Homogeneous and heterogeneous nucleation of skyrmions in thin layers of cubic helimagnets. Phys. Rev.

B 2018, 98, 0544404. [CrossRef]
41. Liu, Y.; Lake, R.K.; Zang, J. Binding a hopfion in a chiral magnet nanodisk. Phys. Rev. B 2018, 98, 174437. [CrossRef]
42. Voinescu, R.; Tai, J.-S.B.; Smalyukh, I. Hopf Solitons in Helical and Conical Backgrounds of Chiral Magnetic Solids. Phys. Rev. Lett.

2020, 125, 057201. [CrossRef]
43. Crisanti, M.; Leonov, A.O.; Cubitt, R.; Labh, A.; Wilhelm, H.; Schmidt, M.P.; Pappas, C. Tilted spirals and low-temperature

skyrmions in Cu2OSeO3. Phys. Rev. Res. 2023, 5, 033033. [CrossRef]
44. Kent, N.; Reynolds, N.; Raftrey, D.; Campbell, I.T.G.; Virasawmy, S.; Dhuey, S.; Chopdekar, R.V.; Hierro-Rodriguez, A.; Sorrentino,

A.; Pereiro, E.; et al. Creation and observation of Hopfions in magnetic multilayer systems. Nat. Commun. 2021, 12, 1562. [CrossRef]
[PubMed]

45. Luk’yanchuk, I.; Tikhonov, Y.; Razumnaya, A.; Vinokur, V.M. Hopfions emerge in ferroelectrics. Nat. Commun. 2020, 11, 2433.
[CrossRef] [PubMed]

46. Bidasyuk, Y.M.; Chumachenko, A.V.; Prikhodko, O.O.; Vilchinskii, S.I.; Weyrauch, M.; Yakimenko, A.I. Stable Hopf solitons in
rotating Bose–Einstein condensates. Phys. Rev. A 2015, 92, 053603. [CrossRef]

47. Sutcliffe, P. Hopfions in chiral magnets. J. Phys. A Math. Theor. 2018, 51, 375401. [CrossRef]
48. Sallermann, M.; Jonsson, H.; Blügel, S. Stability of hopfions in bulk magnets with competing exchange interactions. Phys. Rev. B

2023, 107, 104404. [CrossRef]
49. Yu, X.; Liu, Y.; Iakoubovskii, K.V.; Nakajima, K.; Kanazawa, N.; Nagaosa, N.; Tokura, Y. Realization and Current-Driven Dynamics

of Fractional Hopfions and Their Ensembles in a Helimagnet FeGe. Adv. Mater. 2023, 35, 2210646. [CrossRef]
50. Leonov, A.; Roessler, U.K.; Bogdanov, A. Phenomenological theory of magnetization reversal in nanosystems with competing

anisotropies. J. Appl. Phys. 2008, 104, 084304. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1038/srep23164
http://www.ncbi.nlm.nih.gov/pubmed/26975697
http://dx.doi.org/10.1038/nnano.2013.29
http://www.ncbi.nlm.nih.gov/pubmed/23459548
http://dx.doi.org/10.1103/PhysRevB.96.014423
http://dx.doi.org/10.21468/SciPostPhys.15.1.011
http://dx.doi.org/10.1103/PhysRevB.100.104401
http://dx.doi.org/10.1103/PhysRevB.104.064432
http://dx.doi.org/10.1088/0022-3719/13/31/002
http://dx.doi.org/10.1063/1.4899186
http://dx.doi.org/10.1038/nmat4826
http://dx.doi.org/10.1073/pnas.33.5.117
http://dx.doi.org/10.1103/PhysRevD.56.5194
http://dx.doi.org/10.1016/j.physleta.2023.128975
http://dx.doi.org/10.1016/j.chaos.2023.113840
http://dx.doi.org/10.1051/epjconf/20147505002
http://dx.doi.org/10.1103/PhysRevLett.119.197205
http://dx.doi.org/10.1103/PhysRevB.92.064412
http://dx.doi.org/10.1103/PhysRevX.7.011006
http://dx.doi.org/10.1103/PhysRevB.98.054404
http://dx.doi.org/10.1103/PhysRevB.98.174437
http://dx.doi.org/10.1103/PhysRevLett.125.057201
http://dx.doi.org/10.1103/PhysRevResearch.5.033033
http://dx.doi.org/10.1038/s41467-021-21846-5
http://www.ncbi.nlm.nih.gov/pubmed/33692363
http://dx.doi.org/10.1038/s41467-020-16258-w
http://www.ncbi.nlm.nih.gov/pubmed/32415142
http://dx.doi.org/10.1103/PhysRevA.92.053603
http://dx.doi.org/10.1088/1751-8121/aad521
http://dx.doi.org/10.1103/PhysRevB.107.104404
http://dx.doi.org/10.1002/adma.202210646
http://dx.doi.org/10.1063/1.2996016

	Introduction
	Phenomenological Model
	Internal Structure of Hopfions
	Metastability of Hopfions in Bulk Helimagnets
	Discussion and Conclusions
	References

