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Abstract: Background: An application of artificial intelligence is machine learning, which allows
computer programs to learn and create data. Methods: In this work, we aimed to evaluate the
performance of the MySLR machine learning platform, which implements the Latent Dirichlet
Allocation (LDA) algorithm in the identification and screening of papers present in the literature
that focus on mutations of the apolipoprotein E (ApoE) gene in Italian Alzheimer’s Disease patients.
Results: MySLR excludes duplicates and creates topics. MySLR was applied to analyze a set of
164 scientific publications. After duplicate removal, the results allowed us to identify 92 papers
divided into two relevant topics characterizing the investigated research area. Topic 1 contains
70 papers, and topic 2 contains the remaining 22. Despite the current limitations, the available
evidence suggests that articles containing studies on Italian Alzheimer’s Disease (AD) patients were
65.22% (n = 60). Furthermore, the presence of papers about mutations, including single nucleotide
polymorphisms (SNPs) ApoE gene, the primary genetic risk factor of AD, for the Italian population
was 5.4% (n = 5). Conclusion: The results show that the machine learning platform helped to identify
case-control studies on ApoE gene mutations, including SNPs, but not only conducted in Italy.

Keywords: machine learning; ApoE polymorphism; neurodegenerative disorders; Alzheimer’s;
ApoE; SNP; single nucleotide polymorphism; Italian; dementia; Italy

1. Introduction

Alzheimer’s disease (AD) is the most common cause of dementia, accounting for
approximately 60–80% of all dementia cases [1]. Numerous susceptibility genes and
coding variants associated with the risk of developing AD have been identified so far [2,3].
The apolipoprotein E (ApoE) gene is the primary risk factor [4]. ApoE gene has three
variant alleles (epsilon 2, epsilon 3, and epsilon 4), with differences in amino acid residues
112 and 158, which generate six genotypes (ε2/ε2, ε2/ε3, ε2/ε4, ε3/ε3, ε3/ε4, and ε4/ε4)
and lead to three isoforms, E2, E3, E4 [4]. It is worth noting that ApoE is a 299-amino-acid
glycoprotein with a molecular mass of ~34 kDa. Individuals possessing at least one copy
of the ε4 allele in their genetic makeup are more susceptible to AD than those with ε3 [5].
Conversely, ε2 is suggested to have a protective effect [6]. Mutations, including Single
Nucleotide Polymorphisms (SNPs) in the ApoE gene, were associated with the prevalence
of AD [7–9]. SNPs on ApoE were linked to ethnicity [10]. Artificial intelligence (AI)
represents a contemporary technological discipline dedicated to exploring and formulating
hypotheses, strategies, technologies, and application systems aimed at emulating and
expanding upon the facets of human intelligence [11]. Arthur Samuel coined the term
“Machine Learning” in 1959 to refer to a set of algorithms and the development of classifiers.
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The algorithm automatically learns from input data and constructs a model to anticipate
new data [12] accurately. Today, with advances in artificial intelligence, machine learning
is concerned with the development and application of computer algorithms that improve
with experience [13]; traditionally, the management of extensive collections of paper has
been organized and treated by topic using spreadsheets [14], dictionaries or supervised
methods [15]; these types of approaches are very laborious and expensive and require good
knowledge of the research field in which one wishes to operate. Thanks to the refinement
of machine learning techniques, many of the steps in the literature review process have
been simplified and automated, reducing workload for researchers and the time needed
to evaluate the literature [16]. The digitization of healthcare data and the exponential
spread of technology and new machine learning technologies are driving progress in the
development and use of artificial intelligence in the healthcare sector [17,18]. AI is used to
improve the precision medicine approach to treating neurodegeneration [19]. This work
aimed to evaluate whether the MySLR platform based on machine learning can help extract
scientific works focusing on SNPs on the ApoE gene in the Italian AD population.

2. Materials and Methods

A machine learning methodology was used to conduct a thorough analysis of a sub-
stantial volume of the scientific literature, extracting knowledge essential for the objectives
of this research. While traditional algorithms are typically delineated for numerical and
structured data, the content found in the scientific literature comprises unstructured doc-
uments, such as papers. To handle this unstructured textual data, the Latent Dirichlet
Allocation (LDA) algorithm was selected to extend machine learning applications, particu-
larly in extracting information from scientific journal articles [20]. The MySLR platform,
using the LDA algorithm, emulates the behavior of “human-like intelligence” as accurately
as possible. It can efficiently process substantial volumes of data, interpret texts, compre-
hend their content, extract necessary information, and reveal disguised connections among
papers. This methodology involves establishing a model that individually identifies a set
of “topics” (or themes) within texts, discerns the specific topic addressed by each, and
subsequently recognizes the presence of these identified topics within various papers [21].
The platform is accessible at https://myslr.unical.it following registration (accessed on 10
November 2023).

2.1. Paper Location and Selection

We conducted specific research on three databases (Scopus, Web of Science, and
Pubmed) to provide a comprehensive overview of scientific research concerning the pres-
ence of SNPs on the ApoE gene in the Italian population. The methodological approach
involves three key steps: paper location and selection, paper analysis, and results pre-
sentation, aligning with the framework proposed by Denyer and Tranfield [22]. Three
investigators (G.F.A.S, D.M.A.G., and E.C.) independently searched the PubMed, Scopus,
and Web of Science databases to identify publications in peer-reviewed journals pub-
lished before 10 November 2023. The search was conducted using the Boolean operators
“AND” and “OR” to combine the following terms:(“snps” OR “single nucleotide polymor-
phism” OR “Single-nucleotide polymorphism”) AND (“ApoE” OR “apoliprotein E” AND
(“Alzheimer disease” OR “alzheimer’s disease” OR “AD” OR “LOAD”) AND (italian OR
italy)”. By identifying primary topics within a collection of documents, topic modeling
can generate succinct summaries that encapsulate the core content. The search conducted
through Boolean operators allowed us to identify one hundred and sixty-four papers
(n = 41 from Scopus, n = 61 from Web of Science, n = 62 from Pubmed), Figure 1. After
duplicate removal assisted by the MySLR platform, ninety-two papers resulted from the
three databases.

https://myslr.unical.it
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Scopus in fuchsia, Web of Science in blue, and Pubmed in green, before eliminating duplicates.

2.2. Paper Analysis

We applied a text-mining approach to the ultimate set of ninety-two papers to spotlight
the primary research themes related to SNPs in the ApoE gene only in the Italian population.
This approach relies on LDA, a statistical method that divides topics into each document.
The model treats documents as probability distributions of topics and topics as distributions
of words. In Natural Language Processing, a topic model is a statistical framework designed
to identify abstract “topics” or themes within a collection of documents. These topics are not
predetermined but are autonomously identified by the algorithm based on the frequency
and occurrence of words in the texts. Leveraging such statistical principles, the employed
algorithm identified two primary overarching topics (referred to as topics) linked to the
keywords generated by the LDA procedure in the texts. It accurately assigned each text its
corresponding semantic topic. The output of this procedure includes:

• k sets of relevant keywords (each set representing a topic).
• The document-term matrix depicts the statistical relationship between each paper and

a specific topic (namely, the topic proportion).

This step aims to clearly articulate and explore the findings of the LDA procedure
through an in-depth, human-based examination of significant papers clustered around the
two identified topics. To assess the capability of the MySLR machine learning tool, we
opted to retain all the papers retrieved using the specified search string. Following the
recommendations of Blei [20], we set the value of k (number of topics to be extracted) to
two. This choice resulted in a satisfactory topic coherence value (−1.15) [23], aligning with
the ease of interpreting results for human readers. Topic coherence assesses the level of
semantic similarity among highly scored words within a topic. This coefficient is a metric
to gauge the quality of topic modeling, differentiating between semantically coherent
arguments and mere statistical inference artifacts [24].

2.3. Results Presentation

The final stage of our methodological approach is explained in the “Results and
Discussion” section. The objective at this stage is to provide a clear description and discuss
the outcomes derived from the LDA procedure through a comprehensive human-based
review of noteworthy papers clustered around the two identified topics by MySLR. The
three steps of the machine learning process are illustrated in Figure 2.
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Figure 2. Workflow of the machine learning approach via MySLR.

After these steps, with a dropdown menu, the MySLR allow us to identify studies
classified as article, journal article, conference paper, proceeding paper, reviews. In our case,
we did not find editorial articles, meta-analyses, letters to the editors, short communications,
erratum, book chapters, notes, opinions, and personal comments, or retracted publications.
Since our aim was to assess platform functionality, we did not exclude reviews from our
tests. The flowchart, reported in Figure 3, depicts the selection algorithm.
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3. Results

The initial literature search retrieved data from the MySLR platform, which loaded an
overall published paper and ninety-two unique studies.

Utilizing the LDA procedure, we identified pertinent keywords linked to the two
topics. Figure 4 illustrates the most significant keywords for each topic, visually represented
through a “word cloud”.
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Figure 4. Word cloud highlighting the importance of the topic 1 and 2 keywords, adapted from the
MySLR platform.

Topic 1 counts 70 papers and Topic 2 counts 22, as shown in Figure 5. From the analysis
of the keywords, it was possible to identify the central theme of the two topics based on
their relative weight. The weight of each keyword is calculated based on how often that
keyword is repeated within the topic, also considering word associations. The MySLR
platform can graph the final weight of the two topics (Figure 5), considering the weight
of each keyword, the frequency with which the keyword is repeated, and the associations
between keywords. Documents for topic one weigh 70,393, and documents for topic two
weigh 21,607.
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The platform can produce a graph showing the number of articles published per year,
as shown in Figure 6. Interest in the topic grew significantly from 2002 onwards, especially
in 2008 and 2010.
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Machine Learning also provides a way to show the trend of the topics over time. It
also allows us to show the trend of topics over time. As shown in Figure 7, the interest in
the two topics has a different trend over time: topic 1 generated much more interest in the
scientific community, especially in the 2008–2010 period, where it reached the maximum
interest. Even in 2016, interest was high, despite not exceeding the 2008–2010 threshold.
For topic 2, the highest interest was reached in 2006 and 2012.
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3.1. Topic 1: Gene Polymorphisms Risk Factor for Alzheimer’s Disease

Examining the top 30 most relevant terms and their frequency within papers grouped
around the chosen topic, “load” (late-onset late-onset alzheimer’s disease) reached the
highest value (Figure 8). Analyzing the seventy papers clustered around this topic, it
became apparent that the focal point of the topic was the influence of gene polymorphism
on the progression and manifestation of AD, but not what we were searching for.
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To gain insight into the papers generated by the machine learning algorithm under our
query, we constructed a table delineating the main characteristics of each study, Table 1. Of
the seventy papers in topic 1, 11.4% (n = 8) were not carried out in Italy, and we indicated
it as “Not in Italy”. The 1.4% (n = 1) were not carried only in Italy (in this case, we only
considered the Italian population for studies that involved clustering the sample based on
the state of origin. We left the wording “Not only in Italy” only for studies that did not
include this clustering, while the studies that had the Italian population clustered were
indicated as “Italy”); 2.85% (n = 2) were reviews or systematic reviews. Although there is a
function to choose not to include it in the paper selection, we left it as such at this stage.
The 8.57% (n = 6) were not considered as they were not conducted in Alzheimer’s patients
and therefore did not answer the search query. It is worth to mention here that AD is the
most frequent type of dementia associated with genetic mutations [25,26].

Table 1. Overview of the characteristics of the papers included by machine learning in topic one.

Name, Year Ref Gene Mutations Localization Other

Albani et al.,
2012

[27] --------------------------- ----------------------------------------- ---------------- Not in
Alzheimer

Andreoli et al.,
2014

[28] GRINB2 rs7301328 (GRINB2), rs1805482
(GRINB2), rs3026160 (GRINB2),
rs1806201 (GRINB2), rs1806191

(GRINB2)

Italy Alzheimer
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Table 1. Cont.

Name, Year Ref Gene Mutations Localization Other

Bagnoli et al.,
2007

[29] IL-10 rs1800896 (IL-10), rs1800871 (IL-10) Italy Alzheimer

Bagnoli et al.,
2013

[30] TOMM40 rs157580 (TOMM40), rs2075650
(TOMM40), rs15758 (TOMM40)

Italy Alzheimer

Bartoletti-
Stella et al.,

2022

[31] ELAVL1, EP300,
EPHA1, FERMT2,
INPP5D, MARK2,
MARK4, PICALM

PLCG2, PTK2B, RIN3,
TOMM40 ZCWPW1,

ADAM10, BIN1, CLU,
CR1

c.112A > G (ADAM10), c.556dupC
(ADAM10), c.696C > A (BIN1),

c.865G > A (BIN1), c.1462-3C > T
(BIN1), c.509C > T (CLU), c.4956G >
A (CR1), c.4356T > C (CR1), c.765C >

T (ELAVL1), c.2194C > T (EP300),
c.928A > G (EPHA1), c.1077G > C
(FERMT2), c.1538C > T (FERMT2),
c.470G > A (INPP5D), c.2085C > T
(INPP5D), c.1611C > T (MARK2),

c.1553C > T (MARK4), c.1231G > C
(PICALM), c.3379C > A (PLGC2),
c.408G > A (PLCG2), c.2591C > T

(PTK2B), c.2377T > C (RIN3),c.384C >
G (TOMM40), c.1834C > T

(ZCWPW1), c.314A > G (ZCWPW1),
c.283-5T > G (ZCWPW1)

Italy Alzheimer

Belloy et al.,
2022

[32] ApoE rs439401 (ApoE) Not in Italy Alzheimer

Bizzarro et al.,
2009

[33] ApoE rs449647 (ApoE), rs405509 (ApoE),
rs769446 (ApoE), rs429358 (ApoE)

rs7412 (ApoE)

Italy Alzheimer

Bosco et al.,
2013

[34] ----------------------------- ------------------------------------------ ---------- Review

Broer et al.,
2015

[35] ----------------------------- ------------------------------------------ ---------------- Not
Alzheimer

Bucossi et al.,
2012

[36] ATP7B rs1061472 (ATP7B), rs732774 (ATP7B) Italy Alzheimer

Capurso et al.,
2010

[37] IL-6 –174 G/C (IL-6) Italy Alzheimer

Capurso et al.,
2010

[38] GSTO1, APOE rs7412 (ApoE), rs429358 (ApoE),
rs4925 (GSTO1), rs1804834 (GSTO1)

Italy Alzheimer

Cellini et al.,
2009

[39] SORL1 rs661057 (SORL1), rs11218304
(SORL1), rs560573 (SORL1),

rs12364988 (SORL1), rs668387
(SORL1), rs689021 (SORL1), rs641120

(SORL1), rs556349 (SORL1),
rs2070045 (SORL1), rs1699102
(SORL1), rs3824968 (SORL1),
rs2282649 (SORL1), rs1010159

(SORL1)

Italy Alzheimer

Ciminelli et al.,
2020

[40] AKR7A2,
ALDH5A1, ABAT

rs4646832 (ALDH5A1), rs4646828
(ALDH5A1), rs2760118 (ALDH5A1),

rs3765310 (ALDH5A1), rs1043657
(AKR7A2), rs1731017 (ABAT)

Italy Alzheimer

Clarelli et al.,
2016

[41] CHRNA7 rs6494223 (CHRNA7),
rs8024987 (CHRNA7)

Italy Alzheimer

Colacicco
et al.,2009

[42] A2M, ORL1 rs669 (A2M), +1073 (ORL1) +1071
(ORL1)

Italy Alzheimer
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Table 1. Cont.

Name, Year Ref Gene Mutations Localization Other

Corbo
et al.,2009

[43] CYP19 rs12907866 (CYP19), rs17601241
(CYP19), rs4646 (CYP19)

Italy Alzheimer

Cruz-Sanabria
et al., 2021

[44] ----------------------------- ------------------------------------------ -------------- Not
Alzheimer

DeMichele-
Sweet et al.,

2021

[45] ENPP6, SUMF1 rs9994623 (ENPP6), rs201109606
(SUMF1)

Not in Italy Alzheimer

Di Maria et al.,
2012

[46] NGF rs6330 (NGF), rs11466110 (NGF),
rs11466111 (NGF), rs6325 (NGF),

rs35941329 (NGF)

Italy Alzheimer

Emanuele et al.,
2011

[47] CDKN2B-AS1 rs1333049 (CDKN2B-AS1) Italy Alzheimer

Finckh et al.,
2003

[48] PLAU −141 C/T (PLAU) Italy Alzheimer

Fortney et al.,
2015

[49] ----------------------------- ----------------------------------------- ------------ Not
alzheimer

Galimberti
et al., 2008

[50] NOS 1 Ex1f-VNTR (NOS1) Italy Alzheimer

Guerini et al.,
2016

[51] SNAP-25 rs363050 (SNAP-25), rs363039
(SNAP-25), rs363043 (SNAP-25)

Italy Alzheimer

Hollingworth
et al., 2011

[52] CUX2, CDK1, CNTN5,
C16orf88, IQCK,
MS4A6A, CR1,
MS4A6A, BIN1,

ABCA7

rs3764650 (ABCA7), rs744373 (BIN1),
rs670139 (MS4A4E), rs3818361 (CR1),

rs610932 (MS4A6A), rs7191155
(IQCK), rs4782279 (IQCK), rs1858973

(IQCK), rs739565 (C16orf88),
rs10501927 (CNTN5), Rs10761558

(CDK1), rs3809278 (CUX2)

Italy Alzheimer

Jun et al., 2016 [53] ARL17B rs2732703 (ARL17B) NR Alzheimer

Lambert et al.,
2009

[54] CLU, CR1 rs11136000 (CLU), rs2279590 (CLU),
rs9331888 (CLU), rs6656401 (CR1),

rs3818361 (CR1)

Italy Alzheimer

Lambert et al.,
2013

[55] BIN1, HLA-
DRB5/HLA-DRB1,
ZCWPW1, PTK2B,
CELF1, MS4A6A

rs6733839 (BIN1), rs9271192
(HLA-DRB5/HLA-DRB1), rs1476679

(ZCWPW1), rs28834970 (PTK2B),
rs9331896 (CLU), rs10838725 (CELF1),

rs983392 (MS4A6A)

Italy Alzheimer

Lanni et al.,
2012

[56] COMT rs4680 (COMT) Italy Alzheimer

Laws et al.,
2005

[57] TNF rs1799724 (TNF), rs1800629 (TNF) Not in Italy Alzheimer

Lescai et al.,
2010

[58] PCDH11X rs5984894 (PCDH11X) Italy Alzheimer

Lescai et al.,
2011

[59] ApoE rs449647 (ApoE), rs769446 (ApoE),
rs405509 (ApoE), rs429358 (ApoE),

rs7412 (ApoE)

Italy Alzheimer

Licastro et al.,
2011

[60] IL10, TNF, IL6, IFNG
[SERPINA3, HMGCR

–1082G/A(IL10), –308 G/A(TNF),
−174 G/C (IL6), +874 T/A (IFNG),

–51 G/T (SERPINA 3), –911
C/A(HMGCR)

Italy Alzheimer

Licastro et al.,
2015

[61] IL-28 b, Med23 rs12979860 (IL-28 B),
rs3756784 (MED 23)

Italy Alzheimer
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Name, Year Ref Gene Mutations Localization Other

Lio et al., 2003 [62] IL-10 −1082 G/A (IL-10), −819 C/T
(IL-10), −592 C/A (IL-10)

Italy Alzheimer

Lio et al., 2006 [63] TNF-α −308 G/A (TNF-α) Italy Alzheimer

Lu et al., 2017 [64] HLA-DRB1 rs9271192 (HLA-DRB1) Not in Italy Alzheimer

Lupton et al.,
2016

[65] TREM2 rs9394721 (TREM2) Not in Italy Alzheimer

Maletta et al.,
2018

[66] MTHFR, ACE, AGT,
CYP7A1, PAI-1, FII
G20210A, FV HR2

H1299R, FV Leiden,
GPIIIa, CETP

rs1801133 (MTHFR), rs1801131
(MTHFR), rs1799752 (ACE), rs699
(AGT), 844ins68 (CBS),rs3808607

(CYP7A1), rs1799889 (PAI-1),
rs1799963 (FII G20210A), rs1800595

(FV HR2 H1299R), rs6025 (FV
Leiden), rs5918 (GPIIIa), rs5882

(CETP)

Italy Alzheimer

Mariani et al.,
2013

[67] HFE, TF, C282Y rs1800562 (C282Y), rs1799945 (HFE),
rs1049296 (TF)

Italy Alzheimer

Masri et al.,
2020

[68] PICALM rs3851179G > A (PICALM) Not in Italy Alzheimer

Minoretti et al.,
2006

[69] TLR4 Asp299Gly (TLR4) Italy Alzheimer

Montesanto
et al., 2016

[70] UCP2, UCP3, UCP4,
UCP5

rs2306820 (UCP3), rs655717 (UCP2),
rs660339 (UCP2), rs659366 (UCP2),
rs635441 (UCP2), rs1685354 (UCP3),

rs2734827 (UCP3), rs1800849 (UCP3),
rs10498769 (UCP4), rs12192544

(UCP4), rs3757241 (UCP4), rs9472817
(UCP4), rs17314910 (UCP5),

rs6637742 (UCP5), rs3007756 (UCP5),
rs5930414 (UCP5)

Italy Alzheimer

Nacmias et al.,
2009

[71] GAB2 rs2373115 (GAB2) Italy Alzheimer

Napolioni
et al., 2011

[72] ----------------------------- ----------------------------------------- ---------------- Not
Alzheimer

Olgiati et al.,
2013

[73] SORL1 rs668387 (SORL1), rs68902 (SORL1),
rs641120 (SORL1)

NR Alzheimer

Orlacchio et al.,
2002

[74] NCSTN 237 G/A (NCSTN) 747 C/T (NCSTN) Italy Alzheimer

Pilotto et al.,
2009

[75] CYP2D6 rs1080985 (CYP2D6) Italy Alzheimer

Pola et al., 2004 [76] MCP-1 −2518 A/G (MCP-1) Italy Alzheimer

Poleggi et al.,
2008

[77] PRNP Met129- Val (PRNP) Italy Alzheimer

Poli et al., 2008 [78] APH-1b C + 651T > G (APH-1b) Italy Alzheimer

Porrello et al.,
2006

[79] Er-α PvuII (−397 T/C), XbaI (−351 A/G)
(Er-α)

Italy Alzheimer

Scacchi et al.,
2009

[80] P53, P73 rs1042522 (P53), rs2273953 (P73),
rs1801173 (P73), rs3765728 (P73),

rs1801174 (P73)

Italy Alzheimer

Scasellati et al.,
2004

[81] IL-10 −1082 G/A (IL-10), −819 T/C
(IL-10), −592 C/A (IL-10)

Italy Alzheimer
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Name, Year Ref Gene Mutations Localization Other

Schmidt et al.,
2011

[82] ----------------------------- ----------------------------------------- ---------------- Not in
Alzheimer

Schott et al.,
2016

[83] CR1, BIN1, INPP5D,
SCARB2, SNCA,
MEF2C, CD2AP,
EPHA1, NME8,

ZCWPW, CLU, PTK2B,
CELF1, MS4A4E,
PICALM, SORL1,
FERMT2, SLC4A4,

RIN3, ABCA7, APOE,
CD33, EXOC3L2,

BLOC1S3, MARK4,
CASS4

rs3818361 (CR1), rs744373 (BIN1),
rs35349669 (INPP5D), rs6825004

(SCARB2), rs7687945 (SNCA),
rs190982 (MEF2C), rs10948363
(CD2AP), rs11767557 (EPHA1),
rs2718058 (NME8), rs1476679
(ZCWPW), rs11136000 (CLU),

rs28834970 (PTK2B), rs10838725
(CELF1), rs10838725 (MS4A4E),
rs10838725 (PICALM), rs670139
(SORL1), rs983392 (FERMT2),

rs3851179 (SLC4A4), rs11218343
(RIN3), rs17125944 (ABCA7),

rs10498633 (APOE), rs3764650
(CD33), rs2075650 (EXOCL3L2),
rs3865444 (BLOC1S3),rs597668
(MARK4), rs7274581 (CAS4)

Not only in Italy Alzheimer

Scola et al.,
2003

[84] IFN-γ +874T→A (IFN-γ) Italy Alzheimer

Seripa et al.,
2008

[85] GRIN2B rs1019385 (GRIN2B), rs1806201
(GRIN2B), rs890 (GRIN2B)

Italy Alzheimer

Seripa et al.,
2008

[86] RELN, LIMK2 rs607755 (RELN), rs2229864 (LIMK2) Italy Alzheimer

Seripa et al.,
2011

[87] ----------------------------- ------------------------------------------ ---------------- Review

Serpente et al.,
2011

[88] ORL1 rs1050283 (ORL1) Italy Alzheimer

Squillario et al.,
2020

[89] TOMM40, GRM7 rs2075650 (TOMM40), rs8106922
(TOMM40), rs9311976

(GRM7), rs266410 (GRM7)

NR Alzheimer

Talwar et al.,
2021

[90] ApoE, EGFR, ACTB rs405509 (ApoE), rs7259620 (ApoE),
rs769449 (ApoE), rs725617 (ApoE),

rs7256173 (ApoE), rs6970262 (EGFR),
rs852423 (ACTB)

Not in Italy Alzheimer

Tedde et al.,
2010

[91] NEDD9 rs760678 (NEDD9) Italy Alzheimer

Tindale et al.,
2017

[92] ----------------------------- ------------------------------------------ ---------------- Not
Alzheimer

Tisato et al.,
2018

[93] TF, HFE, FPN1, HAMP HFE C282Y, HFE H63D, FPN1 −8CG,
HAMP −582AG, TF P570S

Italy Alzheimer

Valenza et al.,
2010

[94] ApoE −491 A/T (ApoE) Italy Alzheimer

Venturelli et al.,
2005

[95] eNOS T-786C (eNOS) Italy Alzheimer

Wang et al.,
2016

[96] GAB2, PICALM,
SORL1

rs1010159 (SORL1), rs12285364
(SORL1), rs1699102 (SORL1),
rs2070045 (SORL1), rs2282649
(SORL1), rs3824968 (SORL1),

rs4935774 (SORL1), rs556349 (SORL1),
rs641120 (SORL1), rs661057 (SORL1),
rs668387 (SORL1), rs689021 (SORL1),

rs3851179 (PICALM), rs541458
(PICALM), rs2373115 (GAB2)

Not in Italy Alzheimer

NR: not reported.
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3.2. Topic 2: The Enigma of Alzheimer’s: Investigating Genetic Patterns, Genotypes as a
Future Biomarker

The top 30 most relevant terms of this topic (i.e., the most frequent terms within papers
grouped in this topic, Figure 9) indicate a research “biomarker”, focusing on evaluating
SNPs’ translation research. Indeed, the twenty-two analyzed articles aimed to elucidate the
relationship of SNPs expressed pathological clinical data and evaluate SNPs’ potential as
biomarkers in AD.
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Figure 9. Inter-topic Distance Map related to topic 2. Circle 1 indicates topic 1, circle 2 is topic 2,
extracted from the MySLR platform.

For the second topic, we built Table 2, which included the main characteristics of
interest to us, intending to evaluate MySLR ability to help us to select papers. Of the
twenty-two papers included in topic 2, 13.6% (n = 3) were not carried out in Italy, and
we indicated it as “Not in Italy”, 4.5% (n = 1) do not specify the origin of the patients
and controls, 13.6% (n = 3) are reviews or systematic reviews. The 27.2% (n = 6) were
not considered, as they were not conducted in Alzheimer’s patients and therefore did not
answer the search query. A total of 4.5% (n = 1) of the studies included in topic two concern
SNP on ApoE in the Italian population.

Table 2. Overview of the characteristics of the papers included by machine learning in topic two.

Name, Year Ref Gene Mutations Localization Other

Bernardi et al.,
2012

[97] ------------------------------ -------------------------------------- --------------------- Not
Alzheimer

Calabretta
et al., 2009

[98] ------------------------------ -------------------------------------- --------------------- Not
Alzheimer

Cheng et al.,
2012

[99] NGFR rs734194 (NGFR), rs2072445 (NGFR), rs2072446 (NGFR),
rs741072 (NGFR), rs741073 (NGFR)

Not in Italy Alzheimer

De Rojas et al.,
2021

[100] PRKD3/NDUFAF7,
SHARPIN, PLCG2,

CHRNE, APP

rs876461 (PRKD3/NDUFAF7), rs34674752 (SHARPIN),
rs34173062 (SHARPIN), rs3935877 (PLCG2),

rs72835061 (CHRNE),
rs2154481 (APP)

NR Alzheimer
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Table 2. Cont.

Name, Year Ref Gene Mutations Localization Other

Flex et al., 2006 [101] MMP-1, MMP-3, MMP-9 2G2G (MMP-1),
1G2G (MMP-1),
5A5A (MMP-3),

TT (MMP-9)

Italy Alzheimer

Grunbatt et al.,
2011

[102] CHAT rs10776585 (CHAT), rs2289305 (CHAT), rs3750752
(CHAT), rs12356649 (CHAT), rs11591558 (CHAT),
rs8178984 (CHAT), rs1153783 (CHAT), rs1880676
(CHAT), rs12359885 (CHAT), rs8178990 (CHAT),

rs10082479 (CHAT), rs17775758 (CHAT), rs7903612
(CHAT), rs7091005 (CHAT), rs2889759 (CHAT),

rs4838391 (CHAT), rs11101186 (CHAT), rs10857520
(CHAT)

Italy Alzheimer

Hansmannel
et al., 2010

[103] OTC rs5963409 (OTC),
rs5963411 (OTC)

Italy Alzheimer

Hong et al.,
2020

[104] ApoE, LINC01570,
TOMM40,

LOC124903153,
NECTIN 2,

LOC107985236,
LINC01030, LINC00624,

APOC1, ADAMTS3,
ADGRB3, FZD4-DT,

LOC107984589, SLC2A3,
NMNAT2

rs429358 (ApoE), rs10400961 (LINC01570), rs34095326
(TOMM40), rs1004954 (LOC124903153),

rs34794167 (LOC124903153),
rs6857 (NECTIN2), rs12857276 (LOC124903153),

rs7254133 (GRCh38?),
rs2209929 (LOC124903153),
rs3814341 (LOC107985236),

rs2023625 (LINC01030), rs35386129 (LOC124903153),
rs2321744 (LOC124903153), rs985017 (LOC124903153),

rs769449 (ApoE),
rs985018 (LOC124903153), rs36015381 (LOC124903153),

rs34528363 (LOC124903153), rs12972970 (NECTIN2),
rs12972156 (NECTIN2), rs68058618 (GRCh38?),

rs12429500 (LOC124903153),
rs6672481 (LINC00624),

rs2353964 (LINC00624), rs10900366 (LINC00624),
rs12721051 (APOC1), rs12408395 (LINC00624),

rs9592217 (LOC124903153),
rs9598510 (LOC124903153),

rs10900364 (LINC00624), rs11240038
(LINC00624),rs9598511 (LOC124903153), rs6657402
(LINC00624), rs2353972 (LINC00624), rs36055662

(ADAMTS3), rs117950083 (ADGRB3)
rs35709873 (LOC124903153), rs56131196 (APOC1),

rs4420638 (APOC1),
rs55696402 (LOC124903153),

rs11605035 (FZD4-DT),
rs11606999 (FZD4-DT), rs11607037

(FZD4-DT),rs10898566 (FZD4-DT), rs10898565
(FZD4-DT),rs12999830 (GRCh38), rs11240037 (GRCh38),

rs11240043 (LINC00624), rs2075650 (TOMM40),
rs34404554 (TOMM40), rs4600098 (LINC00624),
rs6684440 (LINC00624), rs4381253 (LINC00624),
rs6683579 (LINC00624), rs6657222 (LINC00624),
rs2883315 (LINC00624), rs4339909 (LINC00624),

rs6696385 (LINC00624), rs11581799 (LINC00624),
rs11556505 (TOMM40), rs4375326 (LINC00624),

rs11576468 (LINC00624), rs11589438 (LINC00624),
rs12742771 (LINC00624), rs11240050 (LINC00624),
rs78581038 (LOC107984589), rs12812878 (SLC2A3),

rs6695692 (LINC00624),
rs6688033 (LINC00624),
rs11234901 (FZD4-DT),

rs6688244 (LINC00624), rs6678706 (LINC00624),
rs11605694 (FZD4-DT),rs58619449 (FZD4-DT),
rs58370115 (FZD4-DT), rs7127641 (FZD4-DT),

rs61809265 (NMNAT2), rs35519936 (LOC124903153),
rs34342646 (NECTIN2),rs10414043 (APOC1), rs72639166

(FZD4-DT),rs7256200 (APOC1)

Not in Italy Alzheimer

Krumbiegel
et al., 2010

[105] ------------------------------ -------------------------------------- --------------------- Not
Alzheimer

Lambert et al.,
2011

[106] BIN1, EXO3CL2,
PICALM

rs744373 (BIN1), rs597668 (EXO3CL2), rs541458
(PICALM)

Italy Alzheimer
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Table 2. Cont.

Name, Year Ref Gene Mutations Localization Other

Lambert et al.,
2013

[107] FRMD4A rs7081208 (FRMD4A), rs2446581 (FRMD4A), rs17314229
(FRMD4A)

Italy Alzheimer

Mazzeo et al.,
2019

[108] ------------------------------ -------------------------------------- --------------------- Not
Alzheimer

Pamio et al.,
2020

[109] CYP2D6 rs1080985 (CYP2D6) Italy Alzheimer

Piccardi et al.,
2007

[110] CHAT, AChE rs2177369 (CHAT), rs12705094 (AChE), rs3087504
(AChE), rs3757869 (AChE)

Italy Alzheimer

Poli et al., 2005 [111] ApoE rs11542041 (ApoE), rs11542035 (ApoE), rs769455 (ApoE) Italy Not
Alzheimer

Polito et al.,
2013

[112] SIRT2, SIRT3 rs10410544 (SIRT2), rs4980329(SIRT3),
rs536715 (SIRT3),
rs2015 (SIRT2),

rs3825075 (SIRT3), rs11880757 (SIRT2), rs11879010
(SIRT2), rs11667030 (SIRT2)

Italy Alzheimer

Pozzi et al.,
2022

[113] ------------------------------ -------------------------------------- --------------------- SR

Rademakers
et al., 2007

[114] GRN, MAPT Arg493X (GRN), rs1052553 (MAPT), rs7412 (ApoE),
rs429358 (ApoE), rs4792937(GRN), rs2879096 (GRN),

c.–7–320G→C (GRN),
rs34424835 (GRN), rs9897528 (GRN), rs25646 (GRN),

c.835 + 7A→G (GRN), rs5848 (GRN), rs34424835 (GRN)

Not in Italy Alzheimer

Ramos De
Matos et al.,

2018

[115] APOE, LOC100129500,
PVRL2, SNAR-I,

TOMM40, INPP5,
CD2AP, GLIS3, PVRL2,

CASS4

rs35349669(INPP5), rs1316356 (SNAR-1),
rs9877502 (SNAR-1),
rs9349407 (CD2AP),

rs514716 (GLIS3),
rs12972156 (PVRL2), rs34342646 (PVRL2), rs71352238

(TOMM40),rs157580 (TOMM40),
rs2075650 (TOMM40),

rs34404554 (TOMM40),
rs11556505 (TOMM40),

rs769449 (APOE),
rs429358 (APOE),

rs439401 (LOC100129500),
rs7274581 (CASS4)

Italy * Alzheimer

Serretti et al.,
2007

[116] ------------------------------ -------------------------------------- --------------------- Review

Weiner et al.,
2015

[117] ------------------------------ -------------------------------------- --------------------- Review

Yu et al., 2012 [118] ------------------------------ -------------------------------------- --------------------- Not
Alzheimer

SR: Systematic Review. * European Studies involving Italy.

Therefore, MySLR, after duplicate removal, allowed us to identify 92 papers divided
into two relevant topics characterizing the investigated research area. Despite the current
limitations, the available evidence suggests that articles containing studies on AD patients
were the 65.22% (n = 60) but the presence of papers about mutations, including SNPs on
ApoE gene, for the Italian population was only 5.4% (n = 5)—four of them present in topic
1 and one in topic 2. Therefore, the machine learning used here pointed out five papers
work that met our criteria and that we listed in Table 3 specifically.

This approach, which features human-like intelligence, helped us to examine the
scientific literature as effectively and rapidly as possible. The machine learning approach
allowed us to obtain numerous graphical representations of the data to orient us in choosing
the scientific purpose we want. The t-distributed Stochastic Neighbor Embedding (t-SNE)
algorithm is shown in Figure 10.

The graph’s points symbolize documents (scientific sources), reflecting their similarity
concerning a specific topic, each topic is clustered and corresponds to a color (blue and red).
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Table 3. Main characteristics of the studies fit our query.

Name, Year Ref. Gene Mutations Localization

Bizzarro et al.,
2009 [33] ApoE

rs449647,
rs405509,
rs769446

Italy

Capurso et al.,
2010 [38] ApoE rs7412, rs429358 Italy

Lescai et al., 2011 [59] ApoE

rs449647,
rs769446,
rs405509,

rs429358, rs7412

Italy

Valenza et al.,
2010 [94] ApoE −491 AT vs

−491 AA Italy

Ramos de matos
et al., 2018 [115] ApoE rs769449,

rs429358 Italy *

* European Studies involving Italy.
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4. Discussion

Alzheimer’s disease (AD) is a form of dementia and is considered the most frequent
type [25]. Genome-wide association studies (GWAS) identified genetic AD mutations [26].

The main objective of this assessment was to evaluate the usefulness of using MySLR
machine learning in identifying papers that evaluated the presence of mutations on the
ApoE gene in Italian Alzheimer’s patients. We did not consider the assessment of mutation
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on ApoE systematic reviews and reviews; the latter are indicated in Table 1 as “review”
or “systematic review.” Several studies were not considered, as they were not conducted
in Alzheimer’s patients and therefore did not answer the search query; 10% (n = 7) of the
studies included in topic 1 concern SNPs on ApoE in the Italian Alzheimer’s population. A
total of 4.28% (n = 3) did not report the provenience of cases and controls. Many studies, as
seen in Table 1, do not specify the SNPs through their nomenclature but indicate the position
of the mutation and the consequent amino acid substitution. This phenomenon is probably
attributable to the percentage of single nucleotide variation instead of polymorphism,
which usually is present in less than 1% of the population harboring variation. The
studies that perfectly fit our query have been highlighted in bold in Table 1, along with
their reference literature [27–96]. Topic 1 has seventy articles. Several of them contain
information on the query made; only six works are not linked to AD [35,44,49,72,82,92].
The majority (four) focus on longevity and APoE [35,49,72,82,92]. In the first, a genome-
wide association study (GWAS) was performed for longevity in the Cohorts for Heart
and Aging Research in Genomic Epidemiology (CHARGE) consortium that confirmed
APoE and FOXO3 candidacy in this direction [35]. In the second, the genome-wide scan
assessment identifies loci for exceptional human longevity [49]. The third paper provides
evidence that APoE haplotypes are associated with human longevity in the Central Italy
population [72]. The last is to explore genes in lipid and Alzheimer’s disease associated
with healthy aging and longevity in healthy older populations [92]. In the other two
papers, one describes age-related white matter changes [82], and one analyses the cognitive
performance and polymorphisms of several genes, including ApoE, in patients with mild
cognitive impairment and cognitively healthy controls [44].

Several studies, shown in Table 2, do not specify the SNPs through their nomenclature
but indicate the position of the mutation and the consequent amino acid substitution.
Studies that perfectly fit our query, even in this case, have been highlighted in bold, which
also applies to references [97–117]. Even in this topic, machine learning identified six
papers in which AD is not the focus [97,98,105,108,111,118]. In particular, one is related to
the epidemiology and genetics factor of frontotemporal dementia assessed by a survey in
southern Italy [97], and one is a 7-year follow-up study in subjective cognitive decline and
mild cognitive impairment focusing on diverse genes than ApoE [108]. Two works relate to
laboratory techniques to assess APoE and study lipid metabolism [98,111]. One correlates
ApoE with glaucoma [105] and one is unrelated [118].

The machine learning approach used here helped remove duplicate papers, identify
the topic(s), and focus on selecting the papers that interest us. Of the ninety-two papers,
only five met our criteria listed in Table 3 [33,38,59,94,115].

In particular, the study of Bizzarro et al. confirmed the role of ApoEε4, harboring the
mutation as a Single Nucleotide Polymorphism (SNP) rs449647 A/A genotype, as a risk
factor for AD in Italy [33]. In the paper of Capurso et al., the APOE SNPs reported were
rs4925 and rs1804834, although they correlate it with other mutations in the glutathione
S-transferase omega-1 gene [38].

Lescai and coworkers addressed the relationship between ApoEϵ4, and five SNPs,
the rs449647, rs769446, rs405509 in the promoter of the APOE gene, and in ε4 rs429358
and rs7412. Confirming the association between the SNP rs405509 and the AD [59].
Valenza et al., pointed out that APoEϵ4 allele represents the only established genetic
risk factor for AD; identified that patients hiding the −491 AA genotype had poorer cog-
nitive performances than the −491 AT ones in the tests of visual attention in AD. This
indicates that this mutation has a biological effect more exerted on APOE transcription, and
the −491 A/T polymorphism could be considered a disease modifier more than a risk factor
for sporadic AD [94]. The last paper is a multicenter study conducted in Denmark, Finland,
Germany, Greece, Portugal, Spain, the Netherlands, and Italy. It is the only one of this
type, in which ApoEϵ4 allele harbors the SNP rs769449 and rs429358. Therefore, MySLR,
with its LDA algorithms, made it possible for us to identify what we were looking for. It
is worth noting here that machine learning is widely used in the medical field [119,120]
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to identify systematic reviews and meta-analyses or to evaluate the state of the art of a
given topic, as it is a helpful tool for simplifying the steps necessary for re-elaboration
of complex data contained in the papers. The MySLR platform has already been used
to give convincing results previously [121,122]. There are strengths and limitations in
our assessment. On the MySRL platform, only key decisions are made transparently and
held by humans [21]. The LDA algorithm has been applied in various fields such as
medicine, biology, and computer science to extract topics and identify patterns within
the literature [121,122]. The use of MySRL offers several strengths, including its ability to
reduce the workload involved in the screening phase of a systematic review, making the
process more efficient and manageable to analyze large datasets, enabling researchers to
identify emerging trends and conduct in-depth topic modeling, and in addition, it allows
for the identification of key topics within the literature, which is essential for conducting
comprehensive systematic reviews [123–125]. MySLR provides a boost for realizing sys-
tematic literature reviews among scientific community members using the LDA algorithm.
However, by discarding word order, the LDA algorithm loses specific local context infor-
mation on semantic relations between words, which might otherwise help interpret deeper
meanings and solve ambiguities [126]. A limitation is that LDA assumes that the topics
are independent of each other. This is particularly true with topic 2, in our case, in which
one paper is unrelated [118] to the context of our research [127,128]. Thus, the analysis
did not include correlations between topics or hierarchical structures regarding sub-topics.
When applying LDA, it is important to note that the model results are not deterministic.
Instead, the results are affected by the researcher’s choices regarding the input parameters
and built-in stochastic processes. Lastly, an interesting representation coming from MySLR
is the t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm. The graph’s points
symbolize documents (scientific sources), reflecting their similarity concerning a specific
topic. These points are grouped into clusters (each topic corresponds to a color—blue
and red), highlighting the cohesive thematic relationships among the documents [119].
The t-SNE algorithm is an unsupervised dimensionality reduction technique. This means
that the algorithm tries to represent high-dimensional data in a lower-dimensional space,
preserving the similarity relations between the original examples without assuming that
these relations are linearly distributed.

5. Conclusions

We believe that introducing machine learning, MySLR, will facilitate epidemiologists,
physicians, and health professionals’ more precise assessment through systematic review
and meta-analysis, even following Cochrane’s dictates. The semi-automated machine
learning platform was able to identify studies related to the query performed on the
database with a low percentage of bias. MySLR performed excellently in eliminating
duplications and good performance in recognizing keywords linked, in our case, to ApoE
mutations in AD.
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