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Abstract: Assessment of the environmental impact of organic chemicals has become an important
subject in chemical science. Efficient quantitative descriptors of their impact are their partition
coefficients logPow, logKoa and logKaw. We present a group-additivity method that has proven its
versatility for the reliable prediction of many other molecular descriptors for the calculation of the
first two partition coefficients and indirectly of the third with high dependability. Based on the
experimental logPow data of 3332 molecules and the experimental logKoa data of 1900 molecules at
298.15 K, the respective partition coefficients have been calculated with a cross-validated standard
deviation S of only 0.42 and 0.48 log units and a goodness of fit Q2 of 0.9599 and 0.9717, respectively, in
a range of ca. 17 log units for both descriptors. The third partition coefficient logKaw has been derived
from the calculated values of the former two descriptors and compared with the experimentally
determined logKaw value of 1937 molecules, yielding a standard deviation σ of 0.67 log units and a
correlation coefficient R2 of 0.9467. This approach enabled the quick calculation of 29,462 logPow,
27,069 logKoa and 26,220 logKaw values for the more than 37,100 molecules of ChemBrain’s database
available to the public.

Keywords: group-additivity method; Gauss–Seidel diagonalisation; partition coefficient; logPow;
logKoa; logKaw

1. Introduction

Environmental considerations of organic molecules as potential contaminants have
become an important subject in recent years. Several descriptors have been applied to
quantify their impact on the natural environment, among them the octanol/water partition
coefficient logPow (more recently named logKow), a standard model for the description
of the lipophilicity of drugs in medicinal and agricultural chemistry, whereby octanol
is the substitute for the natural organic matter, and the octanol/air partition coefficient
Koa and the air/water partition coefficient logKaw both indicate the role of the chemicals
for air-breathing organisms [1–3]. In view of the time consumption and costs of their
experimental determination, fast mathematical methods for the prediction of their value
attributed to a molecule have been developed. An excellent comprehensive overview of
the various methods for the prediction of the logKow—among many other descriptors—is
given by Nieto-Draghi et al. [4]. Cappelli et al. [5] analysed a series of free programs based
on atom/fragment contributions, hydrophobicity contributions of atoms, the number of
carbon atoms and heteroatoms as well as Monte Carlo methods to calculate logPow and
found correlation coefficients R2 of between 0.7 and 0.8 and root mean square errors (RMSE)
from 0.8 to 1.5. A number of authors [6–13] have successfully carried out logPow calculations
for a large variability of compounds based on various group-additivity methods. Plante
and Werner [14] presented a logPow prediction method based on the combination of the
calculated data of the four different open-source group-additivity calculation methods
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AlogP, XlogP2, SlogP and XlogP3 into a single model, providing a best RMSE of 0.63.
Ulrich et al. [15] used deep neural networks (DNNs) for the logPow calculations, based on
ca. 14,000 different SMILES representations of molecules including potential tautomers,
whereby, however, a substantial number of compounds might have been presented as
duplicates and triplicates to the DNNs. Their best prediction performance yielded an
RMSE of 0.47. Recently, an entirely different path was followed by Sun et al. [16]: since
logPow is proportional to the Gibbs free energy of the transfer from one solvent to another, it
can be calculated using the free solvation energy in these solvents. Sun used the molecular
mechanics–Poisson Boltzmann surface area (MM-PBSA) method for the determination of
the free energies of solvation. Their best RMSE for the 707 compounds test set was 0.91.

Many publications [17–28] dealing with the prediction of the coefficient Koa, based
on various QSPR methods, are limited to specific chemical families, thus lacking general
applicability. Li et al. [29] used a group-additivity method based on five fragment constants
and one structural correction factor for the evaluation of logKoa, limited to halogenated
aromatic pollutants. Recently, Ebert et al. [30] suggested a general-purpose fragment model
for the calculation of the air/water partition coefficient logKaw resembling the atom group-
additivity method presented in one of our earlier papers [13] for the calculation of—among
several further descriptors—the octanol/water partition coefficient logPow.

The goal of the present paper was to suggest the extension of a simple tool, which has
already served well for the prediction of the octanol/water coefficient logPow described
in [13], to enable it to calculate all three mentioned partition coefficients at once by means
of a uniform computer algorithm based on the atom group-additivity method detailed
in [13]. Since under common standard conditions, any third partition coefficient can
be directly calculated from the other two if we neglect the effect of the contamination
of water in octanol (and vice versa) influencing the determination of the logPow values,
which will be addressed later on, it made sense to select the two coefficients for which any
group parameters could be founded on the most reliable as well as the largest number of
experimental data. It turned out that the experimental data for the partition coefficients
logPow and logKoa provided excellent basis sets for the evaluation of their respective tables
of atom and special group parameters. Accordingly, from the subsequently calculated
values of a molecule’s logPow and logKoa, its air/water partition coefficient logKaw should
easily be evaluable following the equation logKaw ≈ logPow − logKoa.

2. Method

The calculation method is based on a regularly updated object-oriented database of
more than 37,100 compounds stored in their geometry-optimised 3D structure, encompass-
ing pharmaceuticals, herbicides, pesticides, fungicides, textile and other dyes, ionic liquids,
liquid crystals, metal–organics, lab intermediates and many more, collecting—among
further molecular experimental and calculated descriptors—a large set of experimental
logPow, logKoa and logKaw data, outlined in the respective sections below. It should be
stressed that for the calculation of the partition coefficients, the 3D geometry-optimised
form of the compounds is not required—except for the algorithm-based determination of
intramolecular hydrogen bridges, the impact of which will be discussed further down. In
order to avoid structural ambiguities in the presentation of the chemical structures to the
computer algorithm defining the molecules´ atom groups, a special algorithm ensured at
the time of the input of a new compound that any six-membered aromatic ring system is
defined by six aromatic bonds instead of alternating single–double-bonds.

2.1. Definition of the Atom and Special Groups

The details of the atom group-additivity model applied in the present study have been
outlined in [13]. Accordingly, the definition of the atom types and their immediate atomic
neighbourhood and meaning are retained as described in Table 1 of [13] and are also valid
for both the logPow and logKoa descriptors. However, since these atom groups are not
able to cover certain additional structural effects such as intramolecular hydrogen-bridge
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bonds and the influence of saturated cyclic compared to saturated noncyclic systems, a
number of additional special groups had to be introduced. In a paper applying a different
group-additivity method for the calculation of logPow, Klopman et al. [8] discovered that
the inclusion of a correction value per carbon atom in pure saturated and unsaturated
hydrocarbons improved compliance with the experiment. This has indeed been confirmed
in the present study.

In order to take account of these and further potential structure-related peculiarities,
the list of atom groups has been extended by “special groups” for which the column-title
terms “atom type” and “neighbours” in the subsequent tables should not be taken literally,
but which the computer algorithm treats in the same way as ordinary atom groups. In
Table 1, the respective special groups, their nomenclature and meaning are detailed. In
order to enable a future comparison of the contributions of the special group parameter
sets within this study, the same special groups have been applied for the calculation of both
descriptors logPow and logKoa.

Table 1. Special groups and their meaning.

Atom Type Neighbours Meaning

H H Acceptor Correction value for intramolecular H bridge between acidic H (on O, N or S)
and basic acceptor (O, N or F)

(COH)n n > 1 Correction value for each additional hydroxy group

(COOH)n n > 1 Correction value for each additional carboxylic acid group

Alkane No. of C atoms Correction value for each C atom in a pure alkane

Unsaturated HC No. of C atoms Correction value for each C atom in an aromatic hydrocarbon

Endocyclic bonds No. of single bonds Correction value for each single endocyclic bond

At present, the list of elements is limited to H, B, C, N, O, P, S, Si and halogen, but an
extension is always possible, provided that corresponding molecules with experimental
descriptor data are available.

2.2. Calculation of the Atom and Special Group Contributions

Since the algorithm for the evaluation of the parameter values of the atom groups
has been outlined in detail in [13], its four steps may just be summarised as follows: the
first step encompasses the selection of all the compounds from a database of, at present,
more than 37,100 compounds for which the experimental descriptor data in question
are known and their storage is in a temporary compounds list. In the second step, the
molecules in the temporary list are broken down into their constituting atom groups,
whereby their central atoms, called “backbone atoms”, are characterised in that they are
bound to at least two covalently bound neighbour atoms. The atom groups’ atom types and
neighbour terms are generated according to the rules described in [13] and their occurrence
is registered. Any molecule carrying an atom group that is not found in the pre-defined
group parameters table is discarded from the temporary compound list. The third step
generates an M × (N + 1) matrix, wherein M is the number of molecules, N + 1 is the
number of pre-defined atom groups plus the container for the molecule´s descriptor value,
and the matrix element (i,j) contains the number of registered occurrences of the jth atom
group in the ith molecule. Atom groups and their related jth column, which are not present
in any molecule of the temporary molecules list, are removed from the M × (N + 1) matrix.
In the final step, this adjusted matrix is normalised into an Ax = B matrix, followed by its
balancing by means of fast Gauss–Seidel calculus [31] to receive the atom and special group
parameters x. These parameters are then added to their related atom and special group in
the corresponding parameter table assigned to the specific descriptor.

The group parameter calculation is then immediately followed by the computation
of each molecule’s descriptor value in question, on the basis of these group parameters
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according to Equation (1) outlined in the next section, and compared with its experimental
value to receive the related statistics data, which are finally added at the bottom of the
parameter table. Following the above-mentioned procedure resulted in the two parameter
sets in Tables 2 and 3, designed for the calculation of the molecules’ logPow and logKoa
values, respectively.

Table 2. Atom and special groups and their contribution in logPow calculations.

Entry Atom Type Neighbours Contribution Occurrences Molecules

1 Const 0.73 3332 3332

2 B(−) F4 2.71 10 10

3 C sp3 H3C 0.27 2614 1498

4 C sp3 H3N 0.14 457 320

5 C sp3 H3N(+) −1.35 2 2

6 C sp3 H3O −0.26 375 285

7 C sp3 H3P −0.3 4 4

8 C sp3 H3S −0.34 61 53

9 C sp3 H3Si 0.76 44 5

10 C sp3 H2C2 0.44 3262 1046

11 C sp3 H2CN 0.42 741 429

12 C sp3 H2CN(+) −0.86 32 25

13 C sp3 H2CO −0.1 799 604

14 C sp3 H2CS −0.33 97 69

15 C sp3 H2CF −0.29 5 5

16 C sp3 H2CCl 0.33 84 67

17 C sp3 H2CBr 0.41 54 48

18 C sp3 H2CJ 1.08 6 6

19 C sp3 H2CP 2.77 1 1

20 C sp3 H2N2 2.05 3 3

21 C sp3 H2NO 0.46 4 4

22 C sp3 H2NS 0.72 3 3

23 C sp3 H2O2 −0.17 6 6

24 C sp3 H2S2 −0.86 6 6

25 C sp3 HC3 0.45 417 269

26 C sp3 HC2N 0.58 200 157

27 C sp3 HC2N(+) −0.73 25 24

28 C sp3 HC2O 0.1 383 241

29 C sp3 HC2S −0.21 8 8

30 C sp3 HC2F −0.36 2 2

31 C sp3 HC2Cl 0.69 64 22

32 C sp3 HC2Br 0.81 26 22

33 C sp3 HCN2 1.2 6 5

34 C sp3 HCNO 1.15 17 17

35 C sp3 HCNS 0.9 25 25

36 C sp3 HCO2 −0.02 31 22
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Table 2. Cont.

Entry Atom Type Neighbours Contribution Occurrences Molecules

37 C sp3 HCOS 0.6 3 3

38 C sp3 HCOCl 0.19 3 1

39 C sp3 HCOBr 1.03 1 1

40 C sp3 HCOP 0.31 1 1

41 C sp3 HCF2 −0.02 2 2

42 C sp3 HCCl2 0.93 13 12

43 C sp3 HOF2 −0.04 1 1

44 C sp3 C4 0.54 144 111

45 C sp3 C3N 0.71 37 36

46 C sp3 C3N(+) −0.43 6 6

47 C sp3 C3O 0.04 54 52

48 C sp3 C3S −0.1 17 17

49 C sp3 C3F 0.94 4 4

50 C sp3 C3Cl 0.8 21 8

51 C sp3 C3Br 0.59 5 4

52 C sp3 C2N2 −1.17 1 1

53 C sp3 C2NO 0.52 5 5

54 C sp3 C2O2 1.65 5 5

55 C sp3 C2F2 0.67 2 2

56 C sp3 C2Cl2 0.84 9 9

57 C sp3 CNO2 1.46 1 1

58 C sp3 CF3 0.86 80 76

59 C sp3 CF2Cl 1.1 3 2

60 C sp3 CFCl2 1.1 3 2

61 C sp3 CCl3 1.6 23 21

62 C sp3 CCl2Br 0 1 1

63 C sp3 CBr3 2.44 1 1

64 C sp3 OF3 0.8 2 2

65 C sp3 SF3 1.04 8 8

66 C sp3 SFCl2 1.9 1 1

67 C sp3 SCl3 0.76 3 3

68 C sp2 H2=C 0.25 97 87

69 C sp2 H2=N −0.62 1 1

70 C sp2 HC=C 0.24 449 285

71 C sp2 HC=N −1.98 18 18

72 C sp2 HC=N(+) 0.94 10 10

73 C sp2 H=CN −0.08 146 109

74 C sp2 H=CN(+) −0.6 18 18

75 C sp2 HC=O −0.73 45 45

76 C sp2 H=CO 0.32 14 13

77 C sp2 H=CS 0.02 17 16
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Table 2. Cont.

Entry Atom Type Neighbours Contribution Occurrences Molecules

78 C sp2 H=CCl 0.51 8 6

79 C sp2 H=CBr 0.59 1 1

80 C sp2 HN=N −0.06 65 52

81 C sp2 HN=O −0.63 16 15

82 C sp2 HO=O −0.4 10 10

83 C sp2 H=NS −0.51 4 4

84 C sp2 C2=C 0.38 160 133

85 C sp2 C2=N −0.25 105 102

86 C sp2 C2=N(+) 2.45 1 1

87 C sp2 C2=O −0.86 242 194

88 C sp2 C=CN 0.76 76 64

89 C sp2 C=CN(+) −0.56 3 3

90 C sp2 C=CO 0.64 41 36

91 C sp2 C=CS −0.16 17 15

92 C sp2 C=CF −0.01 3 3

93 C sp2 C=CCl 0.81 31 21

94 C sp2 C=CBr 0.94 4 4

95 C sp2 C=CJ 0.89 1 1

96 C sp2 C=CP 0 1 1

97 C sp2 =CN2 1.36 19 19

98 C sp2 =CN2(+) 0.74 11 11

99 C sp2 CN=N 0.24 67 63

100 C sp2 CN=N(+) −0.67 1 1

101 C sp2 CN=O −0.69 449 364

102 C sp2 C=NO −0.76 1 1

103 C sp2 =CNO −0.01 4 4

104 C sp2 =CNO(+) −0.37 2 2

105 C sp2 CN=S −0.36 8 8

106 C sp2 C=NS 0.07 5 4

107 C sp2 =CNS 0.37 4 4

108 C sp2 =CNCl 1.94 1 1

109 C sp2 =CNBr 0.7 5 3

110 C sp2 C=NCl 1.75 1 1

111 C sp2 CO=O −0.13 700 613

112 C sp2 CO=O(-) −2.16 35 35

113 C sp2 C=OS −0.99 4 4

114 C sp2 C=OCl 0.28 4 4

115 C sp2 =COCl 1.27 1 1

116 C sp2 =CS2 0 3 3

117 C sp2 =CSBr −2.41 1 1

118 C sp2 =CF2 0.26 1 1
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Table 2. Cont.

Entry Atom Type Neighbours Contribution Occurrences Molecules

119 C sp2 =CCl2 1.21 12 10

120 C sp2 =CBr2 1.36 1 1

121 C sp2 N2=N 0.79 26 25

122 C sp2 N2=N(+) 0.74 1 1

123 C sp2 N2=O 0.07 135 134

124 C sp2 N=NO 0.11 1 1

125 C sp2 N2=S 0.11 9 8

126 C sp2 N=NS 0.24 25 24

127 C sp2 N=NCl 1.13 3 3

128 C sp2 N=NBr 0.24 3 2

129 C sp2 NO=O 0.2 117 114

130 C sp2 =NOS −0.19 1 1

131 C sp2 N=OS 0.05 7 7

132 C sp2 NO=S 0.97 1 1

133 C sp2 =NS2 −1.65 2 2

134 C sp2 NS=S −1.02 5 3

135 C sp2 =NSCl 1.17 1 1

136 C sp2 O2=O 0 3 3

137 C sp2 O=OCl −0.13 3 3

138 C aromatic H:C2 0.25 9963 2133

139 C aromatic H:C:N −0.49 283 193

140 C aromatic H:C:N(+) 0.22 33 27

141 C aromatic H:N2 −0.91 9 9

142 C aromatic :C3 0.25 389 170

143 C aromatic C:C2 0.32 2023 1351

144 C aromatic C:C:N −0.38 74 62

145 C aromatic C:C:N(+) −3.29 4 3

146 C aromatic :C2N 0.39 653 534

147 C aromatic :C2N(+) −0.15 194 161

148 C aromatic :C2:N −0.09 93 72

149 C aromatic :C2:N(+) −3.54 19 19

150 C aromatic :C2O 0.57 1076 742

151 C aromatic :C2S 0.08 208 170

152 C aromatic :C2F 0.27 126 86

153 C aromatic :C2Cl 0.78 1718 565

154 C aromatic :C2Br 0.9 248 111

155 C aromatic :C2J 1.26 50 34

156 C aromatic :C2P 1.08 1 1

157 C aromatic C:N2 −1.81 9 9

158 C aromatic :C:N2 −0.13 1 1

159 C aromatic :CN:N 0.49 38 34
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Table 2. Cont.

Entry Atom Type Neighbours Contribution Occurrences Molecules

160 C aromatic :CN:N(+) −0.83 1 1

161 C aromatic :C:NO 0.97 21 15

162 C aromatic :C:NS −0.16 5 5

163 C aromatic :C:NF −0.23 4 3

164 C aromatic :C:NCl 0.16 18 16

165 C aromatic :C:NBr 0.06 1 1

166 C aromatic N:N2 −0.05 51 41

167 C aromatic N:N2(+) 0 1 1

168 C aromatic :N2O 1.53 8 8

169 C aromatic :N2S 0.8 3 3

170 C aromatic :N2Cl 0.89 6 6

171 C(+) aromatic H:N2 0.21 25 25

172 C sp H#C −0.27 28 28

173 C sp C#C 0.2 86 57

174 C sp C#N −0.7 136 130

175 C sp N#N 0.04 3 3

176 C sp #NS −0.59 5 5

177 C sp =N=O 0.64 4 4

178 C sp =N=S 1.53 27 26

179 N sp3 H2C −1.57 86 84

180 N sp3 H2C(pi) −1.05 326 292

181 N sp3 H2N −0.85 20 20

182 N sp3 H2S −1.55 34 34

183 N sp3 HC2 −1.3 74 73

184 N sp3 HC2(pi) −0.93 225 203

185 N sp3 HC2(2pi) −0.47 311 272

186 N sp3 HCN −1.1 4 3

187 N sp3 HCN(pi) −0.49 14 13

188 N sp3 HCN(2pi) 1.65 42 42

189 N sp3 HCO(pi) −1.32 9 9

190 N sp3 HCS −1.69 4 4

191 N sp3 HCS(pi) −0.98 47 47

192 N sp3 HCP −1.78 3 3

193 N sp3 HCP(pi) −0.41 1 1

194 N sp3 C3 −1.03 122 108

195 N sp3 C3(pi) −0.73 153 138

196 N sp3 C3(2pi) −0.72 149 136

197 N sp3 C3(3pi) −0.75 23 23

198 N sp3 C2N −1.57 1 1

199 N sp3 C2N(pi) −1.41 31 28

200 N sp3 C2N(2pi) −0.67 51 47
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Table 2. Cont.

Entry Atom Type Neighbours Contribution Occurrences Molecules

201 N sp3 C2N(3pi) −0.44 10 10

202 N sp3 C2O(pi) −0.31 5 5

203 N sp3 C2S −1.42 5 5

204 N sp3 C2S(pi) 0.03 7 6

205 N sp3 C2S(2pi) 0.76 2 2

206 N sp3 C2P −0.33 5 3

207 N sp3 CN2(2pi) 1.36 1 1

208 N sp3 CS2 0.27 1 1

209 N sp3 CS2(pi) −0.29 1 1

210 N sp2 H=C −0.67 12 11

211 N sp2 C=C −0.72 200 180

212 N sp2 C=N 0.01 13 12

213 N sp2 =CN 0.49 96 78

214 N sp2 C=N(+) −6.61 1 1

215 N sp2 =CN(+) −1.02 2 2

216 N sp2 =CO −0.64 47 41

217 N sp2 C=O −1.05 2 2

218 N sp2 =CS −1.44 5 4

219 N sp2 N=N −0.78 25 18

220 N sp2 N=O 0.16 40 37

221 N aromatic C2:C(+) 0 50 25

222 N aromatic :C2 0.38 354 258

223 N aromatic :C:N −0.35 4 2

224 N(+) sp3 H3C −1.03 26 26

225 N(+) sp3 H2C2 1.2 5 5

226 N(+) sp3 HC3 2.68 1 1

227 N(+) sp3 C4 3.03 1 1

228 N(+) sp2 C=CO(−) −2.3 10 10

229 N(+) sp2 CO=O(−) 0.27 235 198

230 N(+) sp2 NO=O(−) −0.19 2 2

231 N(+) sp2 O2=O(−) 0.44 55 29

232 N(+) aromatic H:C2 2.5 3 3

233 N(+) aromatic C:C2 −0.48 7 6

234 N(+) aromatic :C2O(−) 1.73 19 19

235 N(+) sp =C=N(−) 1.8 1 1

236 N(+) sp =N2(−) 0 1 1

237 O HC −0.96 481 344

238 O HC(pi) −0.72 627 557

239 O HN −0.15 11 11

240 O HN(pi) −0.24 6 6

241 O C2 0.06 156 115
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Table 2. Cont.

Entry Atom Type Neighbours Contribution Occurrences Molecules

242 O C2(pi) −0.13 726 588

243 O C2(2pi) −0.51 301 280

244 O CN 0.4 3 3

245 O CN(pi) 0.82 4 4

246 O CN(+)(pi) 0.01 55 29

247 O CN(2pi) 0.53 13 12

248 O CS −0.13 13 8

249 O CS(pi) −0.1 3 3

250 O CP 0.23 132 68

251 O CP(pi) −0.49 36 26

252 O CSi −0.15 8 2

253 O N2(2pi) 1.91 5 5

254 O NP(pi) −1.95 14 14

255 O Si2 0.09 18 4

256 S2 HC 0.65 14 12

257 S2 HC(pi) 0.14 31 31

258 S2 C2 1.39 48 45

259 S2 C2(pi) 0.98 68 63

260 S2 C2(2pi) 0.98 55 54

261 S2 CN 0 3 3

262 S2 CN(2pi) 2.3 1 1

263 S2 CS 0.87 2 1

264 S2 CS(pi) 1.97 4 2

265 S2 CP 1.12 17 15

266 S2 CP(pi) 0.48 3 2

267 S2 N2 −2.2 2 2

268 S2 N2(2pi) 5.96 1 1

269 S4 C2=O −1.13 11 11

270 S4 C2=O2 −0.5 16 16

271 S4 CO=O2 −0.48 2 1

272 S4 CN=O2 −0.05 85 80

273 S4 C=O2F 0.24 2 2

274 S4 NO=O2 0 3 3

275 S4 N2=O2 0.77 5 5

276 S4 O2=O 0.83 2 2

277 S4 O2=O2 0.5 2 2

278 S4 O2=O2(−) −1.14 3 3

279 P4 CO2=O −1.11 2 2

280 P4 CO2=S 0.26 1 1

281 P4 CO=OS −2.58 1 1

282 P4 CO=OF −0.88 3 3
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Table 2. Cont.

Entry Atom Type Neighbours Contribution Occurrences Molecules

283 P4 COS=S −2.04 1 1

284 P4 O3=O −0.56 29 29

285 P4 O3=S 1.12 18 18

286 P4 O2S=S 0.7 12 11

287 P4 O=OS2 −0.54 2 2

288 P4 N3=O −0.31 1 1

289 P4 N2O=O 0.24 2 2

290 P4 NO=OS −1.5 2 2

291 Si C4 −0.51 1 1

292 Si C3O −1.7 2 1

293 Si C2O2 0.13 17 4

294 Si O4 0 2 2

295 Halide 1.1 20 19

296 H H Acceptor 0.51 164 154

297 (COH)n n > 1 0.26 137 74

298 (COOH)n n > 1 −0.15 26 25

299 Alkane No. of C atoms 0.09 290 32

300 Unsaturated HC No. of C atoms 0.02 1584 135

301 Endocyclic bonds No. of single bds −0.14 2338 384

A Based on Valid groups 214 3332

B Goodness of fit R2 0.9648 3246

C Deviation Average 0.31 3246

D Deviation Standard 0.39 3246

E K-fold cv K 10 3164

F Goodness of fit Q2 0.9599 3164

G Deviation Average (cv) 0.33 3164

H Deviation Standard (cv) 0.42 3164

Table 3. Atom and special groups and their contribution in logKoa calculations.

Entry Atom Type Neighbours Contribution Occurrences Molecules

1 Const 1.46 1900 1900

2 C sp3 H3C −0.07 1800 875

3 C sp3 H3N 3.42 131 87

4 C sp3 H3N(+) 1.42 1 1

5 C sp3 H3O 2.24 292 219

6 C sp3 H3S 1.51 30 26

7 C sp3 H3P −0.42 3 3

8 C sp3 H3Si 0.42 68 11

9 C sp3 H2C2 0.43 1732 538

10 C sp3 H2CN 3.91 191 129
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Table 3. Cont.

Entry Atom Type Neighbours Contribution Occurrences Molecules

11 C sp3 H2CN(+) 1.64 6 5

12 C sp3 H2CO 2.61 535 342

13 C sp3 H2CS 1.76 57 44

14 C sp3 H2CP 2.58 3 3

15 C sp3 H2CF −0.77 3 3

16 C sp3 H2CCl 0.71 75 56

17 C sp3 H2CBr 1.05 23 18

18 C sp3 H2CJ 1.13 5 5

19 C sp3 H2CSi 2.91 4 4

20 C sp3 H2N2 4.89 8 3

21 C sp3 H2NO 5.65 9 8

22 C sp3 H2NS 4.67 5 5

23 C sp3 H2O2 4.78 6 4

24 C sp3 H2S2 3.74 4 4

25 C sp3 HC3 0.64 268 180

26 C sp3 HC2N 4.08 64 53

27 C sp3 HC2N(+) 2.05 1 1

28 C sp3 HC2O 2.86 169 135

29 C sp3 HC2S 1.76 9 7

30 C sp3 HC2F −1.66 1 1

31 C sp3 HC2Cl 1.21 43 17

32 C sp3 HC2Br 1.31 14 9

33 C sp3 HC2J 1.95 1 1

34 C sp3 HCNO 8.18 3 3

35 C sp3 HCNS 2.08 1 1

36 C sp3 HCO2 5.73 6 6

37 C sp3 HCF2 −0.18 7 7

38 C sp3 HCFCl 0.02 2 2

39 C sp3 HCCl2 1.18 15 14

40 C sp3 HCClBr 0.77 1 1

41 C sp3 HOF2 1.79 3 3

42 C sp3 C4 0.73 98 84

43 C sp3 C3N 4.1 13 13

44 C sp3 C3O 3.11 40 37

45 C sp3 C3S 2.6 3 3

46 C sp3 C3Cl 0.87 37 15

47 C sp3 C2NO 5.94 1 1

48 C sp3 C2O2 5.94 6 6

49 C sp3 C2F2 0.23 58 10

50 C sp3 C2Cl2 1.24 18 17

51 C sp3 CNO2 9.56 1 1



Liquids 2024, 4 243

Table 3. Cont.

Entry Atom Type Neighbours Contribution Occurrences Molecules

52 C sp3 COF2 3.06 3 3

53 C sp3 CF3 −0.06 55 51

54 C sp3 CF2Cl −0.02 4 3

55 C sp3 CFCl2 0.37 3 2

56 C sp3 CCl3 1.62 17 16

57 C sp3 CBr3 0.57 1 1

58 C sp3 O2F2 6.85 1 1

59 C sp3 OF3 1.86 3 3

60 C sp2 H2=C −0.19 88 76

61 C sp2 HC=C 0.34 233 141

62 C sp2 HC=N 0.85 8 8

63 C sp2 HC=O 1 27 27

64 C sp2 H=CN 1.1 19 13

65 C sp2 H=CO 0.48 15 14

66 C sp2 H=CS −1.08 9 7

67 C sp2 H=CCl 0.44 12 10

68 C sp2 H=CBr 0.6 3 2

69 C sp2 H=CSi 2.17 1 1

70 C sp2 HN=N 1.73 53 30

71 C sp2 HN=O 2.27 3 3

72 C sp2 HO=O 0.92 4 4

73 C sp2 H=NS 2.88 1 1

74 C sp2 C2=C 0.8 103 79

75 C sp2 C2=N 1.62 34 30

76 C sp2 C=CN 1.6 19 16

77 C sp2 C2=O 1.08 87 75

78 C sp2 C=CO 1.22 27 26

79 C sp2 C=CP −0.09 1 1

80 C sp2 C=CS −0.41 14 10

81 C sp2 C=CCl 0.62 39 24

82 C sp2 C=CBr 1.01 12 5

83 C sp2 =CN2 2.98 2 2

84 C sp2 CN=N 2.75 7 7

85 C sp2 CN=O 2.64 93 88

86 C sp2 C=NO 1.26 5 5

87 C sp2 =CNO −1.24 3 3

88 C sp2 C=NS 0.46 6 6

89 C sp2 =CNCl 3.35 6 3

90 C sp2 CO=O 1.73 244 210

91 C sp2 C=OS −0.61 3 2

92 C sp2 =CS2 −0.66 1 1
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Table 3. Cont.

Entry Atom Type Neighbours Contribution Occurrences Molecules

93 C sp2 =CF2 −1.14 1 1

94 C sp2 =CCl2 1.14 16 14

95 C sp2 N2=N 3.36 9 9

96 C sp2 N2=O 3.65 43 40

97 C sp2 N=NO 2.64 4 4

98 C sp2 N=NS 0.71 7 7

99 C sp2 NO=O 2.81 38 36

100 C sp2 N=OS 0.93 17 17

101 C sp2 NO=S 4.26 1 1

102 C sp2 =NOS 0.68 3 3

103 C sp2 NS=S 6.03 3 2

104 C sp2 =NSCl −5.44 2 2

105 C sp2 O2=O 2.56 3 3

106 C aromatic H:C2 0.31 5436 1136

107 C aromatic H:C:N 0.53 81 49

108 C aromatic H:N2 0.17 6 6

109 C aromatic :C3 0.89 441 148

110 C aromatic C:C2 0.79 1163 657

111 C aromatic C:C:N 0.68 42 30

112 C aromatic :C2N 1.35 164 146

113 C aromatic :C2N(+) 2.09 96 69

114 C aromatic :C2:N 1.01 13 10

115 C aromatic :C2O 1.27 769 453

116 C aromatic :C2P 3.53 5 3

117 C aromatic :C2S −0.19 38 33

118 C aromatic :C2Si −0.25 1 1

119 C aromatic :C2F 0.13 99 41

120 C aromatic :C2Cl 0.91 1844 550

121 C aromatic :C2Br 1.24 391 143

122 C aromatic :C2J 2.14 10 9

123 C aromatic C:N2 0.77 11 10

124 C aromatic :CN:N 0.8 4 4

125 C aromatic :C:NO 1.2 28 24

126 C aromatic :C:NCl 0.9 14 12

127 C aromatic N:N2 1.18 60 36

128 C aromatic :N2O 1.15 11 11

129 C aromatic :N2S −0.6 8 8

130 C aromatic :N2Cl 0.43 9 8

131 C sp H#C −0.45 18 17

132 C sp C#C 0.67 18 17

133 C sp C#N 0.73 46 43
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Table 3. Cont.

Entry Atom Type Neighbours Contribution Occurrences Molecules

134 C sp N#N 5.32 1 1

135 C sp #NP −5.58 1 1

136 C sp =N=S −0.13 2 2

137 N sp3 H2C −2.18 17 16

138 N sp3 H2C(pi) 1.02 57 53

139 N sp3 H2N 3.57 5 5

140 N sp3 H2S 1.81 1 1

141 N sp3 HC2 −5.94 12 11

142 N sp3 HC2(pi) −2.38 93 70

143 N sp3 HC2(2pi) 0.08 65 56

144 N sp3 HCN(pi) 0.02 5 4

145 N sp3 HCN(2pi) 1.2 4 4

146 N sp3 HCO(pi) 1.13 1 1

147 N sp3 HCP −4.1 3 3

148 N sp3 HCP(pi) 1.51 1 1

149 N sp3 HCS(pi) −1.54 8 8

150 N sp3 C3 −9.44 17 17

151 N sp3 C3(pi) −6.39 58 55

152 N sp3 C3(2pi) −4.82 49 45

153 N sp3 C3(3pi) −3.61 9 9

154 N sp3 C2N −5.12 1 1

155 N sp3 C2N(pi) −2.54 15 14

156 N sp3 C2N(+)(pi) −1.93 7 2

157 N sp3 C2N(2pi) −3.84 36 36

158 N sp3 C2N(3pi) −0.65 13 12

159 N sp3 C2P 0 1 1

160 N sp3 C2P(pi) −2.97 1 1

161 N sp3 C2P(2pi) −4.07 1 1

162 N sp2 H=C 0.51 1 1

163 N sp2 C=C −0.97 54 48

164 N sp2 C=N 0.61 6 4

165 N sp2 =CN 0.03 54 49

166 N sp2 =CN(+) 9.74 2 2

167 N sp2 =CO −3.65 30 26

168 N sp2 N=N −1.3 4 3

169 N sp2 N=O −2.02 13 13

170 N aromatic :C2 0.54 194 109

171 N aromatic :C:N 0.47 4 1

172 N(+) sp2 CO=O(−) −0.36 104 76

173 N(+) sp2 NO=O(−) 0 9 4

174 N(+) sp2 O2=O(−) −1.09 63 35
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Table 3. Cont.

Entry Atom Type Neighbours Contribution Occurrences Molecules

175 O HC −0.66 143 121

176 O HC(pi) 1.39 175 159

177 O HN(pi) 4.18 2 2

178 O HP 2.11 4 2

179 O HSi 1.91 3 2

180 O C2 −4.17 139 105

181 O C2(pi) −2.68 392 317

182 O C2(2pi) −0.92 255 228

183 O CN(pi) 0.51 20 16

184 O CN(+)(pi) 0.1 63 35

185 O CN(2pi) 3.07 8 8

186 O CO(pi) −1.03 2 1

187 O CS −0.88 11 6

188 O CP −1.2 183 93

189 O CP(pi) −0.01 70 54

190 O CSi −2.38 9 3

191 O NP(pi) 4.65 1 1

192 O P2 1.7 1 1

193 O Si2 0 21 6

194 P4 C3=O −5.7 1 1

195 P4 CNO=O 1.2 1 1

196 P4 CO2=O 1.47 3 3

197 P4 CO2=S −1.5 3 3

198 P4 CO=OS 1.99 1 1

199 P4 CO=OF 1.94 1 1

200 P4 COS=S −0.86 1 1

201 P4 NO2=O 3.42 1 1

202 P4 NO2=S 1.88 3 3

203 P4 NO=OS 1.2 2 2

204 P4 O3=O 0.09 29 29

205 P4 O3=S −0.4 32 30

206 P4 O2=OS 0.43 5 5

207 P4 O2=OF −0.17 1 1

208 P4 O=OS2 1.58 3 3

209 P4 O2S=S −0.27 18 17

210 P4 =OS3 1.46 1 1

211 S2 HC −1.08 2 2

212 S2 HC(pi) 1.54 1 1

213 S2 C2 −1.5 14 14

214 S2 C2(pi) 0.4 41 39

215 S2 C2(2pi) 2.82 24 23
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Table 3. Cont.

Entry Atom Type Neighbours Contribution Occurrences Molecules

216 S2 CS −0.58 4 2

217 S2 CS(pi) −2.98 2 1

218 S2 CP −0.12 33 28

219 S2 CP(pi) 1.78 3 2

220 S4 C2=O 0.6 2 2

221 S4 C2=O2 2.13 3 3

222 S4 CN=O2 3.26 9 9

223 S4 CO=O2 −0.05 1 1

224 S4 O2=O −0.35 2 2

225 S4 O2=O2 0.24 3 3

226 S6 CF5 1.92 3 3

227 Si C4 −1.33 3 3

228 Si C3O −0.65 7 4

229 Si C2O2 0.1 19 6

230 Si CO3 0 3 3

231 H H Acceptor −1.51 47 45

232 (COH)n n > 1 0.06 22 15

233 (COOH)n n > 1 1.2 6 6

234 Alkane No. of C atoms −0.05 268 34

235 Unsaturated HC No. of C atoms −0.03 1512 140

236 Endocyclic bonds No. of single bds −0.11 1109 210

A Based on Valid groups 167 1900

B Goodness of fit R2 0.9765 1829

C Deviation Average 0.34 1829

D Deviation Standard 0.44 1829

E K-fold cv K 10 1765

F Goodness of fit Q2 0.9717 1765

G Deviation Average (cv) 0.37 1765

H Deviation Standard (cv) 0.48 1765

2.3. Calculation of Descriptors logPow and logKoa

Based on the aforementioned respective atom-group-parameter tables, the descriptors
logPow and logKoa of a molecule can now easily be calculated by simply summing up
the contribution of each atom and special group occurring in the molecule, following
Equation (1), wherein i and j are the number of atom groups Ai and special groups Bj,
respectively, ai is the contribution of atom group Ai, bj is the contribution of special group
Bj and c is the constant listed at the top of the respective parameter tables.

Descriptor calc = ∑aiAi + ∑bjBj + c (1)

In Table 4, a typical example is presented with endosulfan sulphate (Figure 1), demon-
strating the ease of the calculation of logKoa for which the experimental value was 9.68 [30].
Note that the term “endocyclic bonds” only concerns C-C single bonds.
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Table 4. Example calculation of the logKoa of endosulfan sulphate.

Atom Type C sp3 C sp3 C sp3 C sp3 C sp2 O S4 Endocycl. Bonds Const Sum

Neighbors H2CO HC3 C3Cl C2Cl2 C=CCl CS O2=O2 n C-C

Contribution 2.61 0.64 0.87 1.24 0.62 −0.88 0.24 −0.11 1.46

n Groups 2 2 2 1 2 2 1 9

n × Contribution 5.22 1.28 1.74 1.24 1.24 −1.76 0.24 −0.99 1.46 9.67
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Evidently, the group-additivity method is limited to the calculation of a molecule’s
logPow or logKoa for which a parameter value in the respective Table 2 or Table 3 is known
for each atom group that is found in the molecule. Beyond this, since the reliability of
these parameter values increases with the number of independent molecules upon which
their calculation is based, the lowest reliability limit for these parameters was set to three
molecules, which, as a consequence, excluded any atom group based on less than three
molecules from further calculations. Accordingly, only atom groups for which the number
of molecules is three or more, shown in the rightmost columns of Tables 2 and 3, have been
accepted as “valid” for descriptor calculations. This explains the lower number of molecules
for which the logPow and logKoa have been calculated (lines B, C and D in Tables 2 and 3)
than the number upon which the evaluation of the complete set of parameters is based
(line A).

2.4. Cross-Validation Calculations

The plausibility of the group-parameter calculations was immediately checked by
applying a 10-fold cross-validation algorithm, which comprises 10 recalculations of the
complete set of group parameters, whereby, before each recalculation, every other 10th
compound of the total compounds’ list is temporarily removed from the calculation and
separated into a test list, thus ensuring that each molecule has played the role of a test
sample once. The combined test data were then statistically worked up and their results
added to Tables 2 and 3 at the bottom in lines E, F, G and H. It may be noticed that the total
number of test compounds shown in the right-most column of the statistics lines is lower
than that in the training set in lines B, C and D; this is a consequence of the requirement
that only “valid” atom groups are to be used for descriptor calculations, and due to the
10% lower number of training samples in each recalculation, the number of “valid” atom
groups (as defined in the prior section) tends to decrease to an unpredictable degree. Atom
groups, which are represented by less than three molecules, as shown in the right-most
column, and are thus not “valid” for descriptor calculations, are therefore remnants of
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the parameter calculation based on the complete compound set (line A in Tables 2 and 3).
Nevertheless, they have deliberately been left in Tables 2 and 3 for use in future calculations
with additional molecules potentially carrying under-represented atom groups in this
ongoing project.

3. Sources
3.1. Sources of logPow Values

The majority of the experimental logPow data originates from the comprehensive collec-
tion of Klopman et al. [8], supplemented by works of Sangster [32] and Lipinski et al. [33],
already cited in [13]. Additional data have been provided for unsubstituted and sub-
stituted, saturated and unsaturated hydrocarbons, alcohols and esters in the works of
Tewari et al. [34]; for heterocycles, hetarenes and carboxylic acids by Ghose et al. [6,7];
complemented for amines, amides and nitro derivatives by Leo [10]. Further data for the
aforementioned compound classes have been found in papers by Abraham et al. [35], for
certain drugs by Hou and Xu [12] and Wang et al. [11], for organophosphorus deriva-
tives by Czerwinski et al. [36], for the specific energetic compound 2,4-dinitroanisole by
Boddu et al. [37], for a number of fluorobenzenes, -anilines and -phenols by Li et al. [38] and
finally for a number of pesticides and oil constituents in a paper by Saranjampour et al. [39].

3.2. Sources of logKoa Values

Recently, Ebert et al. [40] published a comprehensive collection of more than 2000 ex-
perimental logKoa values upon which the present study is essentially based. This set of data
has been complemented with data for 75 chloronaphthalene derivatives by Puzyn et al. [41],
for 14 PAHs by Odabasi et al. [42], for some methylsiloxanes and dimethylsilanol by Xu
and Kropscott [43] and for ethyl nitrate by Easterbrook et al. [44].

3.3. Sources of logKaw Values

Ebert’s paper [30], cited in the introductory section, presented in their supplementary
information a large collection of experimental logKaw data, which served as reference
values for the calculated data. Sander [45] provided an extensive library of Henry’s law
constants for more than 2600 compounds, which, after translation into logKaw values at
298.15 K, complemented Ebert’s data set.

4. Results
4.1. Partition Coefficient logPow

As shown at the bottom of Table 2, the number of molecules upon which the present
group parameter set is based is 3332, substantially larger than the 2780 samples in our
earlier paper [13]. Beyond this, the significantly better statistical results in Table 2 (lines B
to H) with, e.g., a cross-validated (cv) standard deviation S of 0.42 (line H) vs. the earlier
value of 0.51 is the result of the removal of molecules from the parameter computation
for which the experimental value deviates by more than three times the value of S. The
122 molecules thus removed (3.5% of the total set) have been collected in an outlier list,
available in the Supplementary Materials. The larger number of compounds for the group
parameter computation not only significantly improved the statistical results but also
enlarged the list of “valid” atom groups from 195 to 214, enabling the calculation of the
logPow value of at present 29,462 molecules (79.4% of the total dataset). The correlation
coefficients R2 of 0.9648, the (cross-validated) Q2 of 0.9599 and the cv standard error S
of 0.42, based on 3246 and 3164 molecules, respectively, are significantly better than in our
earlier paper [13] and compare very well not only with Klopman’s [8] results, which are
based on a group-additivity method comparable to ours and have R2 and Q2 values of 0.93
and 0.926, respectively, but also with the statistical results of more elaborate calculation
methods published recently [4,5,14–16]. As shown in the correlation diagram of Figure 2
and the histogram for Figure 3, the experimental logPow values range from −4.6 to +12.53
with a fairly even Gaussian error distribution.
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It is worth mentioning that the observation discussed in our earlier paper (see Table 9
in [13]) concerning the two forms of amino acids (nonionic or zwitterionic) is not only
confirmed by the new and extended group parameter set of Table 2 but also that the logPow
differences in nearly all cases even more clearly distinguish the two forms. On the other
hand, the ambiguous results concerning the keto/enol forms of the compounds listed
in Table 10 in [13] could not be lifted by the new parameter set, which is not surprising
in view of the sometimes strong solvent dependence of the equilibrium, as exemplified
with acetylacetone [46]. In view of the discussion of certain particularities concerning the
subsequent calculation of the third partition coefficient logKaw in Section 4.3, it should be
stressed at this point that the calculated logPow values for the hydrocarbons do not show
any abnormal or systematic deviations from experimental values.

4.2. Partition Coefficient logKoa

The calculation of the group parameter set of Table 3 used for the prediction of the
logKoa values is essentially based on the curated data set provided in Ebert’s paper [40],
whereby compounds with just one “backbone atom” such as halomethanes or hydrocyanide
had to be omitted as they are obviously not calculable using the present method. After
the removal of another 129 compounds as outliers (6.36% of the total), following the same
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exclusion criterion as in the previous section, 1900 samples with their experimental data
(line A in Table 3) remained for the computation of the group parameter values. Again, the
outliers have been collected in a separate list available in the Supplementary Materials for
readers who might want to re-evaluate their logKoa values.
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The subsequent calculation of the logKoa values of 1829 training and 1765 test molecules
based on 167 “valid” atom and special groups (line A) revealed excellent statistical results
with a correlation coefficient R2 of 0.9765, a standard deviation s of 0.44 (lines B and D) and
a cross-validated Q2 of 0.9717 with a corresponding S of 0.48 (lines F and H), visualised
in the correlation diagram on Figure 4 and the histogram on Figure 5. These statistical
data even outperform those given in Ebert’s paper and thus also the competing methods
mentioned therein such as COSMOtherm [47] and EPI-Suite KOAWIN [48], not only con-
firming the versatility but also the reliability of the present group-additivity approach,
which allowed the calculation of the logKoa value for 27,044 molecules (72.9% of the entire
database). Again, it should be kept in mind that just like in Section 4.1, any particularly
large or systematic deviations between the experimental and calculated logKoa values for
the hydrocarbons could not be observed.
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4.3. Partition Coefficient logKaw

Once the partition coefficients logPow and logKoa were calculated by means of the
group-additivity method based on Tables 2 and 3, respectively, it was easy to determine
the logKaw values, applying Equation (2) on each molecule in the database for which both
descriptors had been calculated, adding up to 26,220 molecules. In order to assess the
quality of the logKaw values, it is important to recognise the flaws of this approach: while
the logPow values were experimentally measured in a mixture of water-saturated octanol
and octanol-saturated water, the logKoa measurements occurred in dry octanol, an aspect
that has been discussed in detail by Ebert et al. [40]. Hence, Equation (2) serves only as an
approximation. In addition, since both descriptors on the right side of the equation appear
with their own standard error, the error-propagation rule stipulates a standard error of
logKaw that is clearly larger than either of the two constituting descriptors. Entering the
standard errors S for the test molecules of 0.42 (for logPow) and 0.48 (for logKoa) into an
error-propagation calculation, the expected standard error S for logKaw is 0.638.

logKaw (calc) = logPow (calc) − logKoa (calc) (2)
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In order to test the reliability of the thus-calculated logKaw values, a representative
number of experimentally determined logKaw data, extracted from the comprehensive
databases of Ebert et al. [30] and Sander [45], were added to the database. In the latter case,
the Henry’s law solubility constants Hs

cp were translated into the corresponding logKaw
values at 298.15 K. The comparison of the calculated with the experimental logKaw values
is visualised in the correlation diagram of Figure 6 and the histogram in Figure 7.

The complete set of experimental data was separated from the outliers, applying
the same exclusion conditions as for the logPow and logKoa values, and the outliers were
collected in a corresponding list, available in the Supplementary Materials. Comparison of
the remaining dataset with the calculated values yielded a standard error of 0.67, slightly
higher than that predicted by the error-propagation calculation. A detailed analysis of the
experimental data revealed two potential explanations for the inordinate scatter: (1) Within
a series of substitution isomers, e.g., the tetra- or hexachlorobiphenyls, the tri- or pen-
tachlorodiphenyl ethers or the dichloroanisoles, the experimental logKaw values varied
in a range of up to and over 1 unit, which was hard to assign to the specific positioning
of the substituents. At any rate, the group-additivity-based calculation of the logPow and
logKoa values was not able to distinguish between these substitution isomers. (2) Sander’s
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comprehensive database of Henry’s law constants [45], listing the experimental Hs
cp values

for a compound originating from various authors, showed for many compounds large
differences between their Hs

cp values, in some cases exceeding one unit after translation
into logKaw, e.g., for undecane, acetylacetone or anthraquinone.
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A thorough analysis of the correlation diagram in Figure 6 and the histogram in
Figure 7 revealed an interesting peculiarity, visible as an indentation at the upper end of
the correlation diagram and as a weak hump on the right side of the histogram: except
for some siloxanes with experimental logKaw values above 1.6 and normal scatter about
calculated values, the predicted logKaw for the remaining compounds with experimental
logKaw values above −1.0 were nearly systematically too low by ca. 0.5–1 units. It turned
out that they were all pure hydrocarbons, in particular alkanes, alkenes and alkynes. The
correlation diagram of the logKaw data in Figure 8, focussing on these hydrocarbons,
confirms this observation.
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Since, as mentioned in Sections 4.1 and 4.2, no particularly large or systematic de-
viations between the experimental and calculated logPow and logKoa data for the hydro-
carbons could be detected, a potential explanation for this peculiarity might be based on
the experimental conditions for the determination of the logPow values as mentioned by
Ebert et al. [40]: since water-saturated octanol is a more polar solvent than pure octanol,
while octanol-saturated water is less polar than pure water, the experimental logPow values,
measured in an octanol/water mixture, tend to be shifted to smaller absolute values than
theory would predict. While this is true for all measured solutes, it is possibly most effective
for the least polar solutes such as the mentioned hydrocarbons, thus leading to experi-
mental logPow values that are particularly low for the hydrocarbons. As a consequence,
their calculation based on the group-additivity method predicts equally low logPow values,
which again lead to low logKaw data when Equation (2) is applied and when compared
with experimental logKaw values that are determined under pure air/water conditions.
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4.4. Interpretation of the Special Groups’ Contributions to logPow and logKoa, and Ultimately
for logKaw

While the atom group parameters are descriptor-specific and their comparison be-
tween descriptors does not make sense, special groups serve as differentiators of molecules
that carry these groups from those that do not. Therefore, their meanings have overlapping
descriptors; their values, however, must be viewed in the context of the value range of
the descriptors. In the present case, the value ranges of logPow and logKoa are similar
(ca. 17 log units) and in the same area, and thus, a direct comparison of the special group
contributions in Tables 2 and 3 is permissible and leads to a few interesting observations:
While the groups “(COH)n”, “Alkane”, “Unsaturated HC” and “Endocyclic bonds” in
both tables only contribute to a minor degree (but nevertheless improve the statistical
results) and consequently show only minor differences between the two tables, a significant
difference was found for the groups “H/H Acceptor” and “(COOH)n”. The former special
group, taking account of intramolecular hydrogen bridges, indicates a small but clearly
higher chance of being a compound carrying an intramolecular H-bridge towards the
octanol side in an octanol/water mixture, thus raising the logPow value. In contrast, the
same H-bridge-carrying molecule has its inclination significantly shifted to the air side in
an octanol/air environment compared to that without H-bridges, expressed in its lower
logKoa value. The reason may be found in the lower solvent–solute interaction caused by
the H-bridge being bound intramolecularly, leading in both cases to a preference for the
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less polar of the respective two media. A typical example is the compound couple 2- and
3-nitroaniline, sampled in Table 5, where the former molecule carries a H-bridge between
an amino-H and an oxygen of the nitro group.

Table 5. Experimental (calculated) logPow and logKoa values of 2- and 3-nitroaniline.

Descriptor 2-Nitroaniline 3-Nitroaniline

logPow 1.85 (1.70) 1.37 (1.19)

logKoa 6.46 (5.29) 7.62 (6.80)

An inverse effect can be found with molecules carrying two or more carboxylic acid
functions: While the additional contribution of a second or third COOH function shows
little effect in an octanol/water environment with a slightly increased shift towards water,
leading to a lower logPow value, in an octanol/air environment, each additional COOH
group drastically tilts the equilibrium towards the octanol side, thus strongly raising the
logKoa value. This may be demonstrated by the couple of hexanoic/1,6-hexanedioic acid,
where both have the same carbon-chain length but where the second molecule carries
two carboxylic acid functions, which tilts the octanol/air equilibrium by a factor of more
than 10,000 towards the octanol side as shown in Table 6. Now, it is well known that
monocarboxylic acids usually exist as dimeric associates in all three aggregate states. This
association effect on the solubility is inherently taken into account in the atom group param-
eter evaluation of the COOH function. On the other hand, dicarboxylic acids do not only
form dimers but also cyclical and linear oligomeric associates, with drastic consequences on
their solubility in the various solvents. It is these additional associations that are considered
by the special group “(COOH)n”.

Table 6. Experimental (calculated) logPow and logKoa of hexanoic and 1,6-hexanedioic acid.

Descriptor Hexanoic Acid 1,6-Hexanedioic Acid

logPow 1.92 (1.91) 0.08 (0.64)

logKoa 6.31 (6.23) 10.74 (10.62)

As a consequence, solutes with a low tendency to interact with solvents, either inherent
or induced by intramolecular hydrogen bridges, show a trend to higher logKaw values;
the additional intermolecular association of di- and tricarboxylic acids, on the other hand,
results in a significantly lower logKaw value, as exemplified in Table 7, where the respective
calculated data in Tables 5 and 6 have been applied in Equation (2). The experimental
logKaw values have been extracted from Ebert et al. [30].

Table 7. Experimental and calculated logKaw of some examples.

Compound logKaw Exp logKaw Calc

2-Nitroaniline −4.77 −3.59

3-Nitroaniline −6.49 −5.61

Hexanoic Acid −4.531 −4.32

1,6-Hexanedioic Acid −11.15 −9.98

5. Conclusions

The present study, which is part of an ongoing project, put to use a tool for the
simple and reliable calculation of the two partition coefficients logPow and logKoa that
has proven its unmatched versatility in the equally reliable prediction of now up to
19 physical, thermodynamic, solubility-, optics-, charge- and environment-related molec-
ular descriptors [13,49–55], based on a common group-additivity method. The large
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database of more than 3300 and 1900 experimental data, respectively, upon which the
group parameters for the logPow and logKoa calculations are founded enabled their pre-
diction for nearly 29,500 and more than 27,000 molecules, respectively, of the presently
more than 37,100 compounds in ChemBrain’s database. In addition, these results also
allowed the trustworthy calculation of the third partition coefficient logKaw for more than
26,000 compounds. The big advantage of the present approach is its ease of use by simply
adding, by means of paper and pencil, the parameters of the atoms and groups found in a
particular molecule, which are listed in the respective Tables 2 and 3.

The mentioned project’s software is called ChemBrain IXL, available from Neuronix
Software, version ChemBrain IXL 5.9.70.1 (www.neuronix.ch (accessed on 27 November
2023), Rudolf Naef, Lupsingen, Switzerland).

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/liquids4010011/s1: The lists of compounds used in the present work,
collected in their 3D structure together with their experimental data, are available as standard SDF
files for use in external chemical software under the names of “S01. Compounds List for logPow-
Parameters Calculations.sdf”, “S02. Compounds List for logKoa-Parameters Calculations.sdf” and
“S03. Compounds List with exp logKaw Data”. The compounds used in the correlation diagrams and
histograms are listed with their names and experimental and calculated data under the respective
names of “S04. Compounds with Experimental vs. Calculated logPow Values.doc”, “S05. Compounds
with Experimental vs. Calculated logKoa Values.doc”, “S06. Compounds with Experimental vs.
Calculated logKaw Values.doc” and “S07. Alkanes, Alkenes and Alkynes with Exp. vs. Calc. logKaw
Values.doc”. In addition, for each of the three partition coefficients, a list of their outliers has
been added under the names of “S08. Outliers of logPow.doc”, “S09. Outliers of logKoa.doc” and
“S10. Outliers of logKaw.doc”. Beyond this, the Supplementary Materials encompass all the figures
and tables cited in the text as .tif and .doc files, respectively.
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