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Abstract: The Standard Model is not a complete description of reality; it omits the existence of dark
matter, dark energy, and an explanation as to why no CP violation has been observed. However,
some of these phenomena could be explained through a new force mediated by a new boson. If
such a boson were massless it would result in a power law potential and if massive the interaction
would be Yukawa-like. A previous experiment employing the interactions of a micromechanical
oscillator attached to spherical test mass was successful in placing the best limits on a mass–mass
Yukawa-like interaction, but the data were never analyzed in the context of a power law. Here, those
data are analyzed considering a power law for powers n = 1–5 where n is the number of boson
exchanges. The results show that the limits obtained through power law analysis of these data
are not better than the currently accepted limits. A discussion of an experiment design capable of
producing better limits on power law extensions to the Standard Model is presented, and suggests
that a micromechanical-oscillator-based experiment remains capable of improving the limits by at
least one order of magnitude.
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1. Introduction

The success of the Standard Model (SM) in describing matter and interactions cannot
be overstated, but it is not a complete description: it does not explain dark matter and
dark energy [1], it predicts charge-parity (CP) violations in the strong force, which have
not yet been observed [1–3], and there is no quantized description of gravity [1]. This
incompleteness has lead to many theories to fill the gaps in the SM.

One such approach is hypothesizing an interaction mediated by an as-yet undiscovered
boson [4,5]. If the hypothetical boson is massive it leads to Yukawa-like interactions [6],
but if it is massless, the interaction will be parameterized with a power law [7]. This power
law is typically written as a correction to Newtonian gravity and for two point masses is
expressed as

U =
−Gm1m2

r

(
1 + Λn

( r0

r

)n−1
)

(1)

where G is Newton’s gravitational constant, m1 and m2 are point masses separated by a
distance r, Λn is the strength of the correction relative to gravity for a particular power
of n, and r0 is a constant used to preserve the dimension of the interaction; in this work
r0 = 1 × 10−15 m. The value of r0 was chosen to be the same as in Ref. [8] so that the Λn
reported in this work can be directly compared to the Λn found in Ref. [8].

Previous experiments to probe both power law and Yukawa-like deviations in Newto-
nian gravity were reported in Refs. [8–10]. One experiment to probe hypothetical Yukawa-
like interactions was carried out in 2016 [11]. The Yukawa-like interaction of the form

U =
−Gm1m2

r

(
1 + αer/λ

)
(2)
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was probed and the experiment placed the best limits on α for a range of λ ∈ (30, 8000) nm,
where α is the strength of the correction and λ is the Compton wavelength of a massive
hypothetical boson [11]. The experiment consisted of a spherical test mass attached to
a micromechanical oscillator that was brought within 200 nm of a source mass made of
alternating Au and Si sections, and the force was measured between the two masses. The
set-up was not designed to probe power law extensions of the SM and was expected
to not be sensitive enough to improve those limits. However, a reanalysis of the force
measurements from [11] and a full analysis with the data was never carried out in the
context of a power law.

This work carries out a full analysis considering power law extensions of the SM on
the force measurements in [11] as well as on new data. The limits obtained are not an
improvement over the current best limits [8,10], so we discuss what would need to be done
for the approach in [11] to improve limits on power law extensions to the SM.

2. Materials and Methods

Ref. [11] used a differential force measurement technique between a spherical test
mass attached to a micromechanical oscillator and a source mass. The test mass was a
sphere composed of 3 layers; a central sapphire core with a 149.3 ± 0.2 µm radius covered
by 10 nm of Cr followed by 250 nm of Au (see Figure 1 for a cross-sectional diagram of the
test and source mass). The sphere was glued to a 500 × 500 µm micromechanical oscillator
and the system had a quality factor Q ∼ 7200. The deflection of the test mass was measured
through a change in capacitance between the oscillator’s plate and electrodes located below
the plate.

Figure 1. Cut out view (not to scale) of the source mass and test mass showing the individual layers.
The source mass has a top Au layer, followed by a Cr layer, and then the alternating Si and Au regions.
The test mass has a central sapphire core (shown in blue) coated with Cr and Au. The z indicates the
separation and the direction in which the experiment is sensitive.

The source mass was a layered structure consisting of BK7 Schott glass followed by a
2.10 ± 0.02 µm layer of alternating sections of Au and Si. The Au and Si sectors shared a
common layer of a 10 ± 1 nm Cr wetting layer, on top of which was a 150 nm Au layer
covering the sample. The shared top Au layer thickness was chosen to be larger than the
effective penetration depth of the Casimir force. In this way, the contribution due to the
Casimir force is the same whether the test mass is located over a Si sector or an Au sector
and leads to a Casimir-less measuring technique as described in [12].

The test mass was brought to within 200 nm of the source mass’s surface, and at this
separation the minimum detectable force is 12 fN/

√
Hz. The closest the masses could be

brought is ∼200 nm without the Casimir force making the sphere jump into contact and
ruining the whole experiment. The sensitivity also decreases as the separation increases.

The source mass was rotated so that the sections alternated under the test mass at the
oscillator’s resonant frequency. Doing so makes the experiment select the first harmonic of
the force commensurate with the period of the samples.
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While the source masses used to set limits on the Yukawa-like interaction [11] had
upwards of 300 Au and Si sections, there were source masses that had only two, 1 mm
wide, sections of alternating gold and silicon, as depicted in Figure 2. One sample had an
inner radius of 2.5 mm and the other had an inner radius of 5 mm. The layered structure
is the same as the 300 section samples, except the wetting layer is Ti. The data taken with
these larger source masses were not previously analyzed.

Figure 2. A diagram showing the new source mass geometry, regions alternate between gold
and silicon.

To extract limits on Λn, the force due to the potential expressed in Equation (1) was
calculated by integrating over the experimental geometry. First, the interaction between a
spherical test mass and an arbitrary point in the source mass was calculated analytically
with a coordinate system centered at the sphere, shown as the unprimed coordinate system
in Figure 3, using spherical coordinates (r̃, θ, ϕ), where θ and ϕ are the polar and azimuthal
angle, respectively. The potential energy between the sphere and the source mass is

U = −2πGρ1ρ2Λnrn−1
0

∫∫∫ ( 1
ψ(2 − n)

[
R(ψ − R)3−n

3 − n

+
(ψ − R)4−n

(4 − n)(3 − n)
+

R(ψ + R)3−n

3 − n
− (ψ + R)4−n

(4 − n)(3 − n)

])
dVsm

(3)

where R is the radius of the sphere, ρ1 and ρ2 are the densities of the sphere and the point,
respectively, ψ is the distance from the center of the sphere to the arbitrary point in the
source mass, and dVsm is the differential volume of the source mass; see Appendix A for
details. It was verified that Equation (3) does not diverge for n = 2, 3, and 4 by taking the
limit of Equation (3) as n → 2, 3, and 4, respectively. These limits can be seen in Appendix A.
The integrals over the source mass were carried out using cylindrical coordinates (ϱ, θ′, z′)
in the primed coordinate system, see Figure 3, centered in the middle of the source mass.
In the primed coordinate system

ψ =
√

ϱ2 − 2ϱϱs cos(θ′ − θs) + ϱ2
s + (z′ − zs)2 (4)

where ϱ is the radial variable integrated between the inner and outer radius of the sample,
θ′ is the angular extent of the sample, ϱs is the radial distance to the sphere, θs is the angular
position of the sphere, zs is the vertical position of the center of the sphere, and z′ is the
vertical coordinate integrated over the thickness of the sample.

The experiment is only sensitive to forces in the vertical direction. Normally, calculat-
ing the force in the z direction would be carried out by

Fz = − ∂

∂z′
U (5)

where dFz is the differential force in the vertical direction that needs to be integrated over
the geometry of the source mass. However, since Equation (5) needs to be integrated
along z′, calculating the derivative explicitly can be avoided because the operations are the
inverse of each other, meaning that the integral of Equation (5) over the source mass in z
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is simply the difference of Equation (3) evaluated at the z′ integration limits of the source
mass, z1 and z2.

F(n)
z =

∫∫
(U(n)(z1)− U(n)(z2))dAsm (6)

where dAsm is the area element of the source mass that remains to be integrated. A polar
coordinate system centered at the center of the sample, the primed coordinate system in
Figure 3, is used for the last two integrals. The area element is expressed as dAsm = ϱdϱdθ′,
where (ϱ, θ′) are the polar coordinates in the primed system. The integrals over ϱ and θ′

were done numerically with Python code using SciPy version 1.11.4 packages [13].

x̂

ẑ

ŷ

r̃

ψ
r

ϕ
θ

x̂′

ẑ′ŷ′

ϱ
θ′

Figure 3. The coordinate system and geometry over which the test mass and source mass were
integrated. The unprimed coordinate system is used to integrate over the sphere. θ and ϕ are the
polar and azimuthal angle, respectively, ψ is the distance from the center of the sphere to an arbitrary
point in the source mass, and r is the separation between points in the sphere and points in the disk.
The primed coordinate system is the system used to integrate the geometry of the source mass. θ′ is
the polar angle in the primed coordinates and ϱ is the radial variable in the source mass system.

In order to obtain the correct interaction from the layered geometry, the numerical
integrations were carried out three times, once for each of the three different layers of the
test mass. Each test mass layer was considered to be a solid sphere with corresponding
radii of Rsap = 149.30 µm, RCr = 149.31 µm, and RAu = 149.56 µm for sapphire, Cr, and
Au, respectively. As an example, for n = 3 the integrations for each layer are

F(3)
Au = 2πGr2

0

∫∫ (RAu(ψ(z2)− ψ(z1))

ψ(z1)ψ(z2)
+ ln

(
(ψ(z1)− RAu)(ψ(z2) + RAu)

(ψ(z1) + RAu)(ψ(z2)− RAu)

))
dAsm (7)

F(3)
Cr = −2πGr2

0

∫∫ (RCr(ψ(z2)− ψ(z1))

ψ(z1)ψ(z2)
+ ln

(
(ψ(z1)− RCr)(ψ(z2) + RCr)

(ψ(z1) + RCr)(ψ(z2)− RCr)

))
dAsm (8)

F(3)
Sap = −2πGr2

0

∫∫ (RSap(ψ(z2)− ψ(z1))

ψ(z1)ψ(z2)
+ ln

(
(ψ(z1)− RSap)(ψ(z2) + RSap)

(ψ(z1) + RSap)(ψ(z2)− RSap)

))
dAsm (9)

Equations (7)–(9) are the integrals over the source mass geometry carried out after the
limit of Equation (3) was taken as n → 3, where ψ(z1) and ψ(z2) are Equation (4) evaluated
at z1 and z2, respectively. The integrals for the other powers were carried out in the same
manner. Once the integrals for each test mass layer are carried out, the total force due to
the layered structure of the source mass and test mass (Figure 1) is

F(3)
z = Λ3(ρAu−ρSi)((ρSap − ρCr)F(3)

Sap + (ρCr − ρAu)F(3)
Cr + ρAuF(3)

Au ) (10)
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where ρAu, ρCr, ρsap, and ρSi are the densities of Au, Cr, sapphire, and Si, respectively, F(3)
z

indicates the total force in the z-direction for the power n = 3, and the factor out front,
(ρAu − ρSi), accounts for the difference when the sphere is over an Au or Si sector in the
source mass. Furthermore, since the first two layers are a shared layer of Au and Cr, the
contributions of these layers to the interaction are subtracted out.

The total force was calculated with the test mass at different angular positions (θ′s),
Figure 4. The amplitude of the first harmonic for a particular power, A(n)

1 , of the force
commensurate with the period, Θ, of the sectors was equated to the error bars of the
force measurements,

A(n)
1 =

2
Θ

∫ Θ

0
F(n)

z cos
(

2πθs

Θ

)
dθs. (11)

The error bar value is ferr = 0.13 fN at a separation of 300 nm, as shown in Figure 5.
Equating the calculated first harmonic of the force to the experimental error bar allows
limits on Λn to be extracted,

Λn =
ferr

A(n)
1

. (12)

The same method to determine limits was used for the powers of n = 1 to 5. Table 1
shows the limits placed on Λn from both the 300 sector source masses used in [11] and the
4 sector source mass with inner radius of 2.5 mm as depicted in Figure 2.

Table 1. The constraints placed on Λn from our experiment compared to the limits reported in [8].
The two rightmost columns are the limits calculated using the data from the many-sector samples
and the large-sector samples.

n Λn from [8] Λn Many-Sector Sample Λn Large-Sector Sample

1 1 × 10−9 8.0 × 108 3.0 × 102

2 3.7 × 108 6.1 × 1015 2.5 × 1013

3 7.5 × 1019 7.9 × 1024 8.8 × 1023

4 2.2 × 1031 1.2 × 1034 5.2 × 1033

5 6.7 × 1042 1.4 × 1043 1.0 × 1043

Figure 4. The total force as the angular location of the sphere changes, which is equivalent to fixing
the location of the sphere and rotating the sample. The first harmonic of the force in accordance
with the period of the sectors is calculated and equated to the error bars of the force measurement to

extract Λn. This example is from Equation (10), where F = F3
z

Λ3
, F3

z from Equation (10).
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Figure 5. Measured force as a function of separation of the large source mass. The blue circle data
correspond to the sample with an inner radius of 2.5 mm and the orange squares are the data from
the 5 mm inner radius sample.

3. Results

The limits presented in Table 1 were calculated using results from an experiment that
was not designed to probe power law extensions to the SM. The best limit on Λn with this
geometry came from the large-sector sample, but these limits are not better than the ones
found in Ref. [8].

The reported values of Λn in this work are large because those are the best limits that
can be placed given these experimental data. As an example, for n = 5, we are not claiming
the value of Λ5 = 1043, rather we assert that Λ5 would need to be of that order for this
experiment to have seen its effects, and likewise for the other values of n considered in this
work. These are the values for Λn that, for the used geometry, provide an interaction equal
to our sensitivity.

4. Discussion

While the experiment did not yield better limits on Λn, changes could be made that
would improve the system’s sensitivity. For example, if the source masses were designed
with a power law in mind, the limits could be further improved. Figure 6 shows the poten-
tial limits for Λ5 as a function of the sample’s radial extent (ϱ) for a thickness of 2 mm. The
limits have a similar functional dependence with the other dimensions of the sample as the
radius increases. The improvement is attributed to the larger volume of interaction improv-
ing the sensitivity of the measurement, yielding better limits. However, the improvement
gained in the limits by increasing the source mass’s volume quickly diminishes.

Altering the test mass to also have a larger volume of interaction could provide a small
improvement on power law limits. Considering a system, like the one proposed in [14],
where the test mass is cylindrical. If the spherical test mass is exchanged for a cylindrical
one, and we carry out a similar analysis ot the one described above, the expected limits
using the new test mass can be calculated. The details of the calculation can be found in
Appendix B. The following is the expression of the force between a cylindrical test mass
and an infinite slab with thickness t = 2 mm along the vertical direction

F5 =
−π2Gρ1ρ2LΛ5r4

0
3

 A2
2

(R2 − A2
2)
√

A2
2 − R2

−
A2

1

(R2 − A2
1)
√

A2
1 − R2

 (13)

where A1 = d + RAu, A2 = A1 + t, and L = 500 µm the length of the cylinder. The
expected limits for the powers n ∈ [1, 5] using a cylindrical test mass are listed in Table 2,
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calculated using a separation d = 200 nm. Only the power n = 5 is expected to improve by
about an order of magnitude using a cylinder. Using a cylinder with a length of 500 µm
and radius of curvature R = 150 µm optimizes the sensitivity given the constraints of the
micromechanical oscillator and the lithographic fabrication method of the cylinder.

Figure 6. The limits on Λ5 can be marginally improved if the size of the source mass is designed
with power law interactions in mind. Shown here are the estimated limits for n = 5 as a function of
the width of the source mass. However, the improvement gained by increasing the source mass size
quickly diminishes. The constant orange line is the limit that would be achieved as the width of the
source mass goes to infinity.

Table 2. The constraints that could be placed on Λn if a cylindrical test mass were used with a source
mass designed to probe power law potentials.

n Λn from [8] Cylindrical Test Mass

1 1 × 10−9 6.1 × 10−2

2 3.7 × 108 4.4 × 1010

3 7.5 × 1019 2.0 × 1022

4 2.2 × 1031 1.1 × 1032

5 6.7 × 1042 2.8 × 1041

Other aspects of the experimental design could be change but would either have
little impact or have fabrication limitations. One could conceivably use source mass
materials that have larger difference in density since, as seen in Equation (10), the response
is proportional to the difference in densities between the two materials. Changing the
source materials, however, will not improve the signal by more than a factor of ∼2 if using
Osmium and air. Certainly, our selection of Au and Si is not optimal, but as they are
relatively easy to work with, we think it is a convenient selection. In regards to the test
mass, Au is again a suitable choice. A thicker layer of Au would benefit the experiment;
however, we started to observe a peel off of the Au from the sphere at 300 nm.

5. Conclusions

Improving the limits of power law extensions to gravity is a challenging endeavor,
and new methods are needed to continue to make improvements on short-range interaction
experiments. While these types of mechanical measurements have a high precision even at
separations of ∼200 nm, this work shows that the size of the masses limit the sensitivity
when probing power law interactions. The limit on Λ5, reported here to be 1.0 × 1043, is
expected to improve about an order of magnitude the best current limits [8] if a cylindrical
test mass were used. The cylinder has a larger interaction volume when compared to a
sphere, which results in a higher sensitivity. Several experimental approaches are being
developed to test gravity at short distances, seeking signs of deviations potentially due to
dark matter effects [15–22]. The description of these new approaches does not explicitly
state probing power law extensions to the SM. Researchers should evaluate whether
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these new techniques are equally suited to test power law models as well as Yukawa-like
interactions, which could result in a larger selection of theories being ruled out.
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Appendix A. Detailed Calculation Method for Sphere Test Mass Geometry

dU = −GρtmρsmΛnrn−1
0

(
dVtmdVsm

rn

)
(A1)

Equation (A1) is the differential potential that needs to be integrated to calculate the
interaction between the test mass and the source mass, where G is Newton’s gravitational
constant, ρtm (ρsm) is the density of the test mass (source mass), Λn is the strength of the
correction for a particular power n, r0 is a constant used to preserve the dimension, dVtm
(dVsm) is the test mass (source mass) volume element, and r is the distance between a point
in the test mass and a point in the source mass and is expressed as

r =
√

r̃2 + ψ2 − 2r̃ψ cos(θ). (A2)

where r̃ is the radial coordinate of a point in the sphere and has integration limits from zero
to the radius of the sphere, θ is the polar coordinate of the sphere, and ψ is the distance
from the center of the spherical test mass to an arbitrary point in the source mass. We
use spherical coordinates to integrate the test mass, so the test mass volume element is
expressed as

dVtm = r̃2dr̃d(cos(θ))dϕ. (A3)

The integral over the test mass is carried out as follows

dU = −GρtmρsmΛnrn−1
0

(∫ R

0

∫ 1

−1

∫ 2π

0

r̃2dr̃d(cos(θ))dϕ

(r̃2 + ψ2 − 2r̃ψ cos(θ))n/2

)
dVsm. (A4)

Nothing in Equation (A4) depends on azimuthal angle, ϕ, so the integral over ϕ results
in a factor of 2π.

dU = −2πGρtmρsmΛnrn−1
0

(∫ R

0

∫ 1

−1

r̃2dr̃d(cos(θ))
(r̃2 + ψ2 − 2r̃ψ cos(θ))n/2

)
dVsm (A5)

Using the following change of variables: x = cos(θ) and u2 = r̃2 − 2r̃ψx + ψ2,
Equation (A5) is now

dU = −2πGρtmρsmΛnrn−1
0

(∫ R

0

∫ (ψ−r̃)

(ψ+r̃)

r̃u1−ndudr̃
ψ

)
dVsm (A6)

and carrying out the last two integrals for the test mass, we are left with the potential
between the sphere and an arbitrary point in the source mass.

dU =
−2πGρtmρsmΛnrn−1

0
ψ(2 − n)(3 − n)(4 − n)

(
R(4 − n)(ψ − R)3−n + (ψ − R)4−n + R(4 − n)(ψ + R)3−n − (ψ + R)4−n

)
dVsm (A7)
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For n = 2, 3, and 4, Equation (A7) yields 0/0; as such, it needs to be verified that it
does not diverge by taking the limits as n → 2, 3, and 4. Taking the limit of Equation (A7)

lim
n→2,3,or 4

(
R(4 − n)(ψ − R)3−n + (ψ − R)4−n + R(4 − n)(ψ + R)3−n − (ψ + R)4−n)

(2 − n)(3 − n)(4 − n)
(A8)

and using l’Hôptial’s rule to evaluate (A8) results in

lim
n→2,3,or 4

[(
R((ψ − R)3−n(n − 4) ln(ψ − R)− (ψ − R)3−n)− (ψ − R)4−n ln(ψ − R)

−((3 − n)(4 − n) + (2 − n)(4 − n) + (2 − n)(3 − n))

+
R((ψ + R)3−n(n − 4) ln(ψ + R)− (ψ + R)3−n) + (ψ + R)4−n ln(ψ + R)

)
−((3 − n)(4 − n) + (2 − n)(4 − n) + (2 − n)(3 − n))

]
.

(A9)

Evaluating Equation (A9) for n = 2, 3, or 4 shows that (A7) does not diverge, see
Table A1.

Table A1. The results of taking the limit of Equation (A9) for powers n = 2, 3, and 4 showing that
Equation (A7) does not diverge for those powers.

n Limit Result

2 Rψ +
(ψ2−R2)

2 ln
(

ψ−R
ψ+R

)
3 −2R − ψ ln

(
ψ−R
ψ+R

)
4 ψR

ψ2−R2 − 1
2 ln
(

ψ−R
ψ+R

)

It was verified that integrating (A6) the powers n = 2, 3, and 4 yield the same expres-
sions as taking the limit expressed in Equation (A9). Now that it is shown that Equation (A7)
does not diverge, all that is left is to integrate over the source mass.

Appendix B. Detailed Calculation Method for Cylinder Test Mass Geometry

The starting point to calculate the interaction between an infinite slab and a cylinder
is the potential

dU = −GρsmΛnrn−1
0

(
dVsm

rn

)
. (A10)

The procedure to integrate the cylinder-slab geometry is the following

1. Integrate over the source mass;
2. Calculate the field due to the source mass, g⃗, along ẑ;

3. Calculate the force, F(n)
z = g⃗mtm, where mtm is the mass of the test mass calcu-

lated using mtm =
∫∫∫

ρtmdVtm, where ρtm is the density of the test mass and
dVtm = dxdydz is the volume element of the test mass.

The coordinate system used for integrating the infinite slab-cylinder geometry is
shown in Figure A1.

First, we will start with the integral over the source mass.

dU = −GρsmΛnrn−1
0

∫∫∫ dVsm

rn (A11)

= −GρsmΛnrn−1
0

∫∫∫
ρdρdθdz

(ρ2 + (z′ − z)2)n/2 (A12)

The limits of integration over the source mass are ρ ∈ [0, ∞),θ ∈ [0, 2π], z ∈ [0,−t].
Integrating over θ and carrying out the change of variable s2 = ρ2 + (z′ − z)2
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U = −2πGρsmΛnrn−1
0

∫ ∞

z′−z

ds
sn−1 (A13)

= −2πGρsmΛnrn−1
0

∫ −t

0

dz
(2 − n)(z′ − z)n−2 (A14)

=
−2πGρsmΛnrn−1

0
(2 − n)(3 − n)

(
z′3−n −

(
z′ + t

)3−n
)

(A15)

Equation (A15) is used for n = 1, 4, and 5; for n = 2 and 3, Equation (A10) was integrated
specifically for those powers.

y

x

z

r

z′

d

L/2

θ

Figure A1. The coordinate system used to integrate over the infinite slab–cylinder geometry. L is the
length of the cylinder and d is the distance from the top of the slab to the bottom of the cylinder.

The field is along ẑ due to the source mass is calculated by

g⃗ = −dU
dz′

ẑ (A16)

Appendix B.1. n = 1

U =
−2πGρsmΛ1

(2 − 1)(3 − 1)

(
z′3−1 −

(
z′ + t

)3−1
)

(A17)

g⃗ = −2πGρsmΛ1tẑ (A18)

F(1)
z = g⃗mtm = −2πGρsmΛ1tẑ(ρtmπR2L) (A19)

Appendix B.2. n = 2

dU = −GρsmΛ2r0

∫∫∫ dVsm

r2 (A20)

= −GρsmΛ2r0

∫∫∫
ρdρdθdz

ρ2 + (z′ − z)2 (A21)

Here, the limits of integration for ρ are ρ ∈ [0, ρ+]. Integrating with respect to θ and
making the following substitution s = ρ2 + (z′ − z)2 gives

dU = −πGρsmΛ2r0

∫ ρ2
++(z′−z)2

(z′−z)2

ds
s

(A22)

U = −πGρsmΛ2r0

∫ −t

0
ln

(
ρ2
+ + (z′ − z)2

(z′ − z)2

)
dz (A23)
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g⃗ = −dU
dz

ẑ = πGρsmΛ2r0
d
dz

∫ −t

0
ln

(
ρ2
+ + (z′ − z)2

(z′ − z)2

)
dz (A24)

= πGρsmΛ2r0

(
ln

(
ρ2
+ + (z′ + t)2

(z′ + t)2

)
− ln

(
ρ2
+ + z′2

z′2

))
(A25)

= πGρsmΛ2r0

(
ln

(
ρ2
+ + (z′ + t)2

ρ2
+ + z′2

)
− ln

(
(z′ + t)2

z′2

))
(A26)

Since we are considering the source mass as an infinite slab, we take ρ+ → +∞

lim
ρ+→+∞

ln

(
ρ2
+ + (z′ + t)2

ρ2
+ + z′2

)
= 0 (A27)

g⃗ = −πGρsmΛ2r0 ln
(
(z′ + t)2

z′2

)
(A28)

F(2)
z =

∫∫∫
g⃗(z′)ρtmdxdydz′ (A29)

F(2)
z = −πGρsmρtmΛ2r0

∫∫∫
ln
(
(z′ + t)2

z′2

)
dxdydz′ (A30)

The limits of integration over the cylindrical test mass are x ∈ [−L/2, L/2],
y ∈ [0,

√
R2 − r2], and r ∈ [−R, R] with r = d + R − z′ and dr = −dz′

F(2)
z = −πGρsmρtmΛ2r0L

∫ R

−R

∫ √
R2−r2

0
ln
(
(d + R + t − r)2

(d + R − r)2

)
dy(−dr) (A31)

= −πGρsmρtmΛ2r0L
∫ R

−R

√
R2 − r2 ln

(
(d + R + t − r)2

(d + R − r)2

)
(−dr) (A32)

We could not find an analytical solution to the final integral, and it was solved numer-
ically.

Appendix B.3. n = 3

dU = −GρsmΛ3r2
0

∫∫∫
ρdρdθdz

(ρ2 + (z′ − z)2)3/2 (A33)

Integrating θ and substituting s2 = (ρ2 + (z′ − z)2)1/2

U = −2πGρsmΛ3r2
0

∫ −t

0

∫ ∞

z′−z

dsdz
s2 (A34)

= −2πGρsmΛ3r2
0

∫ −t

0

dz
2(z′ − z)

(A35)

= πGρsmΛ3r2
0 ln
(

z′ + t
z′

)
(A36)

g⃗ = −πGρsmΛ3r2
0

(
1

z′ + t
− 1

z′

)
(A37)
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F(3)
z = −πGρsmρtmΛ3r2

0

∫∫∫ ( 1
z′ + t

− 1
z′

)
dxdydz′ (A38)

F(3)
z = −πGρsmρtmΛ3r2

0L
∫ R

−R

∫ √
R2−r2

0

(
−dydr

d + R + t − r
+

dydr
d + R − r

)
(A39)

F(3)
z = −πGρsmρtmΛ3r2

0L
∫ R

−R

(
−
√

R2 − r2

d + R + t − r
+

√
R2 − r2

d + R − r

)
dr (A40)

F(3)
z = −πGρsmρtmΛ3r2

0L
(

−π(d + R + t)2

2((d + R + t)2 − R2)3/2 +
π(d + R)2

2((d + R)2 − R2)3/2

)
(A41)

Appendix B.4. n = 4

Starting with Equation (A15) for n = 4

U =
−2πGρsmΛ4r3

0
2

(
1
z′

− 1
z′ + t

)
(A42)

g⃗ = πGρsmΛ4r3
0(−z′−2 + (z′ + t)−2) (A43)

F(4)
z = −πGρsmΛ4r3

0

∫∫∫
(z′−2 − (z′ + t)−2)dxdydz′ (A44)

F(4)
z = −πGρsmΛ4r3

0L
∫ √

R2−r2

0

∫ R

−R
(z′−2 − (z′ + t)−2)dy(−dr) (A45)

F(4)
z = −πGρsmρtmΛ4r3

0L

 A2π√
A2

2 − R2
− A1π√

A2
1 − R2

 (A46)

A2 = d + R + t and A1 = d + R

Appendix B.5. n = 5

Starting with Equation (A15) for n = 5

U =
−πGρsmΛ5r4

0
3

(
1

z′2
− 1

(z′ + t)2

)
(A47)

g⃗ =
−2πGρsmΛ5r4

0
3

(
1

z′3
− 1

(z′ + t)3

)
(A48)

F(5)
z =

−2πGρsmΛ5r4
0

3

∫∫∫ ( 1
z′3

− 1
(z′ + t)3

)
dxdydz′ (A49)

x ∈ [−L/2, L/2], y ∈ [0,
√

R2 − r2, r = d + R − z′, dr = −dz′

F(5)
z =

−πGρsmΛ5r4
0L

3

(
A2

1
(A2

1 − R2)3/2
−

A2
2

(A2
2 − R2)3/2

)
(A50)

A2 = d + R + t and A1 = d + R
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