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Abstract: Railway infrastructure safety is a paramount concern, with bolt integrity being a critical
component. In the realm of railway maintenance, the detection of missing bolts is a vital task that
ensures the stability and safety of tracks. Traditionally, this task has been approached through manual
inspections or conventional automated methods, which are often time-consuming, costly, and prone
to human error. Addressing these challenges, this paper presents a state-of-the-art solution with
the development of a lightweight convolutional neural network (CNN) featuring an integrated
attention mechanism. This novel model is engineered to be computationally efficient while main-
taining high accuracy, making it particularly suitable for real-time analysis in resource-constrained
environments commonly found in railway inspections. The proposed CNN utilises a distinctive
architecture that synergises the speed of lightweight networks with the precision of attention-based
mechanisms. By integrating an attention mechanism, the network selectively concentrates on regions
of interest within the image, effectively enhancing the model’s capability to identify missing bolts
with remarkable accuracy. Comprehensive testing showcases a remarkable 96.43% accuracy and
an impressive 96 F1-score, substantially outperforming existing deep learning frameworks in the
context of missing bolt detection. Key contributions of this research include the model’s innovative
attention-integrated approach, which significantly reduces the model complexity without compro-
mising detection performance. Additionally, the model offers scalability and adaptability to various
railway settings, proving its efficacy not just in controlled environments but also in diverse real-world
scenarios. Extensive experiments, rigorous evaluations, and real-time deployment results collectively
underscore the transformative potential of the presented CNN model in advancing the domain of
railway safety maintenance.

Keywords: lightweight convolutional neural network (CNN); integrated attention mechanism;
missing bolt detection; railway infrastructure safety; real-time analysis; safety inspection automation;
high-accuracy detection systems; deep learning in real-world scenarios

1. Introduction

Railway maintenance and safety are foundational to the rail industry, ensuring the
reliable and safe transportation of goods and passengers [1]. The railway system comprises
a complex network of components that necessitate regular inspection and maintenance to
avert malfunctions and accidents. Among the vast array of elements in this infrastructure,
the integrity of fastening components, such as bolts, is crucial for maintaining track stability
and alignment. Bolts, as seen in Figure 1, serve a pivotal role in securing rails to sleepers
and joining rail sections, which, if compromised, can precipitate catastrophic failures,
leading to derailments or other severe accidents [2]. Over time, bolts can become loose or
go missing due to vibration, thermal expansion, and contraction, as well as mechanical
stress, which can lead to the misalignment of tracks, the reduced functionality of the joints,
and, in the worst cases, derailments [3]. Thus, the detection and timely replacement of such
bolts are critical. This approach requires not just accuracy but also swiftness to preclude
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the development of hazardous conditions. The traditional approach to bolt detection,
involving manual inspections, is vulnerable to human error and becomes less practical
with the ever-expanding scale of modern rail networks. Automated bolt detection methods
promise greater consistency and efficiency. However, their efficacy is dependent on the
sophistication of the detection technology used. In this context, the development and
implementation of advanced detection systems capable of quickly and reliably identifying
missing or damaged bolts is crucial. Despite advances in technology and the development
of automated systems for maintenance checks, the detection of missing bolts remains a
challenge due to the complexity of the environment in which railways operate, which
encompasses factors like varying light conditions, weather influences, and the presence of
dirt and grease [4]. Moreover, with the expansion of railway networks and a concurrent
increase in traffic, the demand for more efficient and reliable maintenance techniques has
escalated. Thus, the advent of a lightweight, attention-enhanced convolutional neural
network represents a significant innovation in the field, tackling the urgent need for
improved safety measures and maintenance practices in the railway industry. Such a
system, by enhancing detection accuracy and efficiency, could represent a significant
advancement in railway maintenance protocols, directly contributing to the safety and
reliability of rail transport [5,6].

Figure 1. Real-life example of a bolt used in railway infrastructure.

With the advent of traditional machine learning techniques, automation has attempted
to address the drawbacks of manual inspections. While these methods increase scalability,
they still demand extensive feature engineering and are often constrained by the quality
and quantity of data. Machine learning models rely on predefined features extracted from
the data, which may fail to capture the complexity of real-world scenarios, resulting in
suboptimal detection accuracy [7]. The adoption of deep learning approaches, notably
convolutional neural networks (CNNs) [8], constitutes a significant step forward, as they
offer end-to-end learning capabilities and automatic feature extraction. CNNs have demon-
strated remarkable success in various computer vision tasks, including object detection
and classification [9]. For instance, CNNs have been widely adopted for pedestrian de-
tection [10], face recognition [11], handwriting detection [12,13], and defect detection in
manufacturing [14]. In the domain of transportation, CNNs have been employed for ve-
hicle detection and classification [15], road sign recognition [16], and crack detection in
roads and bridges [17]. However, deep learning models, particularly those with deeper
architectures, require considerable computational resources, which may hinder their de-
ployment in resource-constrained environments. Other deep learning architectures, such
as Vision Transformers (ViTs) [18] and You Only Look Once (YOLO) [19], have also gained
popularity for object detection tasks. ViTs leverage self-attention mechanisms to capture
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long-range dependencies in the input data, while YOLO is a real-time object detection
system that combines object localisation and classification into a single neural network.
For example, ViTs have been successfully applied to medical image analysis tasks, such as
tumour detection and segmentation [20], pallet rack defect detection [21], as well as remote
sensing applications, including land cover classification and change detection [22]. On the
other hand, YOLO has been widely adopted in surveillance systems for real-time object
tracking [23], as well as in autonomous driving for pedestrian and vehicle detection [24].
Other notable examples of deep learning architectures for object detection include Faster
R-CNN [25], which combines a region proposal network with a CNN for accurate object
localisation and classification, and single-shot detectors like SSD [26] and RetinaNet [27],
which perform object detection in a single pass over the input image, making them compu-
tationally efficient. Nevertheless, these models often have high computational complexity
and memory requirements, which may pose challenges for real-time applications in rail-
way maintenance. This necessitates balancing model performance and the feasibility of
deployment in the field, where computational constraints are prevalent. Furthermore,
these models’ limited interpretability and “black box” nature can undermine trust and
adoption in safety-critical applications [28]. Additionally, the effectiveness of deep learning
models relies heavily on the availability of large annotated datasets, which are scarce in the
domain of railway maintenance. The diversity of bolt types and the infrequency of miss-
ing bolts present further challenges in dataset acquisition. Hence, despite advancements
in automated bolt detection, there remains a pressing need for a solution that provides
high detection accuracy while being resource-efficient and interpretable for real-world
application in railway maintenance.

To address these pressing limitations, we propose a groundbreaking solution: a
lightweight convolutional neural network (CNN) with an integrated attention mechanism.
This innovative architecture, based on supervised learning, is designed to address the dual
challenges of accuracy and computational efficiency in the detection of missing bolts in
railway infrastructure. Our design philosophy behind the lightweight CNN is to refine
network complexity while enhancing the model’s predictive power. By employing a more
compact and optimised set of layers, our CNN operates with fewer computational resources,
which is ideal for on-site deployment where hardware limitations must be considered.
The attention mechanism elevates the model’s performance by focusing on the most salient
features of the input data, mimicking the human visual system’s ability to concentrate
on pertinent parts of an image to extract information. Our CNN leverages the attention
mechanism to effectively emphasise different regions in the image of railway tracks, thus
improving the detection of missing bolts by directing computational resources to the most
critical areas. This targeted approach not only boosts the model’s accuracy but also reduces
the need for excessive computing power, typically associated with deeper, more complex
networks. The synergy of a lightweight neural network with an attention mechanism is a
pioneering approach in railway maintenance. It promises to significantly elevate the current
state of the art in automated bolt detection, delivering a practical, efficient, and highly
accurate system that fulfils the rigorous demands of railway safety inspections.

In essence, the primary objective of this paper is to present an efficient, accurate,
and reliable method for detecting missing bolts in railway infrastructure, embodied in the
deployment of our novel lightweight CNN with an integrated attention mechanism. Aim-
ing to overcome the limitations of manual inspections and traditional automated methods,
this solution is both computationally light and robust against the real-world complexities
of railway maintenance. The scope of this research includes the development and eval-
uation of the CNN architecture, tailored to operate with high efficiency and deployable
in various settings, notably those with limited computational resources. This paper will
detail an extensive comparative analysis of our model against the current state of the art,
demonstrating its superior performance in bolt detection tasks. Alongside a comprehensive
methodology for model training and validation, the paper will highlight potential applica-
tions and discuss the wider implications of this technology for the field of railway safety
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and automated visual inspections. Our work strives to set a new benchmark in railway
maintenance technology and to offer a model adaptable to various railway systems world-
wide. Moreover, this research aims to contribute to the broader field of machine learning and
computer vision, introducing an architecture that reconciles high accuracy with operational
efficiency—two often-competing priorities in deep learning model development.

2. Related Work

The advancement of automated inspection systems in the railway industry marks
a significant stride towards enhancing operational safety and efficiency. At the heart of
these developments lies the integration of computer vision and deep learning technologies,
which have shown remarkable capabilities in detecting and diagnosing infrastructural
anomalies. Particularly, the detection of missing bolts is a critical component in ensuring
the structural integrity of railway tracks. This presents unique challenges that necessitate
innovative solutions.

2.1. Traditional Bolt Detection Methods

The maintenance of railway components, including bolt detection, has historically
been a manual task requiring significant human effort and time. There are inherent risks
of oversight and inaccuracies. Automated methods using traditional computer vision
techniques have been developed to improve efficiency and accuracy. These methods,
however, often need help with the complexities of real-world railway environments, such
as varying lighting conditions and occlusions.

Traditionally, railway inspection, including bolt detection, was conducted manually
by trained workers who would walk along the railway lines to identify any potential risks.
While thorough, this manual process has been criticised for being slow, costly, dangerous,
and subject to human error [4]. Automated vision-based systems have been developed to
improve the manual process. Early systems utilised techniques like wavelet transforms and
principal component analysis for image preprocessing to detect the absence of fastening
bolts with a high degree of reliability and robustness [29].

Marino et al., in their research, proposed real-time visual inspection systems for rail-
way maintenance, like the Visual Inspection System for Railway (VISyR), which employs
digital line-scan cameras and neural classifiers to detect fastening bolts with high accu-
racy [30]. Similarly, L. Liu et al. proposed machine vision approaches to automatically
inspect the status of fastening bolts on freight trains, achieving high inspection accuracy
and real-time performance [31]. Recent trends in bolt detection are shifting towards more
advanced techniques that include the use of deep learning and convolutional neural net-
works (CNNs) for improved accuracy and efficiency in detecting various components of
rail tracks, including bolts [32]. Sun et al. proposed innovative methods using binocular
vision, which have also been proposed for detecting bolt-loosening on key components of
running trains, thereby significantly improving fault detection efficiency [33].

The development of automated bolt detection systems marks a significant step to-
wards enhancing the safety and reliability of railway infrastructure, making the process
more efficient and less dependent on manual labour while reducing the risk of human error.
Traditional methods, while being thorough, are limited by their time-consuming nature
and high labour costs. Automated systems using traditional computer vision techniques,
although more efficient, still struggle with complex real-world conditions such as vary-
ing lighting and occlusions. These methods include the use of digital line-scan cameras
and simple neural classifiers, which, while improving over manual inspections, do not
consistently handle the complexity of diverse environmental conditions.

2.2. Convolutional Neural Networks in Bolt Detection

The field of automated bolt detection has been revolutionised by the introduction of
convolutional neural networks (CNNs), which have significantly improved the accuracy
and speed of detecting and classifying bolts in railway maintenance.
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A particularly noteworthy development is the use of CNNs in a hierarchical detection
framework proposed by L. Liu et al., which includes extracting the fault area containing the
target from a complex background and then employing gradient-orientation-based features
alongside a support vector machine classifier for bolt detection. This approach has led to
impressive accuracy levels in automated status inspections of fastening bolts on freight
trains [31]. In another instance, Gibert et al. proposed a deep multitask learning framework
for railway track inspection. Combining multiple detectors improves accuracy in detecting
defects in railway ties and fasteners. It shows that when networks are trained to recognise
multiple, distinct patterns simultaneously, performance can be significantly enhanced,
suggesting a beneficial path for future CNN-based bolt detection methodologies [34].

The use of deep learning extends to transforming the problem of abnormal bolt
detection into a bolt number detection issue. Wang et al. proposed that Faster R-CNN and
YOLO have been adapted for this purpose, and they developed a new network based on
ResNet to count the number of bolts, which serves as an indicator of bolt presence and
condition [35]. Moreover, CNN models have been successfully implemented in systems
that inspect train wheels, showcasing the potential of deep learning in automating the bolt
inspection process. Li et al., in their research, trained a model to distinguish between bolt
and non-bolt images, with the ability to adapt to various situations encountered by bolts in
real-life scenarios [36].

Additionally, another method that has significantly improved the performance of
deep learning models is attention mechanisms. It is inspired by human visual attention
and focuses on the most informative parts of input by dynamically weighing the signifi-
cance of different features. This capability can significantly enhance CNN performance,
especially in tasks requiring the differentiation of fine-grained details or when dealing
with noisy and complex datasets. Wang et al. proposed an innovation called AttnConv-
net, which integrates an attention mechanism within a deep CNN to detect multiple rail
components, including bolts. The use of positional embedding and cascading attention
blocks allows for learning the local context of rail components, simplifying the detection
pipeline by removing the need for pre- and post-processing [37]. Similarly, Alif et al. pro-
posed Boltvision, which demonstrated effective uses of transformer-based architecture.
By performing a comparative analysis of CNNs, ViTs, and CCTs, the study contributes
to the field by emphasising the practical implications of deploying such models on edge
devices where computational resources are limited. The utilisation of a pre-trained ViT base
within BoltVision and achieving 93% accuracy in classifying missing bolts is particularly
notable [38].

Overall, attention mechanisms have vast potential to enhance CNN performance,
offering a pathway to more intelligent and efficient models capable of high-fidelity detection
tasks in railway maintenance and beyond. The further exploration and integration of
attention into CNN architectures are likely to yield significant improvements in automated
visual inspection systems.

2.3. Limitations of Existing Deep Learning Approaches

While deep learning and CNNs have advanced bolt detection in railway maintenance,
they are not without limitations. A significant challenge lies in the balance between compu-
tational efficiency and accuracy. Deep learning models, particularly those with complex
architectures, require substantial computational resources, which can be a bottleneck when
deployed in real-time systems or on edge devices with limited processing capabilities.

In the context of real-world applications, intricate models may struggle to main-
tain high-speed performance without sacrificing accuracy. This is evident in systems
that demand on-the-fly analysis, such as those used for inspecting high-speed railways
where detection must occur in milliseconds. According to the research performed by
Gibert et al., although the deep multitask learning framework improves accuracy, it high-
lights the trade-off between computational demand and real-time processing efficiency [34].
Another concern is the robustness of these models in varied environmental conditions.
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The performance of CNNs can degrade when faced with images captured in poor lighting,
from different angles, or with occlusions. This was observed in the hierarchical detection
framework, where complex backgrounds and varying lighting conditions posed significant
challenges [31]. Furthermore, the requirement for large labelled datasets for training can be
a limitation. Deep learning models are data-hungry, and the need for labelled examples,
especially of rare defects, can hinder the model’s ability to learn effectively. This has been
noted as an issue by Wang et al. in systems designed for fault detection, where the models
may not generalise well to unseen defects or new types of bolts [35].

The challenges associated with deep learning for bolt detection extend into areas
such as the overfitting of models to training data, which can reduce their effectiveness
in practical scenarios. Overfitting occurs when a model learns details and noise in the
training data to the extent that it negatively impacts the performance of the model on new
data, leading to less accuracy when deployed in real-world conditions. This issue becomes
more pronounced when the variation in the operational environment is significant and
not fully represented in the training set [39]. Additionally, the interpretability of deep
learning models remains a limitation. While these models can perform with high accuracy,
understanding the decision-making process is often difficult. This “black box” nature of
deep learning models can be a barrier, particularly in safety-critical applications like railway
maintenance, where explainability is important for trust and diagnostics [36]. Transfer
learning has been proposed as a solution to address the issue of limited labelled data,
but it is not without drawbacks. While it allows a pre-trained model to be applied to new
but related tasks, there is still a requirement for fine-tuning the model with a sufficient
amount of target data to achieve the desired level of performance. Moreover, if the new
task diverges significantly from the source task, the effectiveness of transfer learning can be
compromised, resulting in suboptimal performance [35].

To sum up, while deep learning offers promising directions for automated bolt detec-
tion, computational efficiency model robustness and generalisation capabilities need to
be improved. Addressing these limitations is crucial for developing more sophisticated
and practical inspection systems that can operate under a broad spectrum of conditions
and constraints.

2.4. Comparison of Bolt Detection Technologies

Bolt detection has long been a critical concern in railway maintenance. The safety
and reliability of railway infrastructure are heavily dependent on the accurate and timely
identification of missing or loose bolts. The methods employed for this task have evolved
significantly over the years, reflecting advancements in technology and an increased under-
standing of the challenges inherent in railway environments.

Initially, bolt detection was predominantly a manual process conducted by human
inspectors. This method, while thorough, is fraught with drawbacks—primarily, it is
labour-intensive, time-consuming, and prone to human error. Inspectors are subject to
fatigue, which can compromise the accuracy of inspections, particularly under adverse
conditions. As technology advanced, automated systems employing traditional computer
vision techniques were developed. These systems, utilizing tools like wavelet transforms
and principal component analysis, marked a significant improvement over manual inspec-
tions by increasing efficiency and reducing human error. However, their effectiveness was
often limited by their inability to handle the complexities of real-world conditions such as
variable lighting, weather effects, and physical obstructions [29].

Further developments led to the adoption of more sophisticated machine vision
systems. Technologies like the Visual Inspection System for Railway (VISyR), which
utilizes digital line-scan cameras and basic neural classifiers, improved accuracy [30].
Nevertheless, these systems sometimes struggle to perform consistently across the diverse
and dynamically changing environments found along railway tracks.

The introduction of deep learning, particularly the use of convolutional neural net-
works (CNNs), has revolutionized bolt detection. CNNs significantly enhance both the
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accuracy and speed of detection by directly learning from large quantities of data to identify
complex patterns that characterize bolt presence or absence. When enhanced with attention
mechanisms, these models further refine their predictive capabilities. The attention layers
allow the models to focus selectively on the most relevant features of the input data, mir-
roring human visual attention and effectively improving the detection outcomes in noisy
or complex scenes [40].

For a detailed comparison of these methodologies, see Table 1, which summarizes the
technologies used, advantages, and limitations of each bolt-detection method. This table
helps illustrate how each approach has contributed to advancements in the field, setting
the context for our proposed CNN model’s development.

Table 1. Comparison of bolt detection technologies.

Method Technology Advantages Limitations

Manual Inspection [4] Human visual inspection Highly thorough Time-consuming, costly, subject to
human error

Traditional Automated
Systems [29]

Digital line-scan cameras,
wavelet transforms, PCA

Improved speed
and reliability

Struggles with complex
environments, limited by basic
CV techniques

Early CNN
Approaches [29,30,32,33] Basic CNN models Better accuracy and efficiency

in ideal conditions

Require substantial
computational resources struggles
in varied environments

Advanced CNN
Techniques [31,34,40]

Hierarchical detection
frameworks,
multitask learning

High accuracy, capable of
complex pattern recognition

Still demands high computational
power, can be costly to implement

Innovative
Approaches [37,38]

Attention mechanisms,
Transformer-based
architectures

Enhanced focus on relevant
features, suitable for
edge devices

May require extensive training
data, complex to implement

Deep learning models, especially those equipped with attention mechanisms, surpass
the performance of traditional and machine vision systems not only in terms of accu-
racy and reliability but also by demonstrating superior adaptability to new and unseen
conditions—critical for real-time applications in railway maintenance, where anomalies
must be detected swiftly to prevent failures.

The promising results obtained from deep learning models suggest a pathway to-
ward more intelligent, efficient, and robust bolt detection systems. Future research can
further explore the integration of these advanced models into comprehensive railway
inspection systems that operate autonomously under a wide range of conditions. Moreover,
the ongoing development of these technologies could potentially extend to other critical
infrastructure inspection tasks, where the ability to quickly and accurately detect anomalies
is paramount.

3. Methodology: Custom Convolutional Development Pipeline
3.1. Dataset

The study’s dataset was collected using a sophisticated setup featuring a robotic arm
equipped with a high-resolution camera, specifically chosen to mimic the diverse angles
and positions from which images are typically captured within an operational railway
setting (see Figure 2). This setup includes a Raspberry Pi camera module equipped with an
infrared sensor. The use of the Raspberry Pi camera with an infrared sensor ensures that
images are captured consistently and accurately, even in challenging lighting conditions
commonly encountered in railway environments. The parameters of the high-resolution
camera are given in Table 2.
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Figure 2. Robotic arm equipped with a high-resolution camera for automated image acquisition.

Table 2. Parameters of the high-resolution camera.

Parameter Value

Resolution 12 megapixels
Lens focal length 3.6 mm
Aperture f/2.0
Sensor type CMOS
Field of view 60 degrees
Image sensor size 1/2.3 inch
ISO sensitivity ISO 100-3200
Shutter speed range 1/1000 to 30 s

Such a setup is crucial in bypassing the inconsistencies associated with handheld de-
vices like smartphones and ensures standardised, reproducible image acquisition methods,
making it well-suited for integration with edge computing devices.

The dataset comprises 145 images, each meticulously resized to a uniform resolution
of 224 × 224 pixels. The images are categorized into two distinct groups: bolt-present and
bolt-missing scenarios. The bolt-present category includes instances where the bolts are
clearly visible and intact (as shown in the top row A of Figure 3). Conversely, the bolt-
missing category encompasses scenarios where the bolts are absent, which could signify a
potential maintenance issue (as demonstrated in the bottom row B of Figure 3).

Each image in the dataset was captured with careful consideration for the operat-
ing environment and the positioning of the device to ensure a realistic simulation of
on-site conditions. The images encapsulate the intricacies encountered in real-world in-
spection settings, including factors such as occlusions, rust, oil stains, and the presence of
scale, while also accommodating the variability observed across different subsections of
train components.

To facilitate focused learning for the model, images were cropped to centre around
bolt-containing sections of the train components, with equal representation given to sam-
ples showcasing both intact bolts and scenarios where bolts are missing. This deliberate
emphasis enables the model to learn and distinguish patterns pertinent to the presence or
absence of bolts, aiding in the accurate detection of potential safety hazards.
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The curation of the dataset was geared towards providing the convolutional network
with a rich and diverse set of visual inputs, thereby optimizing the performance of the
attention mechanism integrated within the network for reliable bolt detection. The diversity
and quality of the dataset are instrumental in training a model that can accurately identify
missing bolts, a critical aspect of railway maintenance and safety inspections.

Figure 3. Sample images from the bolt detection dataset: row (A) showcases instances with bolts
properly in place, while row (B) illustrates scenarios where bolts are missing.

3.2. Data Augmentation

Data augmentation plays a critical role in the development of robust machine learning
models, especially in the realm of computer vision. For our paper, augmentation is par-
ticularly significant due to the high variability and unpredictability of real-world railway
maintenance scenarios. By artificially expanding the dataset through various transfor-
mations, data augmentation enhances the diversity of training examples. This process
helps to prevent overfitting, improve model generalizability, and ultimately increase the
robustness of the predictive model against unseen data. Such enhancements are vital for
an architecture designed to operate in the field, where it will encounter a wide range of
conditions not perfectly mirrored in the initial dataset.

In the context of our lightweight convolutional network, data augmentation ensures
that the model is not only trained on a wide spectrum of possible scenarios, including differ-
ent angles, lighting conditions, and occlusions, but also learns to identify bolts regardless of
such variations. The attention mechanism within the model benefits from augmented data
by learning to focus effectively on relevant features amidst diverse and challenging inputs.

For this project, we utilized PyTorch, a leading deep-learning library, to implement
our data augmentation strategy effectively. PyTorch offers a comprehensive suite of data
augmentation tools that provide a flexible platform for easily applying a wide array of
augmentation techniques. The original dataset consisted of 145 images, and through
systematic augmentation, we expanded this significantly to simulate an extensive and
varied set of visual scenarios. This expanded dataset, showcased in Figure 4, underpins the
training process, ensuring that our architecture is both rigorously trained and thoroughly
tested. The result is a more effective and reliable bolt detection system that is adept at
operating under the variable conditions typical in railway environments. This detailed
approach to data augmentation underscores our commitment to creating a highly adaptable
and resilient model capable of performing reliably in real-world settings, where extensive
data collection is often impractical. By emphasizing the transformative effect of our data
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augmentation techniques, we reinforce the robustness and adaptability of our model to
meet the dynamic demands of railway safety maintenance.

Figure 4. Examples of augmented images from the bolt detection dataset.

3.2.1. Random Vertical Flip

The horizontal flip augmentation reflects an image along the vertical axis, effectively
creating a mirror image. This technique addresses the scenario where the edge device
captures images from opposing directions. The probability p determines the chance of any
image being flipped during the augmentation process, as given in Equation (1).

I′ = fliphorizontal(I) (1)

3.2.2. Random Horizontal Flip

Similarly, the vertical flip mirrors the image along the horizontal axis as per Equation (2).
While less common in bolt inspection scenarios, vertical flips ensure the model’s robustness
against unusual but possible situations, such as upside-down camera mounting.

I′ = flipvertical(I) (2)

3.2.3. Random Rotation

This augmentation rotates the image by a random angle θ within a specified range
Equation (3), typically between −90 and 90 degrees. This imitates the varying angles at
which images might be captured, particularly in less controlled environments.

I′ = rotate(I, θ) (3)

The rotation transformation can be mathematically described using the rotation matrix
R(θ) for a 2D image as given in Equation (4):

R(θ) =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(4)
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3.2.4. Random Auto Contrast

This augmentation is another powerful technique used to enhance the performance of
our model. Auto-contrast automatically adjusts the image contrast so that the histogram
of the output image is spread out, improving the visibility of features and details that are
important for the model’s learning process. The following Equation (5) can represent the
process of applying auto-contrast:

I′ =
I − Min(I)

Max(I)− Min(I)
× (Lmax − Lmin) + Lmin (5)

where I is the original image, I′ is the image after applying auto-contrast, Min(I) and
Max(I) are the minimum and maximum pixel intensity values in the original image respec-
tively, and Lmax and Lmin are the maximum and minimum pixel intensity values desired in
the output image.

3.2.5. Normalization

Normalization is a vital data augmentation strategy, especially in preparing datasets
for convolutional neural networks (CNNs). It involves adjusting the pixel intensity values
so the dataset has a mean of zero and a standard deviation of one. Standardizing the dataset
helps stabilize the learning process and ensures that the model trains faster and performs
better by reducing internal covariate shifts. For our dataset, the normalization process can
be described mathematically in Equation (6):

I′ =
I − µ

σ
(6)

Here, I is the original image, I′ is the normalized image, µ is the mean pixel intensity
computed over the entire dataset, and σ is the corresponding standard deviation.

3.2.6. Random Grayscale

This data augmentation technique converts colour images to grayscale with a certain
probability. By introducing grayscale images during training, the model becomes invariant
to colour, focusing instead on texture and shape, which are critical for bolt detection.
The transformation process can be formalized as given in Equation (7):

I′ =

{
0.299 × R + 0.587 × G + 0.114 × B, with probability p
I, with probability (1 − p)

(7)

Here, I represents the original RGB image, I′ is the transformed image, R, G, and B
denote the red, green, and blue channel values of I, respectively, and p is the probability
with which the transformation is applied, set at 0.1. This equation utilizes the luminance
channel in the YUV colour space, which is a weighted sum of the RGB channels and is
known to approximate the perception of grayscale by the human eye.

3.2.7. Random Erasing

This data augmentation strategy is designed to improve the robustness of the model
by simulating occlusions and forcing the network to learn more representative features. It
randomly selects a rectangle region in an image and erases its pixels with random values.
The operation of random erasing can be defined by Equation (8).

I′(x, y) =

{
random_value, if (x, y) ∈ erase_region
I(x, y), otherwise

(8)

where I is the original image, I′ is the image after applying random erasing, (x, y) are the
coordinates of a pixel within the image, and erase_region is the randomly selected region for
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erasure. The size, aspect ratio, and location of the erase_region are randomly determined,
and random_value is typically a pixel value drawn from a uniform distribution.

Notably, we also employed a resizing strategy where input images are first resized to
256 × 256 pixels before being center-cropped to 224 × 224 pixels. This particular approach
ensures that the network encounters variations in the scale and framing of the subject matter,
mirroring the changes a model would experience in the field. Specifically, the resizing and
cropping techniques are implemented to accommodate for positional variances and focus
the model’s attention on the central aspects of the image, which are of primary interest in
bolt detection tasks. By adopting these augmentation methods, we introduce an element of
spatial variance to the model, which aids in teaching the network to recognize and localize
relevant features across a range of perspectives and scales.

This comprehensive approach to data augmentation is fundamental to our convolu-
tional network’s training process. It allows the model to become invariant to the scale and
position of bolts within the images. As a result, it helps mitigate overfitting and bolster the
model’s ability to generalize from the training data to real-world scenarios. The combina-
tion of these augmentation techniques forms a robust dataset instrumental in refining the
performance of our lightweight convolutional network tailored for missing bolt detection
in railway maintenance.

3.3. Proposed CNN Architecture

The proposed architecture presents a novel and efficient model tailored for high-
accuracy bolt detection. It is designed to be lightweight for deployment on edge devices.
It incorporates a series of convolutional layers, batch normalization, ReLU activations,
pooling layers, dropout layers for regularization, and a crucial Squeeze-and-Excitation (SE)
block that implements the attention mechanism. An example of the architecture can be
seen in Figure 5.

Figure 5. Schematic of the CNN architecture.

The model’s structure is meticulously organized into two primary sections: the body
and the head. The body comprises a sequence of layers responsible for feature extraction,
while the head focuses on classification.

3.3.1. Feature Extraction

Convolutional Layer: The initial part of the model starts with a Convolutional
(Conv2d) layer, transforming the input image size from 224 × 224 × 3 to 222 × 222 × 5,
with a slight parameter count of 140, emphasizing the model’s efficiency. Conv2d layers
are designed to automatically and adaptively learn spatial hierarchies of features from
input images. In the context of bolt detection, the Conv2d layer extracts essential features
such as edges, textures, and patterns that are indicative of the presence or absence of bolts.
By using filters (also known as kernels), Conv2d layers apply a convolution operation to
the input that captures the local dependencies in the image. Conv2d layers are also efficient
in terms of the number of parameters. Unlike a fully connected layer that connects every
input to every output (which would be computationally intensive and prone to overfitting),
Conv2d layers share weights across the spatial dimensions. This weight sharing signifi-
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cantly reduces the number of parameters, making the network less complex and faster to
train without compromising its ability to learn.

In our architecture, the Conv2d layer is a fundamental building block that captures the
visual essence of bolt presence, facilitating the task of identifying missing bolts with high
accuracy and ensuring the reliability of the inspection process. This layer’s ability to extract
and learn from the visual data makes it indispensable for the success of our lightweight
convolutional network.

Batch Normalization: Following Conv2d, batch normalization and ReLU activation
encourage model stability and non-linearity. The Batch Normalization (BatchNorm) layer
is an important component in deep neural networks, particularly in complex architectures
like our CNN for detecting missing bolts. BatchNorm is used to normalize the inputs of
each layer so that they have a mean of zero and a standard deviation of one. By doing so,
BatchNorm addresses the issue of internal covariate shift, where the distribution of each
layer’s inputs changes as the parameters of the previous layers change during training.
Normalizing the inputs helps to mitigate the problem of gradients becoming too small
(vanishing) or too large (exploding), which can cause the training to stall or diverge.
The operation performed by a BatchNorm layer for a given input x can be described as
Equations (9)–(12):

µB =
1
m

m

∑
i=1

xi (9)

σ2
B =

1
m

m

∑
i=1

(xi − µB)
2 (10)

x̂i =
xi − µB√

σ2
B + ϵ

(11)

yi = γx̂i + β (12)

Here, m is the batch size, xi is the input to be normalized, µB is the mean of the
batch, σ2

B is the variance, ϵ is a small constant added for numerical stability, and yi is the
output of the BatchNorm layer. In the context of our proposed CNN, the use of BatchNorm
after convolutional layers is critical for maintaining stable training, improving model
performance, and ensuring that our lightweight network can be trained efficiently and
effectively to detect missing bolts in railway components.

MaxPool Layer: A subsequent MaxPool2d layer reduces the spatial dimension to
111 × 111 × 5. Max pooling is a critical operation within convolutional neural networks
(CNNs), including our proposed architecture for missing bolt detection in railways. By re-
ducing the spatial dimensions of the input feature maps, max pooling serves several
essential purposes that significantly contribute to the effectiveness and efficiency of the
model. While the operation reduces the resolution of the feature maps, it preserves essential
contextual information by retaining the most significant signals from each region. This
balance between detail reduction and context preservation is crucial in a task like bolt
detection, where the goal is to discern between relatively small and potentially subtle
differences in visual patterns that indicate the presence or absence of bolts.

SE Block: Further distilled by an SE block, which plays a pivotal role in enhancing
relevant features through the adaptive re-calibration of channel-wise feature responses.
The Squeeze-and-Excitation (SE) Block represents a form of attention mechanism that has
been integrated into our convolutional neural network to enhance the model’s capacity
for feature recalibration. This block allows the network to perform dynamic channel-wise
feature reweighting, significantly increasing its representational power.

The SE Block works in two main steps: squeeze and excitation. The squeeze operation
aggregates the spatial information of each channel into a single descriptor, typically by
using global average pooling. This results in a compact feature descriptor that summarizes
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the global distribution of the feature responses for each channel, which can be expressed
with Equation (13):

zc =
1

H × W

H

∑
i=1

W

∑
j=1

uc(i, j) (13)

where uc is the input feature map for channel c and H and W are the height and width of
the feature map, respectively.

Following the squeeze operation is the excitation step, which is a fully connected
feed-forward network that learns a channel-specific descriptor. The descriptor serves as
a gating mechanism, capturing channel-wise dependencies and allowing the network to
learn which features to emphasize or suppress. The excitation function, typically involving
a sigmoid activation, can be formalized in Equation (14):

sc = σ(W1(δ(W2zc))) (14)

where W1 and W2 represent the weights of the two fully connected layers within the SE
block, δ is the ReLU activation function, σ is the sigmoid activation function, and sc is the
recalibration coefficient for channel c. In the context of bolt detection, the SE Block is crucial
for a few reasons:

• Focus on Informative Features: By explicitly modelling interdependencies between
channels, the SE Block allows the network to focus on the most informative features
for the task of bolt detection, which can include specific shapes, edges, or textures
indicative of a bolt or its absence.

• Enhanced Representation: The recalibration of features afforded by the SE Block
helps the network to adaptively enhance representations that are important for distin-
guishing between bolts and no bolts and to suppress less useful ones. This adaptability
is particularly valuable given the high variability in visual appearance due to lighting,
orientation, and occlusion in railway environments.

• Improved Model Generalization: The attention mechanism provided by the SE
Block enables the model to generalize better from the training data to unseen data. It
effectively allows the network to make more nuanced decisions based on the relative
importance of different features in the context of the specific task.

• Robustness to Noise and Variability: In practical railway maintenance scenarios,
images captured for bolt detection can have noise and variability, such as rust, grease,
or shadows. The SE Block helps the model maintain robustness against such noise by
emphasizing relevant features that are indicative of the target classes.

By integrating the SE Block into our CNN architecture, the network becomes more
discriminative and efficient. It can learn complex feature interdependencies without a
significant increase in computational burden, which aligns with the need for deploying such
models on edge devices with limited computational resources. This capability positions
our architecture as particularly suitable for the real-time, accurate detection of missing
bolts, a critical safety concern in railway maintenance operations.

Following the SE block, another convolution layer, along with batch normalization
and ReLU activation, continues the feature extraction, succeeded by a MaxPool2d and a
Dropout layer. The dropout rate of 0.1 helps prevent overfitting by randomly omitting a
subset of features during training.

3.3.2. Classification

Transitioning to the classification segment, the model reshapes the extracted features
into a vector of size 32076, which then passes through a dense layer, reducing it to 100 di-
mensions. This step is crucial for condensing the information into a more manageable
form for classification. The inclusion of ReLU activation and dropout layers maintains
the consistency of the regularization strategy, further refined by subsequent linear layers
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progressively narrowing down the output to a two-dimensional vector representing the
presence or absence of bolts.

3.3.3. Parameters and Computational Efficiency

Our proposed model represents a significant stride in computational efficiency, with only
3,213,530 trainable parameters. When we compare this to several state-of-the-art (SOTA)
architectures, the contrast becomes even more striking, as shown in Table 3. As the table
illustrates, traditional architectures like VGG and AlexNet have parameter counts an order
of magnitude larger than our model. Even more efficient designs like GoogleNet and
ResNet-18 are more than three times larger. The Vision Transformer (ViT), an advanced
architecture leveraging attention mechanisms across the entire network, typically requires
upwards of 86 million parameters. This reflects its expansive capacity but also highlights
its computational demands, which may not be as well-suited for edge computing scenarios.
The efficient design of our model is not limited to just the number of parameters but also
extends to computational operations, with total mult–adds reaching a mere 16.12 megabytes.
This optimization is crucial for deployment on edge devices, where efficiency in both
memory usage and processing is paramount.

Table 3. Comparison of trainable parameters in our model versus other state-of-the-art architectures.

Model Parameters (Millions)

VGG-16 134.70
VGG-19 143.67
AlexNet 61.00

Inception v1 13.00
ResNet-18 11.69
ResNet-34 21.50
ViT-B-16 87
ViT-B-32 88

Proposed Architecture 3.21

In summary, the proposed architecture is a finely tuned ensemble of convolutional lay-
ers, attention mechanisms, and classification layers, all orchestrated to deliver exceptional
performance in detecting missing bolts in railway components. The model’s thoughtful
design, combining depth and efficiency, demonstrates its potential for real-world applica-
tion in railway maintenance and safety inspections. Moreover, the architecture is not only
competitive in terms of learning capability but also stands out for its tailored efficiency. It is
designed to operate within the constraints of edge computing, delivering high-performance
bolt detection with a fraction of the parameters and computational cost typically associated
with SOTA models. This deliberate balance positions our model as a prime candidate for
real-world application, particularly in resource-constrained environments.

3.4. Training Process

The training process of our convolutional neural network, designed for detecting
missing bolts, employs a robust strategy that encompasses meticulous data preparation,
a well-defined set of hyperparameters, and the utilization of specific loss functions and
optimizers to refine the model’s performance.

3.4.1. Data Preparation

The dataset comprises 101 images for training, 28 for validation, and 16 for testing,
clearly divided into two classes: “missing” and “present”. This categorization ensures that
the model is exposed to a balanced view of both scenarios it needs to recognize.
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3.4.2. Hyperparameters and Optimization

As given in Table 4, a comprehensive set of hyperparameters underpins the training
process: the model is trained for 1000 epochs with images resized to 224 × 224 pixels and
batched into sizes of 256. The Stochastic Gradient Descent (SGD) optimizer, chosen for its
effectiveness in navigating the complex landscapes of high-dimensional data, is applied
with a learning rate (lr) of 0.02. The CrossEntropyLoss function is selected for its proficiency
in handling binary classification tasks, ensuring that the model accurately discriminates be-
tween the two classes. To enhance the training dynamics, a ReduceLROnPlateau scheduler
adjusts the learning rate based on the validation loss, introducing a patience mechanism to
counteract plateaus in model improvement. Furthermore, early stopping is employed with
a patience of 20 epochs and a minimum delta of 0, ensuring that training ceases when the
validation loss fails to improve, thereby preventing overfitting.

Table 4. Detailed summary of the hyperparameters utilized in the training process.

Hyperparameter Value

Epochs 1000
Image Size 3224 × 224
Batch Size 256
Optimizer SGD

Learning Rate (lr) 0.02
Loss Function Cross Entropy Loss

Scheduler ReduceLROnPlateau
Early Stopping Patience 20

Early Stopping Minimum Delta 0

3.4.3. Training Dynamics

Figure 6 illustrates the training dynamics of the convolutional neural network model
over the course of 60 epochs. The graphs show a clear trend in both the loss and accuracy
metrics for the training (train loss and train accuracy) and validation (val loss and val
accuracy) datasets.

Figure 6. Training dynamics of the CNN model, displaying trends in loss (A) and accuracy (B) for
both training and validation datasets.

In the loss graph, we can observe a consistent decrease in both training and validation
loss over time, indicating that the model is learning effectively from the data. Notably,



Metrology 2024, 4 270

the training loss shows a smoother decline, while the validation loss exhibits some volatility,
suggesting that the model may be encountering a variety of challenges present in the
validation data that are not as prevalent in the training set.

The accuracy graph reveals a steady increase in both training and validation accuracy,
with training accuracy climbing more smoothly compared to validation accuracy, which
displays some fluctuations. However, both accuracy measures plateau towards the later
epochs, which could signify that the model is approaching its maximum learning capacity
given the current data and hyperparameter settings.

Overall, the depicted training process suggests a successful learning phase, with the
model showing promising generalization capabilities. The accuracy levels out at a high
value, which is indicative of the model’s strong performance on both the training and
validation datasets. The fluctuations and peaks in validation metrics also emphasize the
model’s resilience and adaptability to new data, which are essential for robust bolt detection
in varying real-world conditions.

Overall, the training process, characterized by strategic data handling, the careful
selection of hyperparameters, and a methodical approach to optimization, culminates in a
model that is efficient and effective in bolt detection and ready to be deployed in scenarios
demanding high accuracy and computational efficiency.

4. Experimental Setup and Results
4.1. Experimental Setup

The experimental setup for evaluating the proposed convolutional neural network
was executed on a Razer Blade 14 laptop, which was selected for its combination of
high-end specifications and portability. The system was powered by an AMD Ryzen
9 5900HX processor with a base clock speed of 3.30 GHz and eight cores, providing the
computational muscle required for deep learning tasks. Complementing this processing
power, the machine was equipped with 16 GB of DDR4-3200 MHz onboard memory,
facilitating efficient data processing and model training operations. Graphics processing
was handled by an Nvidia GeForce RTX 3070 GPU, which boasts 8 GB of VRAM and a
100 W Total Graphics Power rating, ensuring ample capacity for training complex neural
network models. The system’s storage needs were addressed with a 1 TB SSD, leveraging
the M.2 NVMe PCIe 3.0 ×4 interface for rapid data access, which is crucial when dealing
with large datasets and iterative model training sessions.

On the software front, the experiments were underpinned by PyTorch 2, utilizing
CUDA 11.8 to harness the laptop’s GPU capabilities for accelerated model training. Data
visualization and analysis were conducted using Matplotlib 3.8.3, allowing for a detailed ex-
amination of the model’s learning trends and performance metrics. To enhance the dataset
and introduce necessary variability, the Imgaug library, a versatile augmentation library
in Python, was employed. The entire setup ran on Ubuntu 22.04, a stable and widely sup-
ported Linux distribution favoured for machine learning and deep learning applications.

This configuration offered a harmonious blend of power and flexibility, enabling
rigorous testing and the validation of the convolutional network model’s ability to detect
missing bolts in railway maintenance scenarios. The hardware and software synergy
provided a robust platform for developing and assessing the model, ensuring the reliability
of the experimental results and the reproducibility of the research.

4.2. Comparative Analysis

In the comparative analysis of our experimental results, it is essential to note that our
proposed convolutional neural network not only achieved a high accuracy of 96.43% but
also did so with a model architecture designed to be lightweight. This is in contrast to other
state-of-the-art models that, while potent, often come with a considerably higher number
of parameters. As detailed earlier, our model’s parameter count is significantly lower than
those of many benchmark models, making it particularly well-suited for deployment in
edge computing environments where resources are constrained.
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As shown in Table 5, when compared to the likes of ResNet-18, AlexNet, Inception v3,
MobileNet, and the pretrained Vision Transformer (ViT) model BoltVision, our proposed
model stands out for maintaining competitive performance with a fraction of the complexity.
For example, the accuracy achieved by Inception v3 was marginally higher at 97%, yet this
comes at the cost of increased model complexity. Similarly, MobileNet, which is optimized
for mobile and edge devices, achieved an accuracy of 92% with a design that prioritizes
efficiency. BoltVision’s accuracy of 93% demonstrates the potential of transformer-based
architectures but still lags slightly behind our model in terms of performance.

Table 5. Comparative analysis of model performance with emphasis on lightweight architecture.

Model Accuracy Parameters (Millions)

ResNet-18 94.00% 11.69
AlexNet 74.00% 61.00
Inception v3 97.00% 13.00
MobileNet 92.00% 4.20
BoltVision (pre-trained ViT) 93.00% 87.00
Our Proposed Model 96.43% 3.21

The strategic design of our model is a testament to the effectiveness of a carefully tuned
convolutional network that leverages advanced features like the Squeeze-and-Excitation
(SE) block for channel-wise attention while remaining lean in its parameter usage. This
approach underscores our aim to provide a model that not only excels in accuracy but also
in operational efficiency, making it an optimal solution for real-time applications in settings
where computational power and storage are limited.

This balance of performance and efficiency places our model as an attractive solution
within the realm of railway maintenance and safety inspections, potentially revolutionizing
the domain with a practical and deployable AI-driven system. The performance of our
lightweight model in comparison to these larger and more complex models showcases
the advancements in creating more efficient neural networks without sacrificing accuracy,
positioning our work as a significant contribution to the field.

4.3. Evaluation Metrics

Our model’s performance was evaluated using a suite of metrics that offer a com-
prehensive view of its classification abilities. These metrics included accuracy, precision,
recall, and the F1-score, each providing unique insights into the model’s effectiveness from
different angles.

4.3.1. Accuracy

This is the most intuitive performance measure, and it is simply a ratio of correctly
predicted observations to the total observations. It gives a general sense of how often the
model is correct. Equation (15) formulates the accuracy calculation.

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false
negatives, respectively.

4.3.2. Precision

Also known as positive predictive value, precision is the ratio of correctly predicted
positive observations to the total predicted positives. High precision relates to a low false
positive rate. The precision for a class is defined by Equation (16):

Precision =
TP

TP + FP
(16)
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4.3.3. Recall

This metric is also known as sensitivity or the true positive rate, and it measures the
proportion of actual positives that were identified correctly. The equation for the recall is
given in Equation (17):

Recall =
TP

TP + FN
(17)

4.3.4. F1 Score

This is the weighted average of precision and recall. It takes both false positives
and false negatives into account. It is a measure of a test’s accuracy and is defined in
Equation (18):

F1 Score = 2 × Precision × Recall
Precision + Recall

(18)

According to the classification report given in Table 6, the model achieved perfect
precision for the “missing” class and high precision for the “present” class, indicating a
strong ability to identify positive cases with minimal false positives correctly. The recall
scores show the model’s strength in capturing all the relevant cases, particularly for the
“present” class, where it reached a perfect score. The F1-scores for both classes reflect a
harmonious balance of precision and recall, with the “missing” class scoring slightly higher,
which is indicative of the model’s adeptness at classifying the more challenging class.

Table 6. Classification report showcasing precision, recall, F1-score, and support for the “missing”
and “present” classes.

Class Precision Recall F1-Score Support

Missing 1.00 0.94 0.97 18
Present 0.91 1.00 0.95 10

Accuracy 0.96 28
Macro Average 0.95 0.97 0.96 28
Weighted Average 0.97 0.96 0.96 28

5. Discussion
5.1. Confusion Matrix Analysis

The discussion on the model’s computational efficiency and deployment capabilities
is crucial, particularly in the context of its application in real-time settings such as railway
maintenance. The confusion matrix, depicted in Figure 7, not only provides evidence of
the model’s high accuracy but also underscores its efficiency. With 17 true positives and
10 true negatives out of 28 test cases, and notably only 1 false negative and 0 false positives,
the model demonstrates both high reliability and precision.

The absence of any false positive predictions is particularly noteworthy, as this sug-
gests that when the model identifies a bolt as “missing”, it is highly likely to be correct.
This is essential in a real-world deployment scenario where false alarms could be costly
and inefficient. The solitary false negative indicates a scenario where the model predicted a
bolt as “present” when it was, in fact, “missing”. While this does need attention to avoid
potential safety oversights, the low number is a testament to the model’s effectiveness. This
model’s computational efficiency is highlighted by its lean architecture, which, as previ-
ously mentioned, involves significantly fewer parameters than many other state-of-the-art
models. This efficiency facilitates rapid processing and reduced memory footprint, making
the model suitable for deployment in edge devices, which often have limited computational
resources. When considering deployment capabilities, the model’s size and efficiency allow
it to be integrated into a range of hardware solutions, from high-end servers for centralized
processing to embedded systems aboard trains for on-the-go diagnostics. This flexibility is
essential for practical applications, enabling scalable and adaptable solutions that can be
tailored to specific operational requirements.
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Figure 7. Confusion matrix for the bolt detection model.

Overall, the confusion matrix presented and the model’s architectural design converge
to illustrate a system that is not only accurate but also practical for deployment. The model
is a significant step towards realizing the real-time, on-site detection of missing bolts, which
is key to maintaining the high safety standards required in railway operations.

5.2. Interpreting Model Decisions

The Gradient-weighted Class Activation Mapping (Grad-CAM) outputs, as visualized
in the overlaid heatmaps on the test images in Figure 8, provide a compelling narrative
about the model’s ability to focus on relevant regions for bolt detection. These heatmaps are
instrumental in understanding the model’s decision-making process, revealing the areas
within the images that most significantly influence its predictions.

From a computational efficiency standpoint, the clarity of these heatmaps suggests
that the model has learned to identify distinguishing features with a high degree of focus,
even with a comparatively lightweight parameterization. This indicates that the network
has effectively distilled knowledge into a concise, computationally efficient form. This
efficiency is crucial for deployment scenarios, particularly in edge computing environments,
where resources are limited and processing must be performed swiftly to keep up with
real-time demands.

Furthermore, the accurate localization of the ’missing’ and ’present’ bolt classifications
by the heatmaps underscores the model’s potential for deployment in practical applications.
The ability of the model to not only provide a binary classification outcome but also
visually indicate the basis of its decision enhances trust and interpretability, which are
critical for maintenance teams relying on the model’s outputs to make informed decisions
on railway inspections.

Grad-CAM visualizations thus offer more than just a window into the model’s internal
workings; they also provide evidence of the model’s readiness for real-world application.
The alignment of these insights with the model’s computational efficiency and deployment
capabilities reinforces the practicality of the proposed CNN in operational settings. This
combination of performance, efficiency, and interpretability positions the model as an
advanced tool for enhancing the safety and reliability of railway infrastructure.
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Figure 8. Grad-CAM visualizations representing the model’s focus areas during bolt detection.

5.3. Streamlined for Deployment

The model’s design as a lightweight convolutional neural network is central to its
computational efficiency and deployment capabilities. Its architecture, which requires
significantly fewer parameters compared to many state-of-the-art models, allows it to
perform rapid inference while maintaining high accuracy. This efficiency is crucial when
deploying the model in real-world scenarios, especially in edge computing environments
where computational resources are often limited.

The reduced complexity of the model also means that it demands less memory for
storage and less power for processing, which is beneficial for deployment on portable
devices with limited battery life or on embedded systems within railway infrastructure.
The lightweight nature of the model also translates to faster load times and lower la-
tency during operation, which are key considerations for real-time applications, such as
continuous monitoring and immediate fault detection in railway maintenance [41].

Furthermore, the model’s streamlined design does not compromise its ability to learn
and generalize from the data, as evidenced by its performance metrics. The incorporation of
techniques like Squeeze-and-Excitation blocks effectively allows the model to focus on the
most relevant features without the need for additional computational heft. This selective
focus enhances the model’s accuracy and interpretability, as demonstrated by the Grad-
CAM visualizations, while still adhering to the constraints of a lightweight framework.

In summary, the model’s computational efficiency and deployment capabilities make it
an exemplary candidate for on-device machine learning applications, as seen by the attributes
in Table 7. Its ability to provide immediate, actionable insights in a resource-efficient manner
makes it particularly suited for the critical task of ensuring safety in railway systems.

Table 7. Attributes of the lightweight model.

Attribute Benefit

Reduced Parameter Count Enhances computational speed, and reduces memory usage
Low Latency Enables real-time processing and decision-making
Power Efficiency Ideal for battery-operated or embedded systems
Fast Inference Crucial for timely fault detection in critical applications
Generalization Capability Maintains high accuracy despite architectural simplicity
Interpretability Grad-CAM visualizations aid in model trust and diagnostics
Deployment Readiness Suited for edge computing with limited computational resources
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5.4. Potential Limitations

While the proposed model demonstrates significant strengths in computational effi-
ciency and accuracy, it is essential to recognize its potential limitations and areas that could
benefit from future improvements.

One potential limitation of the model is its reliance on the quality and diversity of
the data it was trained on. If the dataset lacks variety in terms of lighting conditions,
angles, and bolt types, the model may not generalize well to all real-world scenarios.
Consequently, future work could focus on expanding the dataset, incorporating more
varied images, and potentially using synthetic data generation to enhance the model’s
robustness. Another area for improvement is the model’s interpretability. While Grad-CAM
visualizations provide some insights into the decision-making process, the model could be
further refined to offer more granular explanations of its predictions, thereby increasing
trust and ease of use for end-users.

Additionally, the current model architecture, although efficient, may be pushed to its
limits when dealing with extremely large-scale or high-resolution images. Exploring more
advanced compression and optimization techniques could result in even faster inference
times and lower resource consumption without sacrificing accuracy. The model could also
be extended to detect more nuanced categories of faults in railway infrastructure beyond
the binary classification of bolt presence. Incorporating multi-class detection capabilities
and finer-grained fault classifications would make the model more comprehensive and
applicable to a broader range of maintenance tasks. Lastly, while the model performs
well within the constraints of current hardware, ongoing advancements in processor and
GPU technology offer opportunities to improve its performance and efficiency further.
Leveraging these advancements could allow the model to handle more complex tasks, such
as real-time video analysis, with greater ease and precision.

In summary, while the model stands as a promising tool for railway bolt detection,
there is ample potential for enhancement in terms of data diversity, interpretability, scala-
bility, functionality, and leveraging technological advancements, which can be addressed
in future research and development efforts.

6. Conclusions

In conclusion, this research addresses the vital challenge of detecting missing bolts
in railway systems—a significant issue for maintaining safety and operational integrity.
The proposed solution, a lightweight convolutional neural network, stands as an effective
response, achieving an impressive 96.43% accuracy in identifying the presence or absence
of bolts. This level of precision marks a considerable advancement in automated fault
detection, offering a dependable and efficient alternative to manual inspections. The ef-
fectiveness of the proposed model is further underscored by its computational efficiency,
which allows it to be deployed in edge computing environments—crucial for real-time
monitoring applications. Its capability to deliver high performance on limited computa-
tional resources makes it an excellent candidate for on-site deployment in various railway
maintenance scenarios.

Key findings of this research reveal that it is indeed feasible to deploy a deep learn-
ing model in resource-constrained environments without compromising on the quality
of outcomes. The model’s contributions to railway safety are significant; by providing a
reliable method for detecting missing bolts, the model can help prevent potential track
failures and accidents, thereby enhancing the overall safety of railway operations. More-
over, the model’s deployment capabilities position it as a valuable tool for the broader field
of deep learning. Its efficiency and accuracy demonstrate that high-performance models
can be both computationally economical and operationally viable. This aligns with an
increasing need in the field for models that can operate at the edge, close to where data are
captured, thus opening up new possibilities for real-time, on-site analytics. This research
contributes to the deep learning domain by showcasing a practical application of convolu-
tional neural networks tailored to a specific and critical real-world problem. It illustrates
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the potential of neural networks to not only perform complex tasks with high accuracy but
also do so with an architecture designed for efficiency and practical deployment.

Looking ahead, there are several promising avenues for future research inspired by
the findings and successes of the present study. A key focus should be on the further opti-
mization of the model to enhance its efficiency and accuracy. This could involve exploring
novel neural network architectures, more advanced attention mechanisms, or cutting-
edge training techniques that could refine the model’s ability to discern between different
states of bolt presence with even greater precision. Real-world testing represents another
critical area for future research. While the model has demonstrated high accuracy in a
controlled experimental setup, deploying it in operational railway environments would
provide invaluable insights into its performance under varying conditions. Such testing
could uncover new challenges, such as dealing with extreme weather conditions, lighting
variations, and different types of wear and tear on the bolts, which would inform further
model refinements.

Moreover, expanding the application of the model to cover a broader range of railway
safety and maintenance tasks holds considerable potential. Beyond detecting missing
bolts, the model could be adapted or extended to identify other types of structural faults
and wear patterns or even to monitor the health of railway infrastructure more broadly.
Each of these applications could benefit from the model’s lightweight architecture and
computational efficiency, making it a versatile tool for a variety of safety-critical main-
tenance tasks. In addition to technical optimizations and applications, future research
should also consider the integration of the model into comprehensive railway maintenance
systems. This could involve developing interfaces and integration protocols that enable
seamless communication between the model, sensor data, and maintenance workflows.
By embedding the model within the larger ecosystem of railway safety technologies, its
findings could directly inform maintenance decisions, scheduling, and resource allocation,
further enhancing the safety and reliability of railway operations.

Lastly, the principles and methodologies developed in this study have implications
beyond railway safety, suggesting broader applicability to other domains where safety
and maintenance are concerns, such as in warehouse pallet detection [42], PV crack de-
tection [43], aerospace component detection [44], automotive [45], and micro-cracks in
equipment [46]. Investigating these cross-domain applications could not only broaden
the impact of the current research but also drive innovation in the field of deep learn-
ing and its practical applications. In summary, future research directions offer exciting
prospects for enhancing the model’s capabilities, validating its effectiveness in real-world
settings, and exploring new applications that extend its utility across the maintenance and
safety domains.
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