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Abstract: Background: cardiovascular diseases, including acute myocardial infarction (AMI) and
takotsubo cardiomyopathy (TTC), are significant causes of morbidity and mortality worldwide.
Timely differentiation of these conditions is essential for effective patient management and improved
outcomes. Methods: We conducted a review focusing on studies that applied artificial intelligence
(AI) techniques to differentiate between acute myocardial infarction (AMI) and takotsubo cardiomy-
opathy (TTC). Inclusion criteria comprised studies utilizing various AI modalities, such as deep
learning, ensemble methods, or other machine learning techniques, for discrimination between AMI
and TTC. Additionally, studies employing imaging techniques, including echocardiography, cardiac
magnetic resonance imaging, and coronary angiography, for cardiac disease diagnosis were consid-
ered. Publications included were limited to those available in peer-reviewed journals. Exclusion
criteria were applied to studies not relevant to the discrimination between AMI and TTC, lacking
detailed methodology or results pertinent to the AI application in cardiac disease diagnosis, not
utilizing AI modalities or relying solely on invasive techniques for differentiation between AMI and
TTC, and non-English publications. Results: The strengths and limitations of AI-based approaches
are critically evaluated, including factors affecting performance, such as reliability and generalizabil-
ity. The review delves into challenges associated with model interpretability, ethical implications,
patient perspectives, and inconsistent image quality due to manual dependency, highlighting the
need for further research. Conclusions: This review article highlights the promising advantages of AI
technologies in distinguishing AMI from TTC, enabling early diagnosis and personalized treatments.
However, extensive validation and real-world implementation are necessary before integrating AI
tools into routine clinical practice. It is vital to emphasize that while AI can efficiently assist, it cannot
entirely replace physicians. Collaborative efforts among clinicians, researchers, and AI experts are
essential to unlock the potential of these transformative technologies fully.
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1. Introduction

Takotsubo cardiomyopathy (TTC), also known as stress cardiomyopathy, apical bal-
looning syndrome, or “broken heart syndrome”, is an abrupt catecholamine-induced my-
ocardial inflammation that primarily affects elderly women after experiencing significant
stress [1]. It is a short-term, reversible systolic abnormality of the apical left ventricle that
resembles a myocardial infarction (MI) but is not due to coronary artery disease (CAD) [2].
Myocardial infarction (MI), also known as a “heart attack”, occurs when the blood supply
to a region of the myocardium is reduced or completely stopped. MI can be “silent” and
go unnoticed, or it can be a catastrophic occurrence that results in hemodynamic decline
and untimely death [3]. These two disorders present with equivalent symptoms, such as
chest discomfort, dyspnea, electrocardiogram (ECG) abnormalities, and increased cardiac
biomarkers [4].

Takotsubo cardiomyopathy (TTC) is becoming more common, which may be due to
the increasing prevalence of modern-day stressors, as well as the clinical cardiology commu-
nity’s increased knowledge and detection of the disorder. Studies from different parts of the
world have reported that 85–90% of the patients with TTC are women, aged 65–70 years [5].
Takotsubo cardiomyopathy accounts for roughly 2–3% of all acute coronary syndrome pa-
tients and 5–6% of female patients, albeit it may be underappreciated and underdiagnosed,
particularly in patients with co-existing coronary artery disease [6]. Dana et al. looked over
the previous decade, and researchers discovered that takotsubo cardiomyopathy (TTC)
accounted for approximately 7% of patients first diagnosed with MI [7]. Several studies
have shown that long-term mortality is comparable to that of acute coronary syndrome,
with all-cause death occurring in 5.6% of patients per year. Redfors et al. recently revealed
that long-term mortality for takotsubo syndrome is comparable to that of patients with
non-ST-segment elevation myocardial infarction [6] but lower than that of patients with
ST-segment elevation myocardial infarction. Although the exact prevalence is unknown,
up to 0.7–2.5% of all patients presenting with an initial clinically diagnosed acute coronary
syndrome (ACS) may have TTC, and the overall incidence is likely to be underestimated [8].

Acute detection of takotsubo cardiomyopathy (TTC) is crucial due to differences in
care. However, it is challenging given the similarity in clinical presentation, ECG, and
cardiac biomarkers characteristics with myocardial infarction [9]. Currently, emergency
coronary angiography and ventriculography are eventually needed to confirm the diag-
nosis [10]. Early differentiation between the two conditions can impact the timing of
coronary angiography and the choice of antiplatelet/anticoagulation regimen, especially
in patients with multiple comorbidities, such as those experiencing physical stressors like
subarachnoid hemorrhage or hemorrhagic stroke, known common causes of TTC [11].

Additionally, patients often mistake TTC for myocardial infarction due to the resem-
blance in signs and symptoms [11]. From the patient’s perspective, the pain experienced in
TTC is comparable to that of myocardial infarction [12]. The key distinction is that TTC is
associated with emotional stress onset, while MI is usually sudden in onset. In recent years,
the application of artificial intelligence (AI) and machine learning algorithms in cardiovas-
cular diagnostics has gained significant interest. This review article specifically focuses on
AI’s role in distinguishing between myocardial infarction and takotsubo cardiomyopathy,
given their clinical similarities. By summarizing existing studies, we aim to highlight AI’s
potential benefits and limitations in differentiating these two conditions, contributing to
improved patient outcomes, and advancing precision medicine in cardiology.
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2. Methodology

The literature review was collaboratively conducted by all authors using electronic
databases such as PubMed, Google Scholar, Medline, and IEEE Xplore. Search terms
included “artificial intelligence”, “machine learning”, “cardiovascular diagnostics”, “my-
ocardial infarction”, and “Takotsubo cardiomyopathy”. Inclusion criteria focused on
studies from the last decade discussing artificial intelligence in cardiovascular diagnostics,
parameters for differentiating MI from TTC, and prevalence of TTC. Studies involving
human subjects to diagnose myocardial dysfunction using artificial intelligence and re-
porting relevant metrics were included. Authors were assigned subsections related to
different diagnostic approaches. Relevant studies were then compared, and those meet-
ing the criteria were included. The exclusion criteria were implemented to eliminate
non-peer-reviewed sources, books, and studies of lower quality, emphasizing a rigorous
approach to underscore the role of artificial intelligence in differentiating between the
two cardiovascular conditions.

3. Artificial Intelligence in Healthcare

Artificial intelligence (AI) is a field within computer science that possesses the ability
to analyze detailed medical information [13]. It is centered around computers acquiring
knowledge from data and imitating human cognitive processes [14]. By enhancing learning
capabilities, AI is revolutionizing the future of healthcare by offering decision-support
systems on a large scale [14]. The capacity of AI to uncover significant correlations within
datasets can be harnessed in various clinical scenarios, such as diagnosis, treatment, and
prognosis [13,14].

4. Machine Learning in Diagnostics

Within the broader domain of artificial intelligence (AI), machine learning (ML) is a
subset that focuses on developing algorithms and models capable of automatically learning
and improving from experience without being explicitly programmed [15,16].

The machine learning system operates by combining the principles of both statistics
and computer science [16]. This convergence is driven by the unique computational
challenges associated with constructing statistical models from massive datasets [17]. The
primary subtypes of ML are supervised learning (SL), unsupervised learning (UL), and
deep learning (DL). This categorization is determined by the presence or absence of labeled
training samples [18], enabling computers to gain knowledge and generate predictions
from data [12,15].

4.1. Supervised Machine Learning

Supervised learning (SL) is the predominant machine learning approach employed in
medical research [14]. It is clinically applied for the diagnosis and prognosis of diseases
and serves the purpose of predicting specific outcomes or accurately classifying cases
based on known reference data. In supervised learning, the model is trained using a
dataset that contains labeled examples. This training process empowers the model to
make predictions on new, unlabeled data [19]. The primary focus of SL lies in addressing
classification and regression-based challenges [20] and the modeling methods utilized
are support vector machines (SVMs), artificial neural networks (ANNs), and random
forests (RFs) [21]. However, supervised learning also comes with limitations, including the
requirement of a substantial amount of labeled data for training and the need for validation.

4.2. Unsupervised Machine Learning

Unsupervised learning (UL) is primarily concerned with pattern recognition, making
it well-suited for modeling disease mechanisms and uncovering hidden patterns within
genotype or phenotype data [14,18]. It utilizes an unlabeled dataset to train the model
and reveal intrinsic patterns or relationships within the data. The identified patterns often
need to undergo evaluation for their usefulness, either through human analysis or by
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applying them to a supervised learning task. While supervised learning primarily tackles
classification and regression problems, unsupervised learning focuses more on clustering
and dimensionality reduction modeling techniques [21,22].

4.3. Deep Learning

Deep learning (DL) has emerged as a prominent subset of machine learning, aiming
to mimic human brain capabilities, particularly in computer vision, where neural net-
works outperformed other techniques in image analysis [20]. Notably, in 2012, during
the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC), a deep learning model
(specifically, a convolutional neural network) achieved outstanding performance by reduc-
ing the error rate to half compared to the other models in the image classification task [23].
These convolutional neural networks (CNNs) are a specific type of deep learning technique,
capable of automatically learning a set of feature detectors from a labeled dataset [24].
The application of deep learning (DL) in the field of medical imaging for processing and
analyzing data has gained pivotal popularity lately [25].

Although AI is being increasingly applied in healthcare, many research efforts pri-
marily focus on cancer, nervous system disorders, and cardiovascular diseases due to their
substantial impact as leading causes of disability and mortality [14]. Improved extraction of
clinical insights and their integration into well-trained and validated systems have paved
the way for early diagnosis in numerous conditions. This progress allows for the timely
detection of various ailments by utilizing valuable clinical knowledge and integrating it
into the system effectively [26]. Figure 1 presents the attributes and limitations associated
with various machine learning methodologies.
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5. Significance of Distinguishing MI from Takotsubo Cardiomyopathy

Cardiovascular diseases are responsible for the highest mortality rates in both the
United States and worldwide. Based on the NHANES 2013 to 2016 data [27,28], the
overall prevalence of cardiovascular disease among adults aged 20 years and above is
48.0%, equivalent to 121.5 million individuals in 2016. Globally in 2016, approximately
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17.6 million deaths were attributed to cardiovascular disease (CVD), with a 14.5% increase
compared to 2006. The data exhibited a progressive rise in the occurrence of cardiovascular
disease (CVD) as individuals advanced in age, evident in both males and females [27]. As a
result, it is of utmost importance to develop timely and accurate techniques for diagnosing
these life-threatening conditions.

Acute myocardial infarction (MI) and takotsubo cardiomyopathy (TTC) are two car-
diovascular emergencies that exhibit striking clinical similarities in their presentations.
Distinguishing between the two conditions in the emergency room can be extremely
challenging, especially given the limited time available for prompt diagnosis and treat-
ment [9,12]. Figure 2 illustrates the clinical similarities and distinctions between acute
myocardial infarction and takotsubo cardiomyopathy.
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Hence, it is crucial to consider takotsubo syndrome (TTC) as a potential alternative
diagnosis in patients presenting with chest pain and suspected acute coronary syndrome
(ACS), especially when there is a history of intense emotional or physical stress [28]. A
cohort study conducted by Frangieh AH, Obeid S et al. compared the clinical presentations
and triggers, concluding that there were no significant differences observed between the
groups, except for patients with a specific emotional trigger [11].

6. Current Diagnostic Approaches for Myocardial Infarction and Takotsubo Cardiomyopathy
6.1. Cardiac Biomarkers
6.1.1. N-Terminal Pro-B-Type Natriuretic Peptide, Troponin, CK, CK-MB, and Myoglobin

Cardiac biomarkers, such as troponin levels, are crucial for identifying myocardial
injury and differentiating between MI and TTC. In MI, troponin levels are elevated due
to ongoing myocardial damage caused by ischemia. In TTC, troponin levels may also
increase [29], although the rise is typically modest compared to MI. Consequently, relying



BioMedInformatics 2024, 4 1313

solely on troponin levels may not be sufficient for distinguishing the two conditions. During
the acute phase of takotsubo cardiomyopathy (TTC), significantly elevated levels of serum
brain natriuretic peptide (BNP) or N-terminal pro-B-type natriuretic peptide (NT-proBNP)
can be detected [29–32]. In the majority of cases, cardiac biomarkers, such as troponin (Tn),
creatine kinase (CK), and CK-MB, are slightly elevated [33–35]. While cardiac biomarkers
currently lack the specificity [36] needed for a definitive differentiation between takotsubo
cardiomyopathy (TTC) and acute coronary syndrome (ACS), they can still be helpful in
distinguishing between the two conditions. In challenging situations where obtaining a
coronary angiogram is difficult, particularly in high-risk bleeding patients, cardiac biomark-
ers can be useful in identifying TTC and avoiding unnecessary antithrombotic therapy [4].
According to a study, differentiation between TTC and ACS was achieved using the ratio
of peak levels of NT-proBNP (ng/L) to TnT (µg/L) [32]. Relying solely on biomarkers,
such as natriuretic peptides (NPs) and troponin levels, for differentiation between the
two conditions is limited due to the wide range of elevation observed and the significant
overlap between TTC and ACS.

6.1.2. Soluble Suppression of Tumorigenicity 2 (sST2)

sST-2 levels were significantly higher in TTC patients compared to patients with ICMP
in a relatively small study. A receiver operating characteristic (ROC) analysis showed
that SST-2 was a valuable diagnostic biomarker for identifying TTC when compared to
ICMP [37].

6.1.3. Soluble Urokinase Plasminogen Activator Receptor (suPAR)

Elevated suPAR levels have been associated with the development of atherosclerotic le-
sions and the destabilization of plaque [38,39]. Baseline serum plasma levels of suPAR were
highest in patients with ischemic cardiomyopathy (ICMP), but there were no significant
differences observed when compared to takotsubo cardiomyopathy (TTC) patients.

6.1.4. Heart-Type Fatty Acid Binding Protein (H-FABP)

In addition to its role as a marker for ischemia and early myocardial damage, H-
FABP also serves as a parameter for assessing myocardial stress [40]. Interestingly, in a
relatively small study, it was observed that the highest plasma levels of H-FABP were
found in patients with dilated cardiomyopathy (DCMP), followed by levels in patients with
ischemic cardiomyopathy (ICMP), and with a significant difference, lower levels were seen
in patients with takotsubo cardiomyopathy (TTC). This finding suggests a potential clinical
utility of H-FABP as a marker for distinguishing between DCMP and TTC [37]. Given that
myocardial stunning is the underlying pathogenesis in takotsubo cardiomyopathy (TTC),
it appears that TTC patients exhibit lower levels of myocardial stress compared to clinically
compensated dilated cardiomyopathy (DCMP) patients [41].

6.1.5. Growth/Differentiation Factor-15 (GDF-15)

GDF-15 is a stress-responsive biomarker of cardiac and vascular disease and has
been shown to be up-regulated in the presence of oxidative stress and inflammation.
This aligns with previous findings indicating that inflammation and oxidative stress play
significant roles in the pathogenesis of takotsubo cardiomyopathy (TTC) [42,43]. GDF-15
exhibited the highest levels in takotsubo cardiomyopathy (TTC) compared to ischemic
cardiomyopathy (ICMP), dilated cardiomyopathy, the combined group of ICMP [37], and
ACS [44], indicating its potential value in differential diagnosis.

6.2. Electrocardiography ECG

Timely and expeditious electrocardiographic (ECG) testing is essential for individuals
presenting with chest pain. It is important to note that women may exhibit atypical
symptoms, such as abdominal pain or dizziness, and elderly patients may present primarily
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with shortness of breath during a myocardial infarction (MI) episode [45–47]. The ECG is
highly specific for MI (95% to 97%) but lacks sensitivity (approximately 30%).

The primary objective should be to identify individuals requiring urgent coronary
angiography. The majority of takotsubo cardiomyopathy (TTC) patients (80%) display
abnormal ECG findings, including ST-segment elevation, T-wave inversion, and transient
Q waves [48–50], although this may be an overrepresentation. Like acute myocardial
infarction (AMI), the ECG in TTC can reveal localized and dynamic ischemic changes,
evolving over time.

A study by Toshiaki et al. assessed ST-segment elevation frequencies in all 12 leads,
including treating lead aVR as lead aVR. Compared to anterior AMI, Takotsubo cardiomy-
opathy exhibited less ST-segment elevation and a higher prevalence of no abnormal Q
waves, indicating less myocardial damage. In TTC, ST-segment elevation was more exten-
sive, involving regions beyond the anterior wall. Notably, ST-segment elevation in lead
aVR was more frequent in TTC than in AMI, indicating a unique pattern. Lead aVR faces
the apical and inferolateral regions, not directly captured by the standard 12 leads, which
may explain the diffuse ST-segment elevation observed in TTC, representing widespread
wall-motion abnormalities centered around the apex. Conversely, ST-segment elevation
in lead V1, reflecting right ventricular anterior and para-septal regions, was rare in TTC
due to limited wall-motion abnormalities in that area. These findings suggest that the
presence of ST-segment shift in leads aVR and V1 may help differentiate between TTC and
anterior AMI in patients admitted within 6 h of symptom onset, although the study sample
size was small [51]. In another study [11], patients with MI showed a higher prevalence
of ST depression in all ECG leads except aVR. In contrast, TTC cases displayed a higher
prevalence of ST-elevation in lead aVR compared to MI. Additionally, T-wave inversion
was more commonly seen in TTC, particularly in the lateral and anterior leads. The same
study [11] concluded that ST-depression was more prevalent in ST-elevation myocardial
infarction (STEMI) compared to TTC across all leads, except for lead aVR, where ST eleva-
tion was more common in TTC [11,52]. Conversely, T-wave inversion was observed more
frequently in TTC, affecting more than five leads, particularly in the lateral and anterior
leads. The study had a large sample size and benefited from being a multicenter registry
but had limitations due to its retrospective design and not distinguishing between typical
and atypical forms of TTC [11]. Furthermore, in patients with pre-existing conditions
like left bundle branch block and pacemakers, the presence of ST-segment elevation and
progressive T-wave inversion on ECG might not be reliable criteria for distinguishing
between these conditions [53].

Takotsubo cardiomyopathy is often under-recognized and significantly impacts the
diagnosis of acute coronary syndromes. Physicians need to be attentive to this condition,
as no previous articles have comprehensively analyzed a substantial number of reported
TTC cases or conducted literature reviews encompassing all aspects discussed regarding
the early stages of the disease [54].

6.3. Cardiac Imaging Techniques

Imaging techniques combined with artificial intelligence (AI) have shown promising
results in differentiating myocardial infarction from takotsubo cardiomyopathy.

AI algorithms can be trained to analyze various imaging modalities, such as echocar-
diography, cardiac MRI, coronary angiography, or nuclear imaging scans, to identify
specific patterns and features unique to each condition.

6.3.1. Echocardiography

Also referred to as cardiac ultrasound, echocardiography is presently the most em-
ployed noninvasive imaging technique for evaluating patients with diverse cardiovascular
conditions [55].

It is essential for identifying the structural and functional abnormalities of the heart.
Additionally, it enables the evaluation of intracardiac hemodynamics, providing valuable
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insights into the heart’s performance [55]. Regardless of the significant diagnostic and
prognostic benefits of echocardiography, the interpretation and analysis of echo images still
heavily rely on the manual efforts of cardiac sonographers [56,57]. Consequently, this can
lead to decreased accuracy and efficiency in generating echo reports [57].

Implementing artificial intelligence and machine learning techniques for analyzing
echo data has the potential to significantly alleviate the variability and burden related to
manual image measurements [56].

This automated approach can drastically reduce the reliance on manual efforts for
interpretation and analysis, thereby reducing the risk of human error and optimizing the
overall efficiency of reports [57].

A cohort study conducted by Fabian Laumer et al. [57] included 448 patients of TTC
(224 patients) and AMI (224 patients), with the purpose of investigating whether machine
learning methods applied to echocardiograms could aid in distinguishing these two condi-
tions. The study incorporated clinical data and transthoracic echocardiogram findings from
patients diagnosed with acute myocardial infarction (AMI) as well as takotsubo cardiomy-
opathy (TTC) [58]. A real-time deep learning system was developed for the automated
interpretation of echocardiographic images and the study also trained a machine learning
system to distinguish between TTC and AMI. The results clearly demonstrated that the
system outperformed manual interpretation by a panel of cardiologists, indicating the
potential for the future development of fully automated computer-aided decision support
systems in the field of echocardiography.

Nicolas et al. conducted a comparative study to assess LV systolic function using a
two-dimensional strain in takotsubo cardiomyopathy (TTC) [59]. They studied 42 women
divided into three groups: TTC patients (group 1), coronary artery disease patients
(group 2), and healthy individuals (group 3). They found that TTC patients showed lower
systolic peak velocity, strain, and strain rate compared to healthy individuals (p < 0.04).
However, LV ejection fractions significantly improved during follow-up (p < 0.0001) and all
velocity values increased significantly on day 7 compared to the acute phase (p ≤ 0.01). The
study suggested that two-dimensional speckle-tracking echocardiography is a reliable tool
for assessing circular dysfunction in TTC patients and monitoring LV functional recovery.
They concluded that in the post-acute phase, TTC may mimic LV systematic dysfunction in
coronary artery disease, leading to potential misdiagnosis, and this technique is valuable
for monitoring LV functional recovery [59].

Another study conducted by Rodolfo Citro et al. [60] compared the echocardiographic
distribution of regional wall motion abnormalities (RWMA) between patients with takot-
subo cardiomyopathy (TTC) and anterior ST-elevation myocardial infarction (ant-STEMI).
They examined 37 TTC and 37 ant-STEMI patients during hospital admission using echocar-
diography. Results showed that TTC patients had a lower left ventricular ejection fraction
and a higher wall motion score index compared to ant-STEMI patients. RWMA in TTC
patients involved multiple coronary artery territories, while ant-STEMI patients predomi-
nantly showed involvement in the left anterior descending coronary artery territory. The
study proposed specific cut-off values to predict TTC based on the number of territories
with RWMA. They found that TTC patients exhibit a unique pattern of contractility, with
symmetrical RWMA extending equally into the territory of the distribution of all coro-
nary arteries [60]. While these studies demonstrate the usefulness of AI in cardiovascular
diagnostics, it is important to emphasize that deep learning algorithms are designed to
complement cardiologists’ decision-making, not replace it. They serve as valuable tools for
providing rapid and accurate analyses of echocardiographic data.

6.3.2. Cardiac MRI

In takotsubo cardiomyopathy, MRI findings usually show the absence of late en-
hancement on delayed contrast sequences, which sets it apart from anterior ST-elevation
myocardial infarction (STEMI). Even in cases of anterior STEMI with no reflow or mi-
crovascular obstruction, most patients exhibit evidence of necrosis in the wall, which is
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not typically observed in takotsubo cardiomyopathy. Although some isolated published
cases have described small areas of late enhancement in the apical segment in takotsubo
cardiomyopathy, this characteristic finding of absent late enhancement on delayed contrast
sequences remains a key differentiating factor [61]. Further research and studies in the radi-
ology field could provide more comprehensive insights into the MRI findings of takotsubo
cardiomyopathy and its differentiation from other cardiac conditions [62,63].

6.3.3. Coronary Angiography

Coronary angiography can rule out significant coronary artery blockages in cases
where the symptoms might be like MI. This helps in accurately diagnosing TTC and
avoiding unnecessary interventions like angioplasty or stent placement, which are typ-
ically required for coronary artery blockages seen in MI. While coronary angiography
is an essential tool for diagnosing coronary artery disease and evaluating heart vessel
abnormalities, it may not be sufficient to differentiate between MI and TTC. A comprehen-
sive evaluation, including patient history, clinical presentation, and additional imaging
techniques, is necessary for an accurate diagnosis and appropriate management. AI can
analyze coronary angiography images to evaluate the presence and severity of coronary
artery disease. AI algorithms can identify differences in the extent and location of coro-
nary artery lesions between MI and TTC. AI can analyze coronary angiography images to
evaluate the presence and severity of coronary artery disease. AI algorithms can identify
differences in the extent and location of coronary artery lesions between MI and TTC. The
diagnosis of takotsubo cardiomyopathy is currently confirmed using invasive coronary
angiography, but it is rarely the initial diagnosis upon hospital admission. In the majority
of cases, no significant coronary artery stenoses are observed during the angiography. Left
ventriculography is a valuable technique for diagnosing and categorizing the condition, as
it typically reveals the distinct shape of the left ventricle resembling a Japanese octopus
pot, characterized by a round bottom and a narrow neck. About 30% of cases display
predominantly mid-ventricular hypokinesis, while there is also a less common basal or
“inverted” form [64]. In most stress cardiomyopathy cases, angiography typically does
not reveal any obstructive lesions, and only a small number of cases may show minimal
medication-inducible vasospasm [61]. Nevertheless, there is increasing clinical evidence
suggesting the presence of a possible vasogenic/coronary vascular component. Some stud-
ies have reported incidents of single and multifocal coronary vasospasm on angiography, as
well as improvements in coronary perfusion with the resolution of myopathy. Additionally,
other research has found evidence of plaque rupture/thrombosis in patients with stress
cardiomyopathy [65–67]. Patients with stress cardiomyopathy consistently exhibit features
of microvascular dysfunction, including impaired endothelium-dependent vasodilation, ex-
cessive vasoconstriction, and abnormalities in myocardial perfusion [61,66]. The diagnosis
of takotsubo cardiomyopathy is based on various factors, including clinical presentation,
changes in electrocardiograms, elevated cardiac biomarkers, and characteristic findings
from imaging studies, especially echocardiography. In some cases, coronary angiography
may also be conducted to rule out significant coronary artery disease [68]. Figure 3 rep-
resents the different perspectives on utilizing artificial intelligence in diagnosing acute
myocardial infarction and takotsubo cardiomyopathy.

In medical facilities where primary percutaneous intervention (PCI) is available for
both ST-elevation myocardial infarction (STEMI) and non-ST elevation myocardial infarc-
tion (NSTEMI), the likelihood of diagnosing takotsubo cardiomyopathy (TTC) increases
when patients undergo early invasive management. However, in institutions without
intervention capabilities, relying on first-line fibrinolysis for STEMI, maintaining a high
level of suspicion for TTC remains crucial. It is essential to note that suspicion of TTC
should not impede the administration of fibrinolytic therapy when it is indicated [54].
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6.4. InterTak Score

In a retrospective single-center study to validate a scoring system, a score of ≥50
correctly diagnosed TTC in 85% of cases, while a score of ≤31 correctly diagnosed ACS in
92% of cases. The results confirmed the good accuracy of the score, when using a cut-off
value of 45 points, sensitivity was 75%, and specificity was 95% for TTC. However, due to
the low prevalence of TTC in the admitted patient population, the sample size was limited,
and the statistical significance of certain parameters included in the InterTAK score could
not be established. This limits the generalizability of the findings. A prospective approach
would be more promising in further evaluating the scoring system and overcoming these
limitations [4].

Along with these diagnostic tests, the integration of AI with the InterTAK Diagnostic
Score [12] can also smoothly predict TTC in the emergency department. The InterTAK
Diagnostic Score can be quickly calculated using seven clinical parameters during the
admission process. Points are assigned to each clinical parameter, depending on their
diagnostic importance, as follows:

• Female sex—25 points (TTC: the disease shows a strong preponderance toward the
female sex, with ~90% of all patients being women [69]).

• Emotional trigger—24 points (emotional and physical trigger factors are typical fea-
tures of TTC [70].

• Physical trigger—13 points [71].
• Absence of ST-segment depression except in lead aVR—12 points (ST-segment depres-

sion is a common finding in AMI, but uncommon in TTC) [4,11,69,71].
• QTc prolongation—6 points (an ECG hallmark of TTC patients) [4,11,69,71].
• Psychiatric disorders—11 points (prevalence of neurologic or psychiatric disorders is

twice as high in TTC compared with AMI) [69].
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• Neurologic disorders—9 points.

Table 1, depicted below, provides a comparative analysis outlining various diagnostic
methods, along with their reliability and accuracy in distinguishing between myocardial
infarction (MI) and takotsubo cardiomyopathy (TTC).

Table 1. Comparative analysis outlining various diagnostic methods.

Diagnostic Method Findings in MI Findings in TTC Notes

Troponin, CK, CK-MB,
Myoglobin

Elevated levels of troponin,
CK-MB, myoglobin

Modest elevation, typically
lower than MI

Biomarkers lack specificity,
useful in high-risk bleeding
patients. May not be solely
relied upon to distinguish

between the two conditions.

NT-proBNP Variable levels Significantly elevated levels
noted in acute phase

Can be used as an additional
tool to distinguish between

ACS and TTC in early stages.

sST2 Elevated Elevated Measurement of sST2 used for
risk stratification

suPAR Elevated No notable distinction.
Elevated levels associated

with atherosclerotic lesions
and plaque destabilization.

H-FABP Elevated Not Elevated Useful in distinguishing
CMP and TTC

GDF-15 Elevated Significantly Elevated Useful in differentiating
CMP AND TTC

Electrocardiography (ECG)

ST-segment elevation more
extensive. Obtain posterior
leads V7 to V9 for posterior

infarction, pathologic Q
waves frequently noted.

Diffuse ST elevation in lead
aVR is noted frequently.

T-wave inversion in anterior
and lateral leads seen more

commonly. Pathologic Q
waves are uncommon.

Highly specific for MI
(95–97%) but lacks sensitivity

(30%). ECG can be used to
identify location of infarct.
ECG in 80% TTC patients
show nonspecific findings.

ST-segment shift in leads aVR
and V1 may help differentiate

between TTC and
anterior AMI.

Not a sole reliable criterion
to differentiate

Echocardiography

Detects Wall motion
abnormalities based on area of

infarct, cavity size, EF,
and associated conditions

and complications.

Reveals distinct LV shape
resembling a Japanese

octopus pot.
Mid-ventricular

hypokinesis is seen

Most-employed noninvasive
imaging technique
for differentiation

Cardiac MRI

Late enhancement on
delayed contrast

Most patients exhibit evidence
of necrosis in the wall

Absence of late enhancement
No evidence of necrosis

Absence of late enhancement
on MRI is a key differentiating

factor for TTC.

Coronary Angiography Significant coronary
artery blockages No coronary artery stenosis

Rule out coronary artery
blockages, helping diagnose

TTC from MI.

InterTak Score A score of ≤31 A score of ≥50

Sensitivity 75%,
specificity 95%.

Rapidly determined in ER
using clinical parameters
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7. Discussion

Artificial intelligence (AI) and machine learning (ML) are revolutionizing the field
of healthcare and medicine by aiding medical professionals. A recent analysis revealed
a consistent rise in the quantity of FDA-approved AI/ML-enabled medical devices in
the United States, starting from the initial approval in 1995. An apparent increase in the
acceptance of these devices began in 2018. The FDA has approved 691 AI/ML-enabled
medical devices as of the latest update on 19 October 2023 [72]. According to the significant
findings from numerous studies in the past, we suggest the idea of integrating AI and ML
algorithms in the field of cardiology to distinguish patients with TTC and AMI and reduce
the burden on our healthcare ecosystem. In this article, we propose coalescing AI and ML
algorithms with already existing tools to help differentiate AMI and TTC in emergency
settings. Consequently, this will aid in improving patient outcomes and time-effectiveness,
while simultaneously reducing the overall cost and unnecessary interventions.

A retrospective study by Sainath et al. used a lipid profile to differentiate TTC from
AMI [73]. In that study, ten TTC patients’ fasting serum lipoprotein levels were compared
with forty, age and sex-matched myocardial infarction (MI) patients. The main results
of this study were: (a) the TTC group had significantly higher HDL-C (p = 0.008), lower
LDL-C (p = 0.0002), and lower triglycerides (p < 0.0001) compared to age and sex-matched
MI patients and (b) hyperalphalipoproteinemia or mild hypotriglyceridemia was noted in
40% of the TTC patients.

Caroline et al. conducted another study using ECG changes and discovered distinct
differences in the evolution of the ECGs among their group of patients [74]. The subjects
were compared head-to-head for ECG changes in the early phase of post-acute TTC versus
AMI in age- and gender-matched subjects, which is especially relevant to the QTc interval,
which is gender-dependent. On the presenting (day 0) ECG, a lesser number of total
abnormal leads were observed (most likely due to the lack of reciprocal changes, as shown
by Kosuge et al.), as well as a comparable number of leads with ST elevation, less magnitude
of ST elevation, and fewer Q waves, in the takotsubo patients [51]. In addition, they reported
more ST elevation in the takotsubo patients; however, the two groups were not gender-
matched [51]. The lesser magnitude of ST elevation and the more frequent absence of Q
waves in TTC suggest myocardial necrosis, which was confirmed by the CMR findings of
the absence of late gadolinium enhancement [74]. When looking at how the ECG changed
over time, the first thing that stood out was that the T-wave inversion in TTC seemed to
get deeper and/or more widespread in the first 4 days after the acute event. Secondly,
there was an obvious pattern of opposite directional change in the daily increasing mean
QTc in TTC, contrasting with the gradual shortening towards normal values in the AMI
group. This is the first study comparing age and gender-matched populations, and since
the normal QTc is different in women (≤450 ms) compared to men (≤440 ms) in those
aged 40–69, this is an important finding [75]. Migliore et al. also described several patients
with deep T-wave inversion in a TTC-like pattern associated with significant myocardial
edema and reversible LV dysfunction of different causes [76,77]. Marra then demonstrated
a correlation between regional myocardial edema and T-wave inversion in patients with
takotsubo syndrome [78]. These characteristics can be used in the future to further add to
diagnostic certainty.

The first-line imaging modality for evaluating TTC is transthoracic echocardiogra-
phy (TTE) [79]. TTE provides useful information about multiple cardiac parameters and
is also helpful in identifying patients at higher risk of adverse outcomes [80,81]. The
“apical” and “mid-ventricular” ballooning types make up the vast majority of TTC. My-
ocardial dysfunction outside of the confines of a single coronary artery characterizes both
types [60,79,82–84]. This circumferential pattern of myocardial dysfunction represents a
hallmark for diagnosing TTC [79]. RV involvement, such as in “biventricular” ballooning,
reinforces the diagnostic suspicion of TTC and has been associated with adverse in-hospital
outcomes [34,85]. During the acute phase of TTC, echocardiography can assist in monitor-
ing the spontaneous recovery of systolic function, which is typical of TTC [86]. Dynamic
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left ventricular outflow tract obstruction (LVOTO) and transient moderate-to-severe mitral
regurgitation (MR) have shown prevalence of about 12.8% to 25% and about 20 to 25% of
TTC patients, respectively [85,87,88]. Since the presence of LVOTO and MR simultaneously
can have severe implications, early echocardiographic diagnosis becomes important for
appropriate therapeutic management. Using 3D echocardiography, small thrombi can
be detected in TTC patients [83,89]. Although left ventricular free wall rupture is a rare
finding (<1%) in TTC, it can lead to higher mortality. Early echocardiographic detection and
rapid surgery have become important for positive outcomes [90]. Thus, echocardiography,
in combination with machine learning tools, can surely and rapidly differentiate TTC
from AMI.

Marco et al. proposed using ECG and echocardiographic parameters, as well as
two new indexes, to distinguish TTC from AMI based on ventricular involvement and the
inferior-apex ratio (IAR) and the inferior-lateral-apex ratio (ILAR) [91]. The results showed
that IAR and ILAR can easily measure impaired contractility that goes beyond the apex and
affects the mid-inferior and inferior-lateral walls. This makes it easy to tell the difference
between TTC and extensive anterior STEMI without doing anything invasive [91].

In another retrospective study, Riccardo et al. compared five different non-contrast
cardiac magnetic resonance (CMR) models based on machine learning to traditional CMR
models based on gadolinium in three groups [92]. The results proved that the tree-based en-
semble machine learning algorithm showed a sensitivity of 92% (95% CI 78–100), specificity
of 86% (95% CI 80–92), and area under the ROC of 0.94 (95% CI 0.90–0.99) in diagnosing
TTC. Hence, supporting the use of machine learning to diagnose TTC with good accuracy.

Along with these diagnostic tests, integrating AI with the InterTAK Diagnostic Score
can also smoothly predict TTC in the emergency department [12]. The InterTAK Diagnostic
Score can be quickly calculated using seven clinical parameters during the admission pro-
cess in the emergency department. Results by Jbyudyta Samul-Jastrzębska et al. confirmed
the good accuracy of the score. When using a cut-off value of 45 points, sensitivity was 75%
and specificity was 95% for TTC [4]. When patients with a score of ≥50 were diagnosed
with TTC, 85% were correctly diagnosed. When patients with a score of 31 were diagnosed
with ACS, 92% of them were correctly identified. Noticeably, the InterTAK Diagnostic Score
should be considered in symptomatic patients with no ST-segment elevation [50,93].

The gold standard test for atherosclerotic coronary artery disease (CAD) is coronary
angiography. Being an invasive procedure, Tavakol et al. mentioned the specific patient-
dependent and procedure-related complications that are inherent to the test [94]. The
severity of complications may vary greatly, from small issues with immediate consequences
to life-threatening circumstances that may result in irreparable harm. The patient might
have heparin-induced thrombocytopenia or an allergic response to the contrast material. It
is costly and has hazards, such as problems at the vascular access site and nephropathy
brought on by the contrast agent [95]. A hematoma, retroperitoneal hemorrhage, pseudoa-
neurysm, dissection, or arteriovenous fistula may all result from local vascular damage.
Infections and sepsis result from improper sterilization. Rarely, thrombosis, cholesterol
emboli, and mortality have also been reported, along with conduction abnormalities. The
patient’s chance of developing cancer rises due to extended radiation exposure. So, it makes
sense to choose non-invasive procedures over invasive ones.

8. Limitations Using AI to Distinguish TTC from AMI

Although AI and machine learning models come with unparalleled positive perspec-
tives, they also have their own limitations and challenges. Both TTC and AMI require
prompt and appropriate management. Any delay can lead to adverse outcomes in either
condition. Hence, overcoming technical and logistical challenges can be complex.

Firstly, devising the algorithm for an AI diagnostic model often requires an extensive
amount of data, good informatics skills, and an appropriate definition of the reference
standard [96]. TTC is a relatively rare disease, and most of the studies regarding the clinical
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applications of AI have been retrospective. AI algorithms must still be validated in large,
multicenter studies [97].

Secondly, AI is constantly developing and evolving. Thus, models continually change
over time, requiring frequent updating and regular training. Also, some diagnostic method-
ologies, such as the echocardiogram, are technician-dependent, impacting the clinical
application of AI as a result of vendor-dependent setup differences. The frequent inability
to obtain optimal image quality or precise views can also have an impact on AI clinical
applications as a result of vendor-dependent setup differences [98].

Another significant problem in devising the algorithm is overfitting. It occurs when
the algorithm is excessively tailored to the training sample rather than finding relevant
features and relations. Hence, it makes almost perfect predictions on it, but at the price
of generalization, therefore decreasing its performance on other populations. This issue
can be solved by the inclusion of more data or subtle modifications to the training set [99].
Additionally, large amounts of low-quality data are often used, limiting the potential of
classifiers, as they may find patterns that are not useful in real-life clinical practice [100]. In
these scenarios, preprocessing by another operator may, conversely, increase the burden on
healthcare professionals.

9. Ethical Challenges in Using AI to Distinguish TTC from AMI

AI also brings some ethical and legal challenges with it. The primary ethical challenges
that are faced to realize the full potential of AI in healthcare are discussed as follows.

9.1. Informed Consent to Use

Patients may not feel comfortable providing their data for studies of AI applications,
limiting future prospective trials and studies. The need to investigate conditions under
which the principles of informed consent should be used in the field of clinical AI. To
what degree are clinicians obligated to educate patients about the intricacies of AI and
the specific ML techniques employed by the system, the types of data inputs utilized,
and the potential presence of biases or other limitations in the data being utilized? When
are clinicians required to inform patients about the utilization of AI? Answering these
concerns becomes more problematic when the AI utilizes “black-box” methods, which
might arise from non-interpretable machine-learning methodologies that clinicians find
extremely tricky to comprehend entirely [92,101].

9.2. Safety and Transparency

The used datasets need to be reliable and valid. The better the training dataset is, the
better the performance of AI will be [102]. In addition, the algorithms often need further
refinement to generate accurate results. For this, vast amounts of data and, thus, more data
sharing will be necessary [102]. In general, it always depends on the particular AI and its
tasks as to how much data will be required.

For patient safety as well as patient confidence, some amount of transparency must be
ensured. Although it would be great for all data and algorithms to be openly accessible to
the public, there are valid concerns, like safeguarding against data breaches and minimizing
cybersecurity risks. Using third-party or governmental audits may serve as a viable solution
for this issue [103].

9.3. Algorithmic Fairness and Biases

Any ML system or human-trained algorithm will only be as trustworthy, effective,
and fair as the data that it is trained with. AI also bears a risk for biases and, hence,
discrimination. Additionally, these studies often have small sample sizes since TTC is
a very rare diagnosis and needs a larger number of subjects to validate the results [26].
Therefore, it is vital that AI makers are aware of this risk and minimize potential biases at
every stage in the process of product development [103].
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10. Future Perspective Harnessing AI for Transformative Healthcare in Cardiology

In the rapidly evolving landscape of healthcare, the integration of artificial intelligence
(AI) holds immense potential for revolutionizing cardiology. To fully unlock the benefits
of AI, a multi-faceted approach encompassing education, regulation, and technological
infrastructure is essential.

10.1. Educational Awareness as a Catalyst for Transformation

For AI to seamlessly integrate into cardiology, a comprehensive educational framework
is imperative. This involves not only training scientists and physicians, but also educating
the broader public about AI and its applications. Universities are beginning to adapt by
incorporating medical engineering, computational sciences, coding, and algorithmics into
their curricula. Short courses and postgraduate degrees focused on AI in healthcare further
empower professionals to navigate the intricacies of this innovative technology. Well-
educated physicians play a pivotal role, not only in fostering the adoption of innovative
applications, but also in raising awareness about ethical and privacy considerations.

10.2. Regulatory Frameworks for Trust and Safety

The nascent nature of AI in healthcare necessitates robust regulatory frameworks to
ensure safety, efficacy, and ethical use. Regulatory bodies, such as the FDA and the Euro-
pean Union, have taken steps to establish guidelines for AI-based medical devices [104,105].
Continuous updates and upgrades of AI products should be subject to periodic evaluations
to prevent drift over time, ensuring ongoing reliability and adherence to clinical standards.

10.3. AI in Cardiology: Transforming Patient Care

Cardiologists are poised to witness a paradigm shift in their daily practice as AI be-
comes an integral part of cardiovascular care. From effective phenotyping of patients to
the design of predictive models for various diseases, AI offers the potential to enhance
non-invasive diagnostics and reduce the reliance on costly and invasive tests for condi-
tions like coronary artery disease (CAD). Future cardiologists armed with AI insights
will be able to provide personalized risk assessments, enabling early intervention and
preventive measures.

10.4. Digital Transformation and AI Integration

AI’s role extends beyond the realm of healthcare into the broader digital transforma-
tion sweeping across the world. The wealth of digital data, particularly from Electronic
Health Records (EHR), combined with advancements in computer technology and the
internet, creates an environment ripe for AI growth [106]. Integrating AI in cardiac care
spans diverse areas, including cardiac imaging, risk prediction, daily decision-making pro-
cesses, such as diagnosis and treatment, and the development of algorithms aligned with
clinical guidelines. One such example of harnessing AI is using a commercially available
smartwatch sensor to monitor atrial fibrillation in the population, and the findings were
comparable to the traditional insertable cardiac monitor arm in the study [107].

10.5. Future Research

For a promising future, building effective AI solutions requires extensive research and
trials. Access to extensive, high-quality datasets, infrastructure, and related technologies
is crucial. The importance of collaborative efforts to gather, curate, and share datasets to
drive innovation in cardiac care cannot be emphasized enough.

Embracing these future perspectives ensures that AI becomes a transformative force in car-
diology, enhancing patient care, streamlining diagnostics, and empowering healthcare profes-
sionals to make informed, accurate decisions in an increasingly digital healthcare landscape.
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11. Patient-Centered Perspectives

Artificial Intelligence (AI) is rapidly transforming the field of cardiology, introduc-
ing innovative approaches to diagnose, predict, and treat cardiovascular diseases. This
paradigm shift is not only driven by technological advancements, but also holds immense
promise for enhancing patient-centered care. The synergy between these perspectives
emphasizes the transformative potential of AI in shaping the future of personalized and
effective cardiovascular medicine.

11.1. Patient Experience

• Using AI promises greater diagnostic precision and efficacy by analyzing extensive pa-
tient and clinical data, reducing misdiagnosis due to human errors and clinician fatigue.

• Faster diagnostics with the assistance of AI algorithms provide consistent and stan-
dardized interpretations of the data. This will speed up the management process and
improve efficiency by rapidly expediting the diagnostic process and analyzing data
faster than manual methods [108]. Additionally, reducing wait times and alleviating
patient anxiety.

11.2. Patient–Physician Interaction

• AI aids communication, facilitating informed discussions between patients and physicians.
• Time-efficient AI tools allow physicians to focus on meaningful interactions, contribut-

ing to better decision-making.
• AI algorithms reduce clinician burden and decrease fatigue by expediting the diagnostic

process.

11.3. Patient Outcomes

• Early detection, personalized care pathways, and remote monitoring enhance patient
well-being.

• Continuous monitoring and follow-up optimize long-term health.

Artificial intelligence has the power to revolutionize the field of cardiology, offering
new and innovative ways to diagnose, predict, and treat cardiovascular diseases. By
leveraging AI technologies, we can improve the accuracy and efficiency of diagnosis,
develop personalized treatment plans, and, ultimately, improve patient outcomes. By
harnessing the power of AI to analyze complex datasets and identify patterns and trends,
we have the potential to achieve more precise and effective cardiovascular care. Ultimately,
the use of AI in cardiology offers a unique opportunity to transform the way we approach
patient care and promote equitable healthcare outcomes, paving the way for a future of
more personalized and effective cardiovascular medicine.

The development of novel technologies is needed to benefit patients by improving
diagnostic accuracy and providing personalized therapy that is focused on extending the
quantity and quality of life.

12. Conclusions

The amalgamation of machine learning methods with already existing modalities has
shown success in differentiating AMI from takotsubo cardiomyopathy. Importantly, while
AI shows promise, more extensive studies are required in the future for thorough validation
and implementation. A collective effort of AI experts, doctors, and regulatory bodies is
indispensable for the secure and reliable use of machine learning technology for diagnosis
and patient care. AI cannot entirely replace a physician but can serve as an assistant to
the physician.
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