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Abstract: Early detection of dyslexia and learning disorders is vital for avoiding a learning disability,
as well as supporting dyslexic students by tailoring academic programs to their needs. Several studies
have investigated using supervised algorithms to screen dyslexia vs. control subjects; however, the
data size and the conditions of data acquisition were their most significant limitation. In the current
study, we leverage a large dataset, containing 4243 time series of eye movement records from children
across Europe. These datasets were derived from various tests such as saccade, vergence, and reading
tasks. Furthermore, our methods were evaluated with realistic test data, including real-life biases
such as noise, eye tracking misalignment, and similar pathologies among non-scholar difficulty
classes. In addition, we present a novel convolutional neural network architecture, adapted to our
time series classification problem, that is intended to generalize on a small annotated dataset and to
handle a high-resolution signal (1024 point). Our architecture achieved a precision of 80.20% and a
recall of 75.1%, when trained on the vergence dataset, and a precision of 77.2% and a recall of 77.5%
when trained on the saccade dataset. Finally, we performed a comparison using our ML approach, a
second architecture developed for a similar problem, and two other methods that we investigated
that use deep learning algorithms to predict dyslexia.

Keywords: time series; eye movement; deep learning; classification; saccade; vergence; reading

1. Introduction

Reading is a complex process that requires precise control of the eyes to maintain a
stable angle between the optic axes and move smoothly from left to right. This demands
coordination among three physiological eye movement systems—saccades, fixations, and
vergence control—enabling systematic capture and analysis of each word. Analyzing these
coordination properties can help detect multiple pathologies such as dyslexia by identifying
distinguishing patterns for targeted pathologies.

For instance, research has shown that dyslexics present abnormalities in their eye
movements during reading [1]. Ward and Kapoula [2] demonstrated that these abnor-
malities are intrinsic to individuals with dyslexia and can be observed even outside of a
reading context.

Previous studies indicate that machine learning models utilizing handcrafted features
can capitalize on these physiological differences to predict the presence of pathologies.
These methods have proven effective in predicting specific disorders, especially when
applied to small datasets. Consequently, supervised learning-based prediction of eye
movement disorders has become a focal point in scientific research [3–9]. However, many
existing methods tend to discard noisy data and encounter common limitations.

One notable limitation is that patients with pathologies other than dyslexia are ex-
cluded from the training distribution, potentially introducing biases in the results. Ad-
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ditionally, these studies often use small datasets from laboratory experiments, and are
conducted exclusively during reading tasks, which limits the generalizability of the find-
ings. Consequently, the performance of such methods on larger population data remains
largely unexplored. Furthermore, in real-world pathology detection settings, eye movement
recordings are obtained from various healthcare centers and cover a diverse population.
These data typically show significantly increased variability due to the wide range of
samples and variations in acquisition protocols across different healthcare centers, which
can affect the model generalization when employing the trained algorithms on real life
application [10].

In this context, there is a compelling argument to transition from traditional machine
learning paradigms to end-to-end deep learning approaches. Deep learning models have
demonstrated a remarkable capacity to learn robust features when provided with a suffi-
cient amount of data. Therefore, adopting a deep learning approach holds great potential
for overcoming the aforementioned limitations and effectively addressing the challenges
associated with variability in eye movement recordings, obtained from real-world scenarios.

In this study, we aim to establish the ability to predict dyslexia and learning disorders
from other pathologies in large-scale multi-clinical center European environments using
deep learning applied to various types of eye movements in reading and non-reading tasks.
Our dataset contains 4243 time series from 1575 patients across 18 different classes, with
a total size of 5.82 GB. Our study establishes the feasibility of employing deep learning
techniques to detect learning disorders in real clinical settings, surpassing the capabilities
of traditional machine learning approaches.

Overall, our contributions are as follows:

• We introduce a simple architecture that exhibits a promising performance in compari-
son to existing deep learning methods.

• We demonstrate the feasibility of using deep learning, which outperforms machine
learning, for detecting learning disorders in real clinical settings.

• We achieve a substantial increase of 10% in F-score versus the previous best method,
and across three distinct sub-datasets, namely saccade, vergence, and reading eye
movement tasks. This improvement further validates the effectiveness of our approach
in accurately identifying and diagnosing learning disorders.

2. Related Work
2.1. Traditional Machine Learning Methods

Automated analysis of eye movement data for medical analysis is field of growing
interest. The existing approaches can be broadly categorized into studies using traditional
machine learning methods, and works applying modern deep learning models.

The studies using machine learning are briefly summarized in Table 1. Such studies,
including our prior studies, use features (such as amplitude, velocity of the saccades,
fixation duration based on velocity thresholds, etc.) defined explicitly. Many of these
studies use small sets of eye movement data restricted to reading tasks [11]. In contrast,
our prior studies [3,4] use a variety of eye movement tasks, from reading and non-reading
conditions, namely including saccades and vergence tests with a technology that allows
eye movement recording using a standardized eye movement stimulation routine. In our
prior studies using machine learning, we extend this to include vergence and saccade
tests in non-reading conditions using the REMOBI&AIDEAL technology. Our studies
show a capacity to discriminate dyslexic from non-dyslexic adolescents and consolidate
other studies using limited datasets. For instance, Asvestopoulou et al. trained multiple
classifiers to predict dyslexia and reported an accuracy of 97%. On the other hand, our own
studies [3] reported an accuracy of 81.25% when trained on the REMOBI saccade dataset.

Next, we will describe in more detail the few studies using deep learning.
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Table 1. Summary of our review of studies using traditional machine learning methods.

Article Model Target Dataset Size
Samples (Patient)

Rello et al. [12] SVM Dyslexia 1135 (97)
Benfatto et al. [5] SVM Dyslexia 185 (185)
Smymakis et al. [11] Bayesian Dyslexia 66 (66)
Asvestopoulou et al. [6] Multiple Dyslexia 66 (66)
Prabha et al. [7] SVM Dyslexia 185 (185)
Bixler et al. [13] Multiple Mind wondering 4977 (178)
Skaramagkas et al. [14] MLP Predicting emotional State - (48)
Jothiprabha et al. [15] k-mean Dyslexia severity 97 (97)
Rizzo et al. [16] Multiple Detecting Cognitive Interference 64 (64)
Ktistakis et al. [17] Multiple Congitive workload estimation 47 (47)
Vajs et al. [18] Multiple Dyslexia 378 (30)

Stephen et al. [19] Bayesian Mind wondering 384 (32)Networks

2.2. Supervised Deep Learning Approaches

Many other studies have used the supervised learning paradigm to train deep learning
architectures to predict pathologies such as dyslexia [8,9,20], Parkinson’s disease [21],
Alzheimer’s disease [22], and autism spectrum disorder [23–25] relative to control healthy
subjects, or task classification, such as search, memorization, attention, and rating [26–28];
those studies are summarized in Table 2. Additionally, these studies have explored various
data structures, including text, image, and time series. As a result, processing methods can
be grouped into three categories: mapping each time series to a sequence of letters using
NLP processing, mapping each time series to a scan path, or mapping each time series data
to an ensemble of segments using sliding windows. Furthermore, in terms of architecture,
some studies use CNNs with learnable kernels as well as non learnable kernels [21], while
others use recurrent neural networks. The dataset sizes, in term of subjects for these studies,
ranged from 15 to 210, with a median size of 59.

2.2.1. Deep Learning Based Dyslexia Classification

A few studies investigate the use of deep learning to predict dyslexia from eye move-
ment data collected during reading tasks. Nerusil et al. [9] attempt to predict dyslexia
using deep learning by training a CNN on raw eye movement position data in the spectral
domain. They achieve an accuracy of 96.6% using this approach, which is slightly better
than the 95.67% accuracy achieved using threshold-based methods on the histogram of
reading times. However, the study has limitations such as a low temporal resolution eye
tracker, subjects being placed in artificial conditions with head stabilization, and the use of
reading duration as the sole discriminatory parameter, which is well-known as dyslexic
readers tend to read slower. To address these limitations, we use an eye tracker with a high
sampling rate of 200 Hz.

Moreover, in two separate studies, Vajs et al. tackle the same issue by using CNNs
trained on eye movement trajectory plots. In the first study [20], each plot corresponds
to a 3D image encoding segment length through color representations. In the second
study [8], each trajectory is represented by multiple 1D plots, where they train a CNN-
based autoencoder to minimize the reconstruction error of eye position segments and
utilize the model to construct handcrafted features for classification. Despite achieving
an accuracy of up to 87%, these studies have limitations such as small datasets with
low temporal resolution and the use of noise as a physiological criterion, which is not
robust since noise can also be present in healthy subject data. Consequently, these studies
fail to provide strong physiological evidence of eye movement abnormalities in dyslexia;
therefore, we extend the related work to cover other deep learning-based applications on
eye movement data.
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2.2.2. Autism Classification Task

Additionally, image processing-based methods have also been investigated for predict-
ing autism spectrum disorder (ASD). Chen et al., Ming et al., and Yudong et al. [24,25,29]
all used convolutional neural network (CNN)-based architectures to analyze eye move-
ments from images. Chen et al. used a convolutional-LSTM neural network to classify
eye movement data from two separate datasets, reporting an accuracy of 0.84 on the
ROC-AUC metric.

Ming et al. [25] fine-tuned a VGG-16 CNN on the OSEI dataset to learn an embedding
representation for eye movement data, achieving 92% accuracy when training an SVM
using the learned embedding.

Yudong et al. [29] trained a CNN to learn an embedding representation, which was
used to train an LSTM and achieved an accuracy of 74.22%. Their approach involved
processing each image with a saliency prediction model to segment the most attractive
zone, then highlighting the scan path in the image and decomposing it into multiple patches
fed to the SP-ASDNet model. Finally, Elbattah et al. use NLP to predict autism based
on eye movement position. They divide the time series into equal intervals, replacing
each segment with “s” for saccades or “f” for fixations. then, they use an NLP processing
technique to generate embedding vectors from the text. Finally, they train CNN and LSTM
models and report precision of 79%, recall of 71%, and an ROC-AUC score of 0.84, which is
lower than prior studies.

2.2.3. Event Detection Tasks

For instance, Zembly et al. [26] propose a deep learning framework for saccade and
fixation detection, using a generative model to augment their dataset size and training a
recurrent neural network on the augmented dataset. They achieve a performance similar
to that of expert coders and better than that of other algorithms. In a more complex
task classification task, Cole et al. [27] trained a convolution-based architecture to predict
three tasks (search, memorization, or rating) from eye movements, using two datasets of
12,177 and 10,395 samples. They reported up to 55% accuracy on the validation set.

Table 2. Summary of the studies on applied deep learning on eye movement data.

Article Model Learning Task Dataset Size Paradigm

Bautista et al. [30] CNN (age, gender, id) classification 45,755 (143) Unsup. learning (Time series)
Bautista et al. [31] CNN (age, gender, id) classification 45,755 (143) Self-sup. Learning (Time series)
Lee et al. [32] Multiple CNN screening abnormal behavior 45,000 (15) Self-sup. learning (Image)
Zemblys et al. [26] RNN Eye-based event segmentation 151,639 (31) Sup. learning (Time series)
Cole et al. [27] CNN Task classification 12,177 (124)/10,395 (77) Sup. learning
Elbattah et al. [23] CNN/LSTM Autism classification 2018 (59) Sup. learning (NLP)
Chen et al. [24] CNN-LSTM Autism classification 700 (39)/1800 (45) Sup. learning (Image)
Ming et al. [25] CNN Autism classification 700 (39) Sup. learning (Image)
Yudong et al. [29] SP-ASDNet screening TD and ASD 300 (28) Sup. learning (Image)
Vajs et al. [20] CNN Predicting dyslexia 390 (30) Sup. learning (Image)
Vajs et al. [8] CNN Predicting dyslexia 378 (30)/181 (185) Sup. learning (image)
Nerusil et al. [9] CNN Predicting dyslexia 185 (185) Sup. learning (Time series)
Harisinghani et al. [33] GRU Screening Alzheimer - (162) Sup. learning (Time series)
Sun et al. [22] CNN-AE Screening Alzheimer - (210) Sup. learning (Image)
Ahmed et al. [34] CNN-SVM screening ASD 500 (59) Sup. learning (Image)
Uribarri et al. [21] Rocket Screening Parkison 1582 (67) Sup learning. (time serie)
Uppal et al. [28] GRU Attention zone localisation 105,532 (16) Sup learning (image)

2.3. Unsupervised Deep Learning Approaches

Several approaches propose learning features in an unsupervised manner by generat-
ing high-dimensional embeddings, which can be applied to various tasks such as patient
identification, age and gender classification, and screening abnormal behavior [30–32]. The
three studies used CNN-based architectures, but the input space structure of their proposed
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methods and the evaluation models used to assess the learned embedding’s relevance
differ. Bautista et al. [30,31] utilized time series data as the input space and employed
SVM for downstream task evaluation, while Lee et al. [32] worked with image data and
evaluated the embedding using MLP.

Furthermore, Bautista et al. utilized a temporal convolutional network autoencoder to
separately learn high-dimensional representations from eye movement position segments
and velocity segments. They assessed the quality of the embeddings by training a linear
SVM for a patient identification task, achieving an accuracy of up to 93.9% on the stimuli
task and up to 87.8% on the biometrics task. In another approach, they applied the same
encoder architecture in implementing self-supervised contrastive learning paradigm, which
resulted in an accuracy of up to 94.5% on the biometrics task; however, generalization ability
decreased significantly when evaluating using datasets not included in the training/testing
set split algorithm. Lee et al. also trained a model using self-supervised contrastive
learning framework for screening abnormal behavior when observing screen movements
and reported an accuracy of 91% for detecting abnormal eye movements indicating a lack
of attention.

3. Materials and Methodology
3.1. Eye Movement Recordings

Our data are collected in real clinical centers in Europe that examine eye movement in
individuals with dyslexia and learning disorders, rather than from laboratory-designed
studies. All centers record eye movements using the Pupil Core head-mounted video-
oculography device [35] at a frequency of 200 Hz per eye, which provided real-time
estimation of gaze position for both the left and right eyes along the vertical (y) and
horizontal (x) axes. All centers use the same REMOBI technology (patent WO2011073288),
presented in Figure 1, and AIDEAL technology (patent PCT/EP2021/062224) to stimulate
eye movements (saccades, vergence) and reading tasks, and used the same eye tracker. All
records are anonymized before being stored in our database following European regulations
on personal data.

Figure 1. Presentation of the Remobi device used in the clinical centers. Subjects are asked to visually
fixate on a randomly moving LED on the Remobi device while their eye movements are recorded
with an eye tracker.

3.2. Eye Movement Tasks

Our database contains eye movement recordings of three types of eye movement tasks:
saccade, vergence, and reading.

3.2.1. Saccade Task

In this setting, patients are asked to visually fix stimuli (LEDs) that are randomly lit on
a horizontal axis in order to stimulate right and left saccade movements. The duration and
position of the LEDs are randomly configured in order to prevent subjects from anticipating
the movements. The objective of this test is to analyze saccadic movement, as well as
post-saccadic fixation. In total, each test is composed of 40 saccadic movements (20 left and
20 right).
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3.2.2. Vergence Task

In the vergence test, the stimuli were presented over the optical axis to stimulate
conjugate and disconjugate vergence movements. The configuration settings are similar,
with randomized position and duration, and a total of 40 trials.

3.2.3. Reading Task

Finally, the reading test requires subjects to read a text while their eye movements
are recorded.

3.3. Data Annotation

We obtain annotations from clinicians’ reports of patient information and eye tracker
records. This information includes predefined categories such as age, details on the eye
movement task performed, and a text description of each patient’s reasons for seeking
orthoptic attention. Patients are grouped into ten pathologies, including dyslexia and
learning disorders, strabismus, vertigo, presbycusis, vergence-accommodation disorders,
low vision, and motor restlessness. Subsequently, we cluster multiple families of disorders
to form the final labels, considering that dyslexia and learning disorders contain dysgraphia,
dysorthographia, dyscalculia, and learning disability. Figure 2 lists the main groups present
in each class, using a tree structure.

Figure 2. An overview of the different pathology groups for each of the positive class and nega-
tive class, each pathology is a group of multiple sub-pathologies. For example, dyslexia regroups
dysgraphia, dysorthographia, and dyscalculia.

Traditionally, a model is trained to distinguish dyslexia from control subjects, defined
as those without any pathology. One limitation of this approach is the absence of patients
with pathologies other than dyslexia from the training distribution, which can lead to
confusion when facing data from patients with other pathologies that have similarities with
dyslexia, which typically happens in a clinical setting. To overcome these limitations, we
propose including subjects with pathologies other than dyslexia in the negative population,
using a dataset with matching acquisition conditions.

3.4. Datasets Overview

For this study, we construct two datasets: ora2021 and ora2022. These datasets display
two levels of task difficulty, to address different research questions and to account for
different levels of variability in terms of pathology and population.
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3.4.1. Ora2021 Dataset

The first dataset (Ora2021) comprises all the data collected by only two clinical centers.
Using this dataset, we aim to screen for dyslexia and reading disorder in a group of patients
with two other pathologies, including strabismus and vertigo. This dataset consists of
eye movement recordings from 125, 164, and 222 subjects, for the saccade, vergence, and
reading tasks, respectively. The positive class in this dataset includes dyslexia and reading
disorders, while the negative class includes strabismus and vertigo.

3.4.2. Ora2022 Dataset

The second dataset (Ora2022) is composed of data from a larger number of centers (20)
and includes data from the period 2021. It is composed of 1080, 1384, and 1126 subjects for
each of the saccade, vergence, and reading tests, respectively. With this dataset, the target
population is more complex, including dyslexia and school learning disorders, as well as
a wider variety of other pathologies, such as vertigo, strabismus, neurologic disorders,
postural and equilibrium problems, and attention deficits. Thus, in the second case, the
comparison population is more varied. The challenge of this task is to establish the capacity
to discriminate between reading and school disorders from a variety of other dysfunctions
and pathologies, with a larger data variability.

3.4.3. Class Imbalance

The distribution of each class for the six datasets is presented in Table 3. In terms of the
number of subjects per class, the Ora2021 datasets exhibit a high imbalances, with a notably
lower number of negative class subjects compared to the positive class. In contrast, the
Ora2022 datasets demonstrate a relatively balanced distribution between the two classes for
the saccade and vergence eye movement tasks, and a significant imbalance for the reading
eye movement task.

Table 3. Class distribution on the two datasets. We also report the imbalance factor.

Positive Negative Imbalance

Ora2021

Saccade 110 15 7.3
Vergence 143 21 6.8
Reading 188 34 5.5

Ora2022

Saccade 648 432 1.5
Vergence 764 620 1.2
Reading 778 348 2.2

3.5. Problem Statement

In general terms, our dataset D = (Xi, yi), : i ∈ [[1, N]] is composed of N samples,
where each Xi is a multivariate time series containing the eye movement recording, and yi
is the target class. Each Xi contains the horizontal and vertical angular positions of both
eyes across the recording time of length T: Xi ∈ R4×T . The task at hand is to predict the
correct class yi based on the input Xi.

The time series in our dataset are typically very long (approximately 30,000 time
points). Therefore, we propose to operate on segments of size S = 1024 of the original full
time series. This corresponds to 5 s of recording. We allow for 50% overlap in the sliding
window, and each segment is labeled with the same label as the full time series.
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3.6. Data Pre-Processing

To process our data, we follow several steps. First, we filter each time series and then
divide them into segments. Next, we split the data into a training set and a test set. Finally,
we standardize both sets.

3.6.1. Outlier Removal

We use two filtering methods before dividing each time series into segments. The
first method is a low-pass filter with a cutoff 33 Hz. Additionally, we calculate the z-
score for each point in each time series to identify outliers. Any point with a z-score
greater than 2.5 is filtered out as well.

3.6.2. Standardization

To standardize the input time series, we customize the standardization procedure to
maintain a physiologically plausible signal.

Each time series segment of size S is standardized individually by subtracting the chan-
nelwise mean and dividing by the standard deviation. The mean is computed per segment
and channel; however, we adopt a different approach for the standard deviation. We first
compute the variance of the left-eye channels, and that of the right-eye channels. We then
divide all channels by the square root of the mean of these two variances. This preserves
the conjugation of the two eyes, i.e., the mean divergence between the left and right eye
position. Conjugation is an important feature in saccade and vergence analysis, hence our
effort to preserve it in the normalization procedure. In practice, we found this normalisation
procedure to be experimentally better than standard normalization techniques.

3.6.3. Train/Test Split

The target diagnosis labels have two levels of certainty. To ensure reliable test perfor-
mance metrics, we only use 40% of the high-certainty samples in the test set, and include
the remaining high and medium certainty samples in the training set.

The trade-off is a reduced number of patients in the test set compared to the training
set, but a smaller and more accurately annotation. Finally, Figure A1 presents the sample-
based distribution of the two classes for saccades, vergence, and reading tasks for Ora2021
and Ora2022 datasets.

3.7. Architecture Design

We introduce a new architecture dubbed Hierarchical Temporal Convolutions for Eye
Movement Analysis. Our approach is built on temporal convolutions, which are known
for their strong performance with sequential data and high computational efficiency. The
HTCE model consists of multiple hierarchical convolutional blocks followed by a Multi-
Layer Perceptron for classification. Key elements of our HTCE architecture include dilated
convolutions and multi-scale context.

Dilated convolutions are a technique used in computer vision and have been adapted
for time series analysis. Unlike regular convolutions with a fixed receptive field, dilated
convolutions introduce gaps between kernel elements to increase the range of the receptive
field. This allows the model to capture larger temporal contexts, which is particularly
beneficial for eye movement time series classification as it enables efficient capturing of
long-term dependencies and patterns in the data.

Another important aspect of HTCE is the multi-scale context [36,37], which involves
aggregating information from different scales by concatenating convolution layers with
various receptive fields. By incorporating features from different scales, the model be-
comes more robust to variations in eye movement patterns and can capture both local and
global temporal characteristics crucial for accurately classifying eye movement time series.
This is essential as the temporal dimension holds significant importance, considering the
notable noise-to-signal ratio.
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3.8. Overall Architecture

Our architecture is mainly composed of a feature extractor implemented using con-
volution layers and a 2-layer perceptron classifier. We show a schematic overview of our
HTCE architecture in Figure A4. The feature extractor is composed of four stages, where
each stage has a different number of filters for the convolution layers. The first stage
module used 64 filters for each convolution layer, and for each next stage, we doubled the
number of filters used in the previous stage. Each stage is composed of three different
Convblocks with the same hyperparameter setting. A pooling layer has been added after
the second and third Convblock. In addition, a skip connection is implemented between
the input and the output of each stage, followed by a normalization layer.

In addition, when choosing the normalization layer, we experimented with batch
normalization and layer normalization. However, using batch normalization made training
too unstable due to high variability of the input space’s covariance. Adjusting momentum
parameters did not mitigate this issue. We hypothesize that the high variability of the
input space’s covariance is responsible for this instability; for example, while image data
exhibit some level of stationarity, time series data are more variable. This problem is
further amplified when dealing with noisy signals. As a result, we decided to retain
layer normalization.

Finally, the Head classifier consists of global average pooling to compress the temporal
dimension followed by two linear layers, each with 256 units. We use leaky ReLU activation
function for the first layer and sigmoid for the second in order to output a probability
distribution for each pathology separately.

Hierarchical Convolutional Layer

The main building block of our architecture is the ConvBlock module, Figure A3
presents the architecture of this module. It is composed of three concatenated convolutional
layers with the same hyperparameters (number of filters, kernel size, and stride) but with
different dilation ratios, equal to 1, 4, and 8 for the three convolution layers, to enable
fusion of different scale information. Each convolution layer was followed by a layer
normalization and a ReLU activation. In addition, the padding is chosen to preserve the
temporal dimension inside each block and the ReLU activation. Finally, we use a skip
connection between the input and the output of each sub-block.

3.9. Additional Hyperparameters Tuning

The different modules used to build our architecture are widely discussed in the
academic literature. However, the originality of our method is in the way we conduct
hyperparameter tuning. An incorrect or inappropriate choice of hyperparameters can lead
even advanced methods to underperform. We chose not to utilize automated hyperpa-
rameter tuning tools and focused on deriving insights directly from the data instead. Our
approach involves leveraging our knowledge in physiology and deep learning to specialize
our architecture on eye movement gaze data.

Furthermore, beyond the activation and dilation rates discussed previously, we fine-
tune additional hyperparameters such as the number of filters, kernel size, and pooling size.
The hyperparameters utilized for each stage and in every convolution block are detailed
in Table A1. It is important to note that each value represents a tuple of three elements,
aligning with the configurations of the three distinct convolutional blocks within each stage.
Additionally, all convolution layers within the same convolution block adhere to the same
hyperparameter setting.

First, we optimize the number of filters for each convolution layer, a crucial parameter
that controls the model’s capacity by adjusting the feature space size. A higher value
without sufficient augmentation can lead to overfitting, while selecting smaller parameters
may mitigate sample size on simple tasks but is prone to underfitting on complex tasks. In
our studies, we aim to maintain the cardinality of the input space by reducing the temporal
dimension while increasing the input dimension. We adopted an approach similar to
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ResNet, with a fixed-size feature space per stage and set the number of filters to 64, 64, 128,
and 256 for the first, second, third, and the last stage, respectively.

Alongside the filter size, the kernel size controls the model’s capacity, determining the
dimension of the parameter tensor for each layer. Using a larger kernel in the first layers
where the filter size is smaller, and a smaller kernel size when the filter size becomes larger
helps to keep the size of the weight tensor and of the corresponding layers relatively small.
Thus, we set k to 5 for the first three stages, and to 3 for the last stage where the filter size is
equal to 256.

The pooling layer is used to increase the receptive field of the last layers. In modern
deep learning architectures, we progressively reduce the temporal dimension and increase
the pooling size per stage. This allows the last layers to have a larger receptive field while
letting the first layers take advantage of larger temporal space information. As a result,
for the first two stages, we perform pooling only in the last ConvBlock, while in the last
two stages, pooling is performed on the second and the last ConvBlocks.

3.10. Implementation Details

We follow the same learning procedure for all analyses. The models are trained using
a batch size of 128 and for a maximum of 100 epochs, utilizing the early stopping technique
with a patience of 5 on the validation macro F1 metric. In practice, the models converged
within the first 20 epochs.

Our model, implemented in Keras, uses the AdamW optimizer with its default con-
figuration, a learning rate of 0.0001, and a weight decay of 0.00001. We optimize the focal
loss, with γ = 2 and α = 0, to handle the imbalanced nature of the different datasets. For
robust validation results, we perform 5 model training sessions, with different random
seed parameters, to perform the train/test split presented in Section 3.6.3 and report the
mean performance across runs. We evaluate the models using the macro F1 score as our
primary metric.

In addition to the macro F1 score, we consider three other metrics to better assess the
performance of the model. To evaluate the performance with respect to class 1, we use
the precision and recall (sensitivity) of class 1. To track when the model is exploiting the
distribution of the dataset by making fewer predictions about the negative class, we use
specificity. Finally, the different Hyper parameters are summarized in Table A2.

4. Results and Evaluation
4.1. Comparison with Existing Literature

We evaluate our HTCE architecture using two datasets, Ora2022 and Ora2021, each
consisting of three distinct eye movement tasks. Consequently, our models are assessed
using a total of six different sub-datasets. We first experimentally compare HTCE to recent
existing approaches for automated eye movement analysis. Second, we focus on the
capacity of our approach to screen learning disorders using different visual tasks. First, we
compare our architecture to different existing approaches for eye movement analysis:

• TC, the temporal convolutional architecture used in [30];
• AE, the autoencoder reconstruction error-based methods presented in [8];
• the Fourier-based (Fourier) method described in [9].

4.1.1. Ora2021 Dataset

We present a comprehensive performance analysis in Table 4, evaluating our deep
learning method alongside other existing approaches on the low-variability Ora2021 dataset.
For the saccade visual task, all models except the AE-based one demonstrate commendable
performance, achieving macro F1 scores of 66.7%, 63.2%, and 69.7% for the HTCE, TC, and
Fourier-based models, respectively. Conversely, in the vergence visual task, only the HTCE
and TC models exhibit robust generalization.

Additionally, the Fourier-based model excels in the saccade visual task, while the HTCE-
based model achieves the highest scores in both the vergence and reading datasets (62.8% and
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53.5%). Notably, there is discernible variation in model performance across the three visual
tasks—saccade, vergence, and reading. The macro-F1 scores for the saccade task generally
outshine the others, reaching 66.7%, 63.2%, 69.7%, and 46.5%, while models operating on eye
movements during reading demonstrate a comparatively lower performance.

Table 4. Performance benchmark on the Ora2021 low-variability dataset. The best metric is high-
lighted in bold.

Saccade Vergence Reading

F1 Prec. Sens. Spec. F1 Prec. Sens. Spec. F1 Prec. Sens. Spec.

HTCE (Ours) 66.7 91.6 92.9 43.5 62.8 90.3 85.5 46.6 53.5 95.6 97.6 11.4
TC [30] 63.2 90.7 91.4 38.0 60.7 88.4 93.3 28.0 51.0 95.3 99.6 4.0
Fourier [9] 69.7 91.8 93.6 44.0 56.3 87.0 96.3 15.1 48.7 95.1 100.0 0.0
AE [8] 46.5 87.0 100.0 0.0 46.0 85.2 100.0 0.0 48.8 95.6 100.0 0.0

4.1.2. Ora2022 Dataset

We then evaluate the same set of models on the Ora2022 dataset, which encompasses
a wider population and eye recordings originating from twenty different clincal centers.
We report the performance on Table 5.

Table 5. Performance benchmark on the Ora2022 high-variability dataset. The best metric is high-
lighted in bold.

Saccade Vergence Reading

F1 Prec. Sens. Spec. F1 Prec. Sens. Spec. F1 Prec. Sens. Spec.

HTCE (Ours) 65.5 77.2 77.5 53.7 68.1 80.2 75.1 62.7 59.6 75.5 77.2 42.2
Fourier [9] 46.0 66.8 89.4 10.3 48.7 66.0 63.8 34.0 41.9 70.0 99.2 1.0
TC [30] 55.2 70.5 71.0 40.0 57.8 72.7 69.1 47.8 49.1 70.7 90.3 13.7
AE [8] 43.0 68.0 97.0 3.4 48.7 67.7 88.7 14.1 47.6 70.3 88.1 11.8

On this more challenging dataset, our deep learning model significantly outperforms
all the other approaches. It reaches a F1 score of 65.5% on the saccade sub-dataset, while the
second best approach achieves a 10 point smaller score. Similar results are obtained on the
two other sub-datasets. a In comparison, the AE approach yields very poor performance
on Ora2022. While its sensitivity (recall) is very high, it achieves a specificity almost equal
to zero. This suggests that in a setting with high data variability the ML model fails to learn
a robust classifier and largely over detects positive samples. The Fourier methods show
similar behavior, scoring very low specificity across the three sub-datasets.

Conversely, the TC and our approach prove more robust and maintain better specificity
scores than the other three approaches. This supports the value of using supervised deep
learning approaches for large scale eye movement data analysis.

Lastly, compared to the TC architecture, our approach achieves a consistent improve-
ment across tasks. We improve the F1 performance by 9.7, 10.3, and 10.5 points on the
saccade, vergence, and reading sub-datasets, respectively. Also, even if the reading task
also yields the poorest performance on Ora2022, our model performs remarkably well with
an F1 score of 59.6% and a specificity of 42.2%.

4.2. A Comparison with Other Traditional Machine Learning Algorithms

Furthermore, we compared our method with the traditional machine learning ap-
proach on three visual tasks of the Ora22 dataset and we report the performance on Table 6.
First, we experimentally compared HTCE to our method based on ideal eye movement
parameters. Then, we experimented with additional machine learning methods using the
same set of eye movement parameters:
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• Our own machine learning approach outlined in [3,4] and based on Support Vector
Machine with a radial basis function (SVM-RBF).

• We replaced SVM-RBF with Support Vector Machine with a linear kernel using recur-
sive feature elimination (SVM-RFE) set to 8 features.

• We explored the Random Forest algorithm (RF) using the scikit learn implementation
with default parameters.

• We experimented with the General Regression Neural Network algorithm (GRNN).
During each fold, the model is calibrated using gradient search algorithm.

• We trained a 3-layer perceptron (MLP) of 64 neurons each, utilizing relu activation.

Table 6. Performance Benchmarking with Machine Learning Algorithms.The best metric is high-
lighted in bold.

Saccade Vergence Reading

F1 Prec. Sens. Spec. F1 Prec. Sens. Spec. F1 Prec. Sens. Spec.

HTCE (Ours) 65.5 77.2 77.5 53.7 68.1 80.2 75.1 62.7 59.6 75.5 77.2 42.2
RF 60.8 64.0 70.2 51.3 59.7 61.3 69.8 50.0 47.6 67.5 95.0 9.7
GRNN 55.9 60 61.8 48.7 52.1 55.1 57.4 47 52.0 67.7 71.4 32.5
MLP 56.5 61.0 62.2 50.7 57.1 59.5 63.4 50.8 51.8 67.6 75.2 28.7
SVM-RBF 38.8 55.5 97.3 3.7 60.0 61.4 71.3 49 40.0 66.4 71.2 48.9
SVM-RFE 44.1 56.2 92.5 11.0 48.3 55.3 87.6 19.15 39.9 66.4 100.0 00.0

Our deep learning approach consistently outperforms other machine learning algo-
rithms on three visual tasks, achieving unweighted F1 scores of 65.5%, 68.1%, and 59.6%,
respectively. Notably, the deep learning validation set includes all data, encompassing
highly noisy time series. In contrast, for the machine learning algorithms, data are filtered
during the computation of eye movement parameters through a software analysis stage.

Within the realm of machine learning algorithms, the SVM-RBF attains the highest
score for the vergence visual task, while achieving the lowest F1 score for the saccade visual
task. On the other hand, the Random Forest algorithm exhibits the best sensitivity and
specificity trade-off for both saccade and vergence visual tasks, while for the reading task it
is the SVM variant models that give the best sensitivity and specificity tradeoff.

Moreover, although SVM-RBF leads to the best score when predicting dyslexia on a
smaller dataset compared to other machine learning algorithms, especially the Random
Forest algorithm, considering a more realistic dataset with a higher sample size reveals that
Random Forest achieves better overall performance on the three visual tasks, with a macro
F1 score up to 60.8%.

However, this improvement comes at the cost of sacrificing decision explainability.
While the machine learning approach may achieve a lower performance, it enables the
explicit evaluation of the importance of specific parameters, and this is not the case for
deep learning.

4.3. Screening Dyslexia and Reading Disorders from Strabismus and Vertigo

Table 7 summarizes the metrics score for each of the three eye movement sub-datasets
(saccade, vergence, and reading), using the Ora2021 data.

Table 7. Performance metrics for each eye movement task of the Ora2021 dataset. The best score for
each metric is highlighted in bold.

Task F1 Prec. Sens. Spec.

Saccade 66.7 91.6 92.9 43.5
Vergence 62.8 90.3 85.5 46.6
Reading 53.5 95.6 97.6 11.4
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Overall, the performance is good when considering the saccade and vergence eye
movement tasks. The model trained on the saccade eye movement task achieves the best
macro F1 score of 66.7%, while the model trained on the reading task achieves the lowest
macro F1 score of 53.5%.

Moreover, the three models achieve a precision between 90.3% and 95.6%, and a recall
between 85.5% and 97.6%, suggesting a good performance in positive sample classification.
On the other hand, the specificity is relatively low for the saccade and vergence tasks (43.5%
and 46.6%, respectively) and extremely low for the reading task.

When considering the saccade task, the model achieves the best sensitivity specificity
trade, leading to a good macro F1 score of 66.7%. On the other hand, when considering
the vergence task, the model achieves the best specificity of 46.6%, and an acceptable
sensitivity (85.5%).

Finally, when considering the reading task, the model achieves the best performance
in terms of precision and recall but has a very low specificity score. This suggests that
the model learned to exploit the differences in the sample size of each class by optimizing
positive sample classification, but failed to correctly identify negative samples despite the
use of the focal loss to encourage the model to focus more on hard examples.

In summary, the model performs well on tasks with more balanced class distributions
but struggles with highly imbalanced datasets.

4.4. Screening Dyslexia and Learning Disorders from a Larger Group of Pathologies Classification

In Table 8, we report the metrics score for each of the three eye movement sub-datasets
(saccade, vergence, and reading), using the Ora2022 data. Overall, the performance was
good on all three datasets. Despite an increase in variability in the Ora2022 dataset, the
macro F1 score magnitude order remained consistent. However, the precision and recall of
the positive class decreased, indicating that detecting subjects with dyslexia and learning
disorders became more challenging. On the other hand, the classification of the negative
class improved, which we hypothesize is due to the increased dataset size.

Table 8. Performance of the models on different eye movement tasks of the Ora2022 dataset. The best
score for each metric is highlighted in bold.

Task F1 Prec. Sens. Spec.

Saccade 65.5 77.2 77.5 53.7
Vergence 68.1 80.2 75.1 62.7
Reading 59.6 75.5 77.2 42.2

Additionally, the order of performance remained similar when considering the Ora2022
dataset compared to the Ora2021 dataset. The best performances are obtained on the sac-
cade and vergence sub-datasets, while the model trained on the reading task achieved the
lowest performance, with a macro F1 score of 59.6%. Moreover, for all three eye movement
tasks, the sensitivity was higher than the specificity.

Regarding the saccade and the reading tasks, the precision and recall of the positive
class were between 75.5% and 77.5%, indicating that the performance of the two models
was good when considering the positive-related metrics. However, the specificity was
53.7% for the saccade task and 42.2% for the reading task, suggesting a significant false
positive rate.

Finally, when considering the vergence eye movement task, the precision and recall of
the positive class (dyslexic and scholar learning disorder) were 80.2% and 75%, respectively,
indicating a high ability to detect true positives. On the other hand, the specificity was
62.7%, which was higher than that of the saccade and reading tasks, suggesting better
generalization ability.
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5. Discussion
5.1. Comparison with Existing Literature

Our findings highlight the challenges of applying machine learning models to real-
world situations, especially when dealing with data that show greater variability and a
wider range of pathologies. Nonetheless, our study also demonstrates the promise of
deep learning models in these contexts, as they surpass machine learning models on the
Ora2022 dataset.

Despite some loss in predictive power for class 1 (dys) in the Ora2022 dataset, our
models demonstrate high sensitivity and specificity in accurately predicting class 0 (nor-
mal + other pathologies). This indicates that our models can effectively learn from the
data and improve their predictive capabilities even when faced with challenging and
complex scenarios.

Furthermore, our architecture demonstrates strong performance across all six datasets
when compared to the two different methods proposed in previous studies [8,9], achieving
acceptable error rates for both positive and negative classes. These results offer promising
evidence for the potential of deep learning models in real-world clinical settings, especially
when dealing with greater variability in data and pathologies.

Lastly, it is important to note that while deep learning methods are robust, they often
sacrifice the interpretability of predictions. Unlike traditional machine learning approaches
which operate on clearly defined features and explicit decision rules, deep learning models
make predictions that are less easily explained. This lack of transparency is particularly
concerning in a medical context and we believe that both traditional ML and deep learning
methods can be used together effectively in practical applications.

5.2. Analyzing Feature Importance in Machine Learning Algorithms

Additionally, we performed a permutation test to estimate the feature importance of
each method, as opposed to deep learning methods, machine learning algorithms are more
suited for explainability. We present in Figure A5 the feature importance for each algorithm
when trained on the saccade or the vergence tasks. We train each method using 5-fold
cross-validation. During each fold, we apply the permutation test 100 times. Subsequently,
we train the model and evaluate it on the corresponding validation set to compute the
mean accuracy decrease. Finally, we aggregate the scores from the 100 iterations as well
as the 5 folds by calculating the mean. We omit the reading visual task, as none of the
machine learning algorithms achieved a satisfactory score. Additionally, we refrain from
analyzing the results of applying the permutation test to GRNN on the saccade visual task
as the optimizer was diverging.

Overall, the set of determining parameters varies according to the machine learning
algorithm used and to the dataset it is applied to.

When considering the saccade dataset, a noteworthy observation arises when focusing
solely on the Multilayer Perceptron (MLP) and the Random Forest models. These two
models share a resemblance in terms of their top three important features, specifically the
standard deviation of the latency parameters for both the left and right saccades, along
with the standard deviation of disconjugacy for saccades to the left. On the other hand,
when considering the vergence visual task, the mean value of the latency of convergence
emerges as a consistent and influential feature across all models.

Recall, the latency is the time period between the target onset and the beginning
of eye movement. Physiologically, the longer the latency the more efficient the neural
network programming of eye movement is. Concerning the variability of the latency and
any other parameter, the larger the variability the worse is the efficiency of the biological
eye movement system, i.e., lacking precision and capacity of reproducibility. Saccade
disconjugacy is a parameter that describes the capacity of the human brain to control the
saccades of the left right eye together, as ideally the two eye should move yoked by the
same amount yoked.
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It is crucial to note that permutation tests are subject to limitations arising from feature
correlation. For instance, if two highly important parameters exhibit a strong correlation,
altering the value of the first feature may not significantly impact the overall performance
of the model. This is because the other correlated feature can still encapsulate the essential
information, mitigating the potential impact of the perturbation.

5.3. Physiologic Validity

This study provides support for recent evidence suggesting that it is possible to
accurately differentiate dyslexia and learning disorders from other pathologies using
raw eye movement data. The data consists of time series of x, y eye positions from
individuals being tested in various physiological tests (saccades, vergence, and reading),
then deep learning algorithms are applied to classify the data. It is noteworthy that the
data used in the study are realistic clinical data from multiple centers in Europe, all using
the same technology to test eye movements. Therefore, the study addresses a real health
and education issue: can individuals with dyslexia and learning disorders be classified
differently from individuals with other pathologies based on their eye movements? The
answer is yes. By training deep learning models using eye movement data from each
individual studied in several tests, such as saccades, vergence, and reading, it is possible to
achieve physiologically plausible discrimination between the two groups.

5.4. Limitations of Using Data Points from Reading Only

Most of the existing studies are limited to analyzing eye movements during reading.
The present study addresses this limitation and particularly emphasizes the discriminative
capacity of vergence eye movements—considered the most complex type of eye movement,
crucial for activities at near and intermediate viewing distances, including reading. For
instance, the quality of binocular coordination during reading relies on the effectiveness
of vergence, and even large saccades in a real-world environment are better coordinated
when vergence capacity is strong.

This study employs deep learning methods applied to time series data of various eye
movements, offering multiple advantages. From a physiological perspective, this approach
is relevant as it incorporates all eye position data points over time, even in the presence
of noise. Additionally, vergence eye movements, being the least stereotyped among eye
movements and varying even among healthy subjects, exhibit higher predictive capacity,
thereby enhancing the physiological validity of the results.

5.5. Screening Dyslexia and Learning Disorders with Other Pathologies

Moreover, almost all prior studies presented in the introduction compared healthy
individuals to patients, whereas this study compares dyslexia and scholar learning disor-
ders to a number of other pathologies. This is a more realistic clinical approach. The results
confirm that eye movement features are a valid way to differentiate dyslexia and scholar
learning disorders from other pathologies or dysfunctions.

5.6. Controversy about Dyslexia

The neurological causes of dyslexia are still not completely understood, and there is on-
going debate surrounding various controversial theories [38–40]. This research introduces
the idea that even subtle eye movement abnormalities, when combined with advanced deep
learning methods, could help distinguish individuals with dyslexia from those without this
condition. As a result, it suggests that, in some cases of dyslexia, issues with eye movements
themselves might be a significant factor contributing to reading difficulties. While it is
uncertain whether this is the sole causal factor, it certainly appears to exacerbate reading
challenges and serves as a biomarker for such difficulties. For instance, understanding the
impact of these findings can lead to demystifying dyslexia and potentially offering solu-
tions; for example, addressing eye movement abnormalities through specialized training
methods like vergence eye movement training as introduced by Kapoula et al. [41,42].
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5.7. On the Complementarity between Saccade and Vergence Task

When considering the Ora2022 dataset alongside the Ora2021 dataset, we observe
that the models trained on the vergence task exhibit higher specificity but lower sensitivity
compared to the models trained on the saccade task. This suggests a complementarity
between the two trained models. We have observed this same order of performance, in
terms of sensitivity and specificity, in our previous studies when applying machine learning
approaches to different datasets.

5.8. On the Reported Validation Score

Our study reports validation macro F1 scores up to 68.1%. Several studies report
remarkably high generalization scores [34]. However, it is crucial to note that the reliability
of the validation score depends on the fidelity of the validation set. This includes factors
such as the absence of bias, data variability reflecting real-world scenarios, and the rigor
of the training process. The latter can introduce additional problems like overfitting and
validation information leaks. Moreover, the test scores of different methods evaluated on
different test datasets are incomparable. Thus, in our opinion, a 70% F1 score on a realistic
dataset is more reliable than 95% on biased test set.

5.9. Major Finding

Our findings show that existing supervised learning algorithms perform well on
research datasets but struggle with clinical data due to label variability and high input
variation. Factors such as signal quality, calibration, recording duration, and clinician
proficiency in eye movement recording contribute to the input variability in clinical data.

Moreover, diverse pathologies are present within the target population of clinical data,
leading to label variability. In contrast to research data with only healthy subjects in class
0, multicenter clinical data contain subjects with various pathologies within the negative
class, which makes model training more challenging.

When considering high-quality research data, machine learning shows a competitive
performance against deep learning but in realistic scenarios deep learning outperforms
machine learning at the expense of reduced model explainability.

To address these challenges, we propose a deep-learning-based solution which demon-
strates robustness in handling noisy data and capturing underlying distribution for im-
proved performance.

6. Limitation and Future Direction
6.1. Limitation

In our study, we demonstrate the feasibility of using deep learning to detect scholar
disorders in clinical data. However, the macro F1-score of up to 68.1% on the vergence visual
task needs further improvement. We are currently exploring the addition of contextual
information, such as spatial position coordinates and timing of stimuli, along with real-time
interval confidence for technical quality of eye movement recordings. Another limitation is
the explainability of model decisions; currently, decision explainability is lacking. Future
research could consider more expressive transformers and visualization algorithms.

Additionally, investigating screening for each pathology relative to others using ar-
chitectures like transformers would be a next step due to their high model capacity and
improved performance across various domains. The imbalance factor is another limitation
(the ratio between positive and negative samples). Constructing balanced datasets may mit-
igate this bias in future studies. To reduce its impact, focal loss is used to encourage focus
on misclassified samples rather than well-classified ones although completely eliminating
this bias when possible might be preferable.

Finally, bigger datasets collected after 2022 will be important for training stability
and model performance. Thus, enabling the use of the same test dataset for both machine
learning and deep learning approaches mitigates the risk of biased comparisons.
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6.2. Enhancing Model Training Conditions

Screening pathology from eye movement gaze data involves a two-stage process.
The initial stage entails constructing a model to estimate eye movement gaze data from
video recordings, while the subsequent stage focuses on leveraging this data for pathology
screening. While deep learning methodologies have gained significant attention for the
first stage [43–47], there remains a noticeable gap in their application to the second stage,
both in terms of the number of studies, dataset sizes, and architecture complexity.

For instance, the learning process for these two stages differs substantially in dataset
construction. While collecting and annotating eye movement recordings using similar
solutions is relatively straightforward, building a dataset tailored to a specific pathology
presents unique challenges. Moreover, while various image-based data augmentation
methods exist to augment the training data for the first task, identifying suitable techniques
for augmenting eye movement gaze time series that align with physiological characteristics
without distorting population patterns remains a significant challenge.

Therefore, a future direction would be to focus more on improving model learning
conditions, such as ensuring a large training set size and a reliable testing set with a data
distribution similar to real clinical data [10]. Additionally, incorporating physiologically-
driven data augmentation methods that act as data samplers rather than just regularizers is
crucial. Without these building blocks, overparameterized deep learning models are prone
to overfitting.

6.3. Future Direction

Deep learning, when trained with the appropriate data and structure, has demon-
strated superiority over traditional machine learning methods. This superiority stems
from the expressive nature of deep learning models, their capacity to autonomously select
pertinent features for task learning, and their robustness in handling noisy data. However,
a significant drawback at this juncture is the lack of clear decision explainability inherent in
deep learning models. Unlike many machine learning algorithms that enable the capture
of the most predictive set of features, deep learning algorithms are often perceived as black
boxes. Therefore, an avenue for improvement lies in exploring methods for visualizing the
patterns learned by the model or understanding its decision paths.

In our study, we categorized the data into two distinct groups: a scholarly disorder
population and the remaining population. To address the limitations of a small dataset, we
filtered out other pathologies. A potential future direction involves developing the capabil-
ity to screen each pathology group separately, rather than solely focusing on identifying
scholarly disorders within the broader pathology group.

Furthermore, incorporating contextual information, such as stimulus position, confidence
levels of gaze data estimation, and latency, can significantly enhance model performance.

6.4. Toward an AI Assistant

Our primary objective is to integrate the learning model into an AI assistant [48,49]
for guiding clinicians to prioritize screened pathologies before addressing others. It is
important to note that our aim is not direct classification; rather, we advocate for clinicians to
make final decisions based on our model’s insights. However, our model seeks to stimulate
clinicians to envisage a broad and nuanced distribution proposed by eye movement gaze
data analysis when assessing new patients.

7. Conclusions

In this study, we introduced a novel neural architecture for eye movement analysis. We
conducted an experimental study using a large dataset that we designed to be closer the the
clinical reality of eye movement pathology detection. We compared our approach to other
deep learning methods and traditional machine learning approaches. Our results showed
that our method yields a significantly better performance than previous approaches in this
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real-world setting. We hope that our results will foster further research into automated eye
movement analysis with modern deep learning methods.

8. Patents

Zoï Kapoula has applied for patents for the technology used to conduct this exper-
iment: REMOBI table (patent US8851669, WO2011073288); AIDEAL analysis software
(EP20306166.8, 7 October 2020; EP20306164.3, 7 October 2020—Europe). Patent application
pending EP22305903.1.

Author Contributions: Conceptualization, A.E.E.H. and V.S.F.G.; methodology, A.E.E.H.; software,
A.E.E.H.; validation, A.E.E.H., V.S.F.G. and Z.K.; formal analysis, A.E.E.H.; investigation, A.E.E.H.;
resources, Z.K.; data curation, A.E.E.H.; writing—original draft preparation, A.E.E.H., V.S.F.G. and
Z.K.; writing—review and editing, A.E.E.H., V.S.F.G. and Z.K.; visualization, A.E.E.H.; project
administration, V.S.F.G. and Z.K.; funding acquisition, Z.K. All authors have read and agreed to the
published version of the manuscript.

Funding: Alae Eddine El Hmimdi is funded by Orasis-Ear and ANRT, CIFRE.

Informed Consent Statement: This meta-analysis drew upon data sourced from Orasis Ear, in
collaboration with clinical centers employing Remobi and Aideal technology. Participating centers
agreed to store their data anonymously for further analysis.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are not publicly available. However, upon reasonable request, they are available from the
corresponding author.

Conflicts of Interest: Zoï Kapoula is the founder of Orasis-EAR.

Appendix A

Figure A1. Presentation of the number of positive and negative windows for each of the six sub-
datasets, divided into the training set (top) and the test set (bottom).
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Figure A2. Illustration of eye movement left and right positions for each of the saccade (first row), the
y axis direction correspond to the right saccade direction, vergence (second row), the y axis direction
correspond to the convergence direction, and reading (last row) tests. For each of the three rows, the
left subfigure corresponds to the eye movement of a subject from the positive class (dyslexia and
learning disorder), and the right subfigure corresponds to the eye movement conjugate signal of a
subject from the negative class (pathologies other than dyslexia and learning disorder).

Figure A3. Presentation of the basic block of the proposed architecture (Convblock). k, d, and s
correspond to the kernel size, the filters, and the dilation rate, respectively.
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Table A1. Convolutional layer hyperparameters.

Stage Filter Size Pooling Kernel Size Activation

1 64-64-64 0-0-2 5-5-5 relu
2 64-64-64 0-0-2 5-5-5 relu
3 128-128-128 0-2-2 5-5-5 relu
4 256-256-256 0-2-2 3-3-3 relu

Table A2. Model Training Hyperparameters.

Value
Optimizer

name AdamW
Learning rate 0.0001
Beta1 0.9
Beta2 0.999
Weight decay 0.00001

Loss

name Focal loss
Alpha 0
Gamma 2

Training

batch size 128
epochs 100
number of folds 5

Figure A4. Presentation of our proposed HTCE architecture. k and d correspond to the kernel size
and the filters. Finally, pool corresponds to the pool size of the max-pooling layer of each ConvBlock.
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Figure A5. An overview of feature importance estimation using the permutation test algorithm for
each machine learning model and across different visual tasks. Please note that the 8 suffixes C,
D, L and R correspond to conjugate, disconjugate, left, and right saccade. Additionally, M and S
correspond to the mean and the std.
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