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Abstract: Reinforced concrete (RC) columns with short lap splices built in the early 1970s or before
are known to have deficient seismic strength and ductility. These short lap splices are poorly confined
and located right above the foundation level, where it is known that the inelastic demands are high
under seismic loading. In this study, a numerical model for estimating the lateral strength and
deformation of RC columns with short lap splices is introduced. The latter model is based on local
bond–slip analytical models derived from isolated anchored bars through the closed-form solution of
the differential equation of bond. The proposed model is correlated to experimental data from cyclic
loading tests on RC columns with deficient lap splices. It can be seen that the strength of short lap
splices, the failure mode, and the column’s lateral resistance and deformation are in good agreement
with the experimental results both under monotonic and cyclic seismic analyses.
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1. Introduction

Old-type RC columns in both buildings and bridges were built in the early 1970s or
before according to obsolete building codes having widely spaced transverse reinforce-
ment and short lap splices (20–24 times the longitudinal bar diameter) at the base of the
column [1–4]. Such RC columns have deficient seismic strength and ductility. Structures
including such columns are more likely to perform poorly under seismic loading and have
an increased probability of collapse through potential pull-out failure. Nonlinear static or
dynamic analyses are becoming common practice for seismic assessment of such structures.
Accurate, advanced, but simple numerical models are essential in order to capture the
pull-out failure of columns with deficient lap splices. However, existing models are not
accurate enough due to the softening of the force-transferring mechanism between the
concrete and lap-splice bars that governs the overall structural response.

There have already been several numerical studies of the nonlinear seismic response
of RC columns with short lap splices [2,5,6]. Cho and Pincheira (2006) [2] proposed an
analytical modeling approach using nonlinear springs in series at the element end to model
the softening response of such RC columns. The disadvantage of the latter model is that
it is based on the calibration of the nonlinear parameters of the plastic springs through
experimental results. Tariverdilo et al. (2009) [6] also presented a model that is able to
capture the degradation due to bar slip in the lap splice based on the mechanical properties
of the longitudinal reinforcement and the configuration of the transverse reinforcement. In
the latter model, however, there is a loss of objectivity due to strain localization, which is a
critical parameter in the numerical model [7].

The development length of lap splices is usually defined in building codes with
reference to the corresponding length of bar anchorage, considering that these two states of
stress are similar. Therefore, the bond in lap-splice regions behaves exactly the same as in
the anchorage [8]. This point of view will also be adopted in this study.

This paper has the following contributions in the research area of seismic assessment
of RC columns with short lap splices:
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• A closed form solution of bond equations governing the behavior of lap-spliced bars
of an RC column was developed considering nonlinearity in the bond–slip law.

• The latter was embedded in a Windows-based software program for fiber-based,
distributed nonlinearity analysis of prismatic frame elements undergoing lateral sway
such as would occur during an earthquake.

• Moment, shear, and axial load interaction were considered in calculating the resistance
curve for RC columns that underwent flexure shear or purely shear-dominated modes
of failure, and the distinct contributions of the many contributing sources of column
deformation (curvature, shear angle, axial elongation, lap splice slip) were illustrated
through the developed algorithm.

• The proposed analytical model can also solve the column state of stress under full
cyclic load reversals for flexure-dominated response conditions of RC columns with
deficient lap splices at the base of the column.

The above contributions are an extension of the research outcome of previous studies
by the author [9–12] applied to the case of seismic assessment of RC columns with short
lap splices. Short lap splices, which are a characteristic of lightly reinforced RC columns de-
signed with obsolete building codes such as those analyzed in these previous studies [9–12],
were not confronted, until now, by the author. However, it is evident that this extension is
straightforward, as will be described in the next sections.

The structure of this study is the following: after the introduction that describes the
initiatives of this research paper, the governing equations of bond–slip behavior of lap-
spliced steel bars and concrete are described in Section 2. Bond, slip, and strain distributions
along the lap splice of a linear elastic bar are provided here, too. The proposed analytical
model for monotonic and cyclic seismic analyses of RC columns with deficient lap splices
is also presented in this section. In Section 3, the correlation of the proposed analytical
model to the experimental results from the literature is thoroughly described. Finally, the
discussion of the output results is presented in Section 4, while the conclusions and future
work are presented in Section 5.

2. Materials and Methods

The fundamental equations, which delineate the longitudinal transfer of force from a
bar to the surrounding concrete cover via bonding, are deduced from the force equilibrium
established across an elemental segment of the bar with a length of dx [13,14]:

d f /dx = (−4/Db) · fb (1)

In this context, f denotes the axial stress experienced by the bar; Db represents the
diameter of the bar; and fb indicates the local bond stress. Additionally, ensuring com-
patibility between the relative translation of the bar concerning the surrounding concrete
(termed slip, denoted as s), the axial strain ε of the bar, and the concrete strain εc over dx
necessitates that [13,14]:

ds/dx = −(ε − εc) ∼= −ε (2)

In the case of normal concrete, the term εc is disregarded because its tensile value
remains below the cracking limit (εc,cr ≈ 0.00015), which significantly undercuts its influence
compared to the other term in Equation (2). Relationships between bond stress, slip, and
bar stress to strain, are governed by material constitutive equations, represented as fb = fb(s)
and f = f (ε) (refer to Figure 1). Solving Equations (1) and (2) can be achieved via exact
integration, yielding closed-form solutions for stress and strain distribution along the lap
splice. This method is facilitated by selecting simplified models for material behavior, such
as piecewise linear relations. This approach offers a distinct advantage over numerical
solutions by providing clear insights into how various design parameters affect the behavior
of lap splices [9].
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Figure 1. (a) Stress–strain law of steel bar; (b) local bond slip law.

In this scenario, the relationship between bar stress and strain exhibits elastoplastic be-
havior with hardening, as depicted in Figure 1a. Additionally, a linear elastic and perfectly
plastic local bond–slip relationship with residual bond is assumed to facilitate closed-form
solutions, as illustrated in Figure 1b. The plateau in this relationship corresponds to the
bond strength within the local bond–slip law. The residual bond strength value, fbres, is
only nonzero for ribbed steel bars, unlike smooth steel bars. The latter signifies the residual
friction between the concrete cover and the steel bar following the failure of the interlocking
mechanism of the bar’s ribs (Figure 1b).

Strain penetration emerges within the bars beyond the critical section as a result of
bond degradation surpassing the slip limit s2, indicating the conclusion of the plateau in
the local bond–slip relationship. This phase can manifest in various manners along a bar:
to achieve yielding, where there is a constant bar stress (=fy, df/dx = 0) for a spectrum of
bar strain values ε > εy, the bond needs to be nullified (fbres = 0). Conversely, if fbres holds a
nonzero value, a yielded bar will exhibit a proportional degree of strain hardening [9].

2.1. Bond–Slip Distribution along the Lap Splice of a Linear Elastic Bar

The solution for elastic lap splice bars is provided in this section, which applies
specifically to the ascending branch of the stress–strain relationship of steel reinforcing
bars, where ε ≤ εy. In the scenario depicted in Figure 2a, concerning the elastic portion
of the bond slip (i.e., when s ≤ s1), the bond is linearly correlated with slip according to:
fb =

(
f max
b /s1

)
·s. By substituting this expression into Equations (1) and (2), the resulting

differential equation can be solved in closed form, as demonstrated below:

d f (x)
dx

= − 4
Db

· fb(x) => (3)

Es·dε(x)
dx

= − 4
Db

·
f max
b
s1

·s(x) => (4)

d2ε(x)
dx2 = −

4 f max
b

Db·Es·s1
·ds(x)

dx
=> (5)

d2ε(x)
dx2 =

4 f max
b

Db·Es·s1
·ε(x) (6)

ds(x)
dx

= −ε(x) => (7)

d2s(x)
dx2 = −dε(x)

dx
=

4· f max
b

Db·Es·s1
·s(x) (8)
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Figure 2. (a) Elastic lap splice bar response while bond–slip law remains elastic; (b) elastic lap splice
bar response with bond plastification.

Hence, the distributions of bar normal strain, slip, and bond stress across the available
length of the lap splice [0 ≤ x ≤ Lb ] are described by the subsequent equations:

ε(x) =
εo

1 − e−2ωLb
(e−ωx − e−ωx−2ωLb) ≤ εy (9)

s(x) =
εo

ω(1 − e−2ωLb)
(e−ωx + eωx−2ωLb) ≤ s1 (10)

fb(x) = ( f max
b /s1)·s(x) ≤ f max

b (11)

The characteristic property ω is defined as follows: ω =
[
4 f max

b /(Es·Db·s1)
]0.5. Here,

the variable εo represents the bar axial strain at the loaded end of the lap splice, and Es
denotes the modulus of elasticity of the bar in the longitudinal direction. Substituting
x = Lb into Equation (10) yields a non-zero slip value at the free end of the lap splice{

i.e, s f = 2εoe−ωLb /
[
ω
(
1 − e−2ωLb

)]
̸= 0

}
, even under minimal loads. This observation

aligns with experimental findings [9].
The bar axial strain at the loaded end, denoted as εo = εi

el , represents the threshold
beyond which the bond mechanism undergoes plastic deformation (i.e., bond yielding)
along a length lp, which expands as the bar strain at the loaded end increases, while the
bar remains elastic. Consequently, the variable εi

el is directly linked to the slip magnitude
s1 in Figure 2 and can be determined by Equation (10) after substituting s(x = 0) = s1, as
outlined below:

εi
el = s1ω

1 − e−2ωLb

1 + e−2ωLb
(12)

If the bond length available is adequate or if there is transverse confinement acting
perpendicular to the contact surface, thus creating additional strength reserves for the bond
mechanism, the bar can endure a strain exceeding εi

el [as illustrated in Figure 2b]. In such
instances, the maximum bond stress can attain the characteristic strength value f max

b over a
length of bond plasticization lp. The comprehensive solution of Equations (1) and (2) across
Lb (initiating from the loaded end and progressing toward the lap splice’s termination)
consists of two segments as described below.

1. The distributions of bar strain, slip, and bond stress across the length lp (for 0 ≤ x ≤ lp)
are determined under the assumption that fb(s) = fbmax remains constant. Consequently,
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the bar stress and strain change linearly with distance over the segment lp where bond
plastification occurs:

ε(x) = εo −
4 f max

b
Es · Db

·x (13)

s(x) = s1 + 0.5
(
lp − x

)[
ε(x) + εii

el

]
(14)

fb(x) = f max
b (15)

In this case, εii
el represents the diminished bar strain compared to the εo value observed

at the loaded end. It is important to note that εii
el now emerges at the conclusion of the bond

plastification region, lp:

εii
el = εo −

4 f max
b

Es · Db
·lp (16)

2. For the distributions of bar strain, slip and bond stress over the remaining lap splice
length (which is still in the elastic range), Lb − lp (for lp ≤ x ≤ Lb), these are obtained
from the elastic solution Equations (9)–(11):

ε(x) =
εii

el

1 − e−2ω(Lb−lp)

(
e−ω(x−lp) − eω(x−lp)−2ω(Lb−lp)

)
(17)

s(x) =
εii

el

ω
(

1 − e−2ω(Lb−lp)
)(e−ω(x−lp) + eω(x−lp)−2ω(Lb−lp)

)
(18)

fb(x) = ( f max
b /s1)·s(x) ≤ f max

b (19)

The length of plastification lp, is estimated if continuity of strain and slip are enforced
at x = lp [9].

2.2. Analytical Model for Monotonic and Cyclic Seismic Analyses

This study examines a cantilever column subjected to various load combinations (in-
cluding axial load, moment, and shear), simulating the shear-span behavior of a real column
during lateral sway, spanning from the support to the point of inflection (where the moment
becomes zero). While this scenario appears simple from a statics standpoint, executing
its numerical simulation encompassing all interacting deformation mechanisms remains
a formidable challenge. Addressing this requirement, especially for brittle cantilever-
reinforced concrete columns, a computer program named “Phaethon” was developed as a
tool for investigating mechanics through nonlinear analysis [9–12]. The subsequent section
presents the pushover algorithm embedded within this Windows application.

2.2.1. Pushover Seismic Analysis

To compute the lateral load resistance curve of a column shear span under lateral
sway, a pushover analysis is performed. In the case of a brittle RC cantilever column within
Phaethon, a sectional model (either rectangular or circular) based on modified compres-
sion field theory (MCFT) [15,16] is utilized, along with the lap splice model described
previously. A progressively increasing lateral point load is applied at the cantilever’s tip
(refer to Figure 3), and a single fiber element is assigned to cover the entire height of the
cantilever column, with the user determining the number of Gauss–Lobatto integration
points. Additionally, the user specifies the analysis step for the lateral load V to be applied
during the pushover analysis, as well as the total number of steps until reaching maximum
load. It is worth noting that the modified compression field theory in the fiber approach,
as described by Bentz (2000) [17], cannot replicate the descending branch of shear-critical
columns; hence, a load-control procedure was integrated into Phaethon. The maximum
load in Phaethon corresponds to the load at the last step of algorithm convergence in incre-
mental form. It is important to emphasize that, in actuality, the brittle column’s ascending
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response is followed by a descending branch indicative of progressive failure. However, the
proposed algorithm is constrained by shear strength achievement. Following the peak load,
the descending branch of the capacity curve is defined by a line connecting the maximum
load point to the column’s axial failure point, quantified in terms of the drift estimate by
Elwood and Moehle (2005) [18], along with 20% of the attained maximum load as residual
load at axial failure.
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Figure 3. Pushover Analysis in Phaethon Windows software (Version 1.0) [13] (ycz is the depth of the
compression zone, cover is the concrete cover of the cross-section and d is the total depth of column’s
cross-section).

For every point load applied at the tip of the cantilever (as shown in Figure 3), the
corresponding shear force at the designated sections of the column (integration points)
equals that load, resulting in a constant shear diagram. The flexural moment at the column’s
base, denoted as M0, along with the moment distribution, are both derived from the lateral
load value, leading to a constant shear force. The concentric axial load (either tensile or
compressive) applied at the cantilever’s tip remains constant throughout the pushover
analysis and along the length of the cantilever, ensuring each section of the column bears an
axial force equivalent to the one applied at the tip. Following this methodology, the array
of resisting section forces should converge to the previously defined section forces based on
the moment, shear, and axial load diagram of the cantilever column under constant axial
load and incrementally increasing lateral tip point loading. Once the convergence of section
forces is achieved (via the Newton–Raphson iteration algorithm) along the length of the
cantilever column to match the correct values based on the corresponding force diagrams
due to the applied tip horizontal and axial load, the axial deformation εo, curvature φ, and
shear strain γ are determined for each section. Integrating the curvatures (as depicted in
Figure 3) across the shear span of the cantilever column yields the rotation of the cantilever
column owing to flexure, which can be readily converted into lateral displacement due
to flexure ∆o

f by multiplying with the length of the shear span. Similarly, integrating the
shear strains (illustrated in Figure 3) by sampling several sections (positions determined
according to Gauss–Lobatto) along the length of the cantilever column (integration points)
results in the lateral displacement ∆o

sh due to the shear distortion mechanism of the
cantilever column.

Finally, the rotation and displacement ∆o
sl due to slip of the lap spliced tensile rein-

forcement (as depicted in Figure 3) are determined based on the closed-form solution of the
governing equation of bond described in the preceding section (pull-out slip s of Figure 3 is
determined according to Equations (10), (14) and (18)). All these simultaneous contribu-
tions (flexure, shear, and lap splice) are combined to define the total lateral displacement
(i.e., ∆o = ∆o

f + ∆o
sh + ∆o

sl) of the cantilever column at each lateral load step and to derive
the capacity curve of the column until maximum lateral load (as shown in Figure 3).
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2.2.2. Cyclic Seismic Analysis

Numerical simulations under cyclic lateral action and constant axial load were con-
ducted here using a nonlinear fibre beam-column element which considers the spread
of plasticity. In this type of analysis, the longitudinal beam element uses a force-type
formulation with linear moment distribution to derive a flexibility matrix for the element
with progressing nonlinearity (step by step); the strain-displacement relationships are
therefore defined implicitly after inversion of the flexibility matrix to obtain the stiffness.
Assuming strain compatibility between materials comprising the member, the formulation
samples sectional responses at selected integration points along the length. Such elements
are available in FEDEAS Lab (2004) MATLAB toolbox [19–22]. As it can be seen in Figure 4,
a single frame element is considered along the length of the cantilever column. A rotational
spring is added below the element at the base, whose elastic stiffness was determined
using the lap splice bar model of the previous section, which is embedded in Phaethon
software (Version 1.0). Sampling of sectional response is performed at five Gauss–Lobatto
integration points along the member length. The typical discretization of rectangular col-
umn sections is shown in Figure 4. At the sectional level, the Bernoulli hypothesis (plane
sections remaining plane and normal to the axis of the member) is used to relate strains in
the different fibres/layers (Figure 4) to the sectional curvature and longitudinal axis normal
strain. Nonlinear uniaxial material laws are used to relate normal stress with normal strain
in the fibres, thereby neglecting the effect of shear in modifying the principal orientations
through the height of the cross-section, as Phaethon software considers. Sectional stress
resultants (moment and axial load) are obtained from the equilibrium of the contributions
of fibre stress resultants [19–22].
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To account for material nonlinearity, the formulation employs uniaxial hysteretic
nonlinear material stress–strain relations for confined concrete and common steel rein-
forcement [23,24]. The stress–strain relations are endowed with mathematical expressions
for the envelope, for the hysteresis loops, and for the transition from the envelope to the
unloading/reloading branches [25].

In 1988, Mander, Priestley, and Park [23] introduced a unified stress–strain method
aimed at predicting the behavior of both pre-yield and post-yield phases in confined
concrete members under axial compressive stresses. This approach adopts an equation
proposed by Popovic in 1973 [26], originally devised to characterize the stress–strain
response of unconfined concrete. The model is founded on a constant confining pressure,
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denoted as fl. The axial stress of the confined concrete, fc, for any given strain εc, correlates
with the peak confined strength, fcc. The peak confined strength, fcc, is determined by
a combination of the unconfined strength, fco, and the constant confining pressure, fl.
The strain at peak confined strength, εcc, is expressed as a function of the strain at peak
unconfined strength of concrete, εco, following the equation proposed by Richart et al.
(1928) [27]. The cyclic variant of this uniaxial material model is illustrated in Figure 5.
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Figure 5. Cyclic uniaxial material model by Mander et al. (1988) [23].

The stress–strain relationship proposed by Menegotto and Pinto (1973) [24] provides a
highly accurate depiction of the steel material’s behavior. It is crucial for the computational
efficiency of frame model analysis that the model directly correlates stress to strain. How-
ever, the model’s drawback lies in its inability to reach the point of last unloading upon
reloading in the same stress direction. Figure 6 illustrates the cyclic variant of this uniaxial
material model. Both this steel model and the previously mentioned concrete model are
utilized in simulating the cyclic lateral response of RC columns with short lap splices, as
detailed in the subsequent section.
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3. Results

The experimental campaign by Lynn et al. (1996) [28] was employed here for the
validation of the proposed analytical model for both monotonic and cyclic seismic analyses.
It includes eight full-scale specimens under constant axial load and increasing cyclic lateral
displacement increments until failure. Three of the above specimens had short longitudinal
bar lap splices (with a lap length of 20 times the longitudinal bar diameter) just above
the top surface of the foundation block. Two of the latter specimens (see the column
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properties in Table 1 below) will be employed in this study for the correlation of the
proposed methodology to the experimental results.

Table 1. Details of RC columns with short lap splices (units: mm, MPa, kN).

Case Axial
Load (kN)

Width
(mm)–Depth

(mm)

Shear Span
(mm)–

Lap Splice
Length (mm)

Clear
Cover
(mm)

Concrete
Strength

(MPa)

Number–Diameter
(mm)–Reinforcing

Ratio of
Longitudinal Bars

Yielding–
Ultimate

Strength of
Long. Bars

(MPa)

Yielding Strength
(MPa)–Spacing
(mm)–Diameter
(mm)–Ratio of
Transv. Reinf.

Lynn et al.
(1996)

[28]–(Spec.
3SLH18)

503 457.2
457.2

1473.2
635 38.1 26.9

8
31.75
0.0303

330.96
496

399.91
457.2
9.525

0.00082

Lynn et al.
(1996)

[28]–(Spec.
3SMD12)

1512 457.2
457.2

1473.2
635 38.1 25.5

8
31.75
0.0303

330.96
496

399.91
304.8
9.525
0.0021

For the verification of the proposed pushover analysis, the first specimen of Table 1
(Spec. 3SLH18) is simulated. Figure 7 depicts the capacity curve of the latter specimen
produced by Phaethon software with the corresponding cyclic experimental data of the
cantilever configuration of the same specimen.
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Figure 7. Correlation of the proposed pushover analysis with the experimental results by Lynn et al.
(1996) [28].

It can be seen that the numerical results are in good agreement with the experimental
response. In Figure 8 below, based on the analytical model of the lap-spliced bar described
previously, the strain, slip, and bond distributions of the bar at maximum lateral strength
produced by Phaethon Windows software are given.

The simultaneous lateral displacement contributions (flexure, shear, and lap splice
slip) until the maximum lateral strength of the above-considered specimen as determined
by Phaethon Windows software are provided below in Figure 9.
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Figure 9. Lateral displacement contributions (flexure, shear, lap splice slip) from pushover analysis
of Specimen 3SLH18 by Lynn et al. 1996 [28] (56 pushover steps of 5 kN lateral load step each).

In addition, for the verification of the proposed cyclic seismic analysis, the second
specimen of Table 1 (Spec. 3SMD12) is employed. Figure 10 depicts the cyclic lateral
response of the latter specimen produced by the FEDEAS Lab MATLAB toolbox [19–22]
with the corresponding cyclic experimental data of the cantilever configuration of the same
specimen. The constitutive cyclic material laws applied in the rectangular fiber section
of the numerical model of Figure 4 and the properties of this specimen are depicted in
Figures 5 and 6.
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It can be seen that the numerical results are in good agreement with the experimental
response, which proves the effectiveness of implementing modeling not only for pushover
analysis but also under cyclic seismic action too.

4. Discussion

The review of the state of the art regarding interpretation and consistent modeling of
reinforced concrete column under lateral loads leaves a lot to be desired: improved response
estimation of the behavior of columns that are susceptible to shear failure after flexural
yielding; better procedures to estimate shear strength, and the pattern of degradation
thereof with increasing displacement ductility; the need to account for reinforcement slip
and its effects on stiffness and deformation capacity; the shape of the hysteresis loops; the
detrimental effects of axial load at large displacement limits; the drift capacity of structural
elements and the magnitude of deformation (drift ratio) associated with milestone events
in the response curve of the column member are open issues that need to be settled
before the performance-based assessment framework may be considered complete and
dependable [29–37]. RC columns with short lap splices built in the early 1970s or before
are known to have deficient seismic strength and ductility. A numerical model based
on local bond–slip analytical models derived from isolated anchored bars through the
closed-form solution of the differential equation of bond was developed. The proposed
model is satisfactorily correlated to experimental data from cyclic loading tests on RC
columns with deficient lap splices performed by Lynn et al. 1996 [28]. It can be seen that
the strength of short lap splices, the failure mode, and the column’s lateral resistance and
deformation are in good agreement with the experimental results both under monotonic
and cyclic seismic analyses.

5. Conclusions

To sum up, a closed-form solution of bond equations governing the behavior of lap-
spliced bars of an RC column under lateral sway was developed considering nonlinearity
in the bond–slip law. The latter was embedded in a Windows-based software called
Phaethon for fiber-based, distributed nonlinearity analysis of prismatic frame elements
undergoing lateral sway such as would occur during an earthquake. Moment, shear,
and axial load interaction were considered in calculating the resistance curve for RC
columns that underwent flexure shear or purely shear-dominated mode of failure, and the
distinct contributions of the many contributing sources of column deformation (curvature,
shear angle, axial elongation, lap splice slip) were illustrated through the developed
algorithm. The latter software offers the possibility of obtaining the rotation due to the
pull-out of the lap splice occurring in the critical section of the column. The software
also resolves strain, slip, and bond distributions along the lap splice length. Finally, the
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proposed analytical model can also solve the column state of stress under full cyclic
load reversals for flexure-dominated response conditions of RC columns with deficient lap
splices at the base of the column. The correlation to the experimental results of the proposed
numerical model is satisfactory, but further validation is necessary with more experimental
results, including shake-table tests of RC columns with short lap splices. Performance-
based earthquake engineering’s main objective is to define an “acceptable” probability of
collapse. Collapse shall be quantified as realistically as possible, using nonlinear dynamic
analysis, which incorporates several suites of ground motions. A comprehensive set of
guidelines will form the starting point for addressing the complexity inherent in nonlinear
softening responses under large displacements and deformations and will contribute to
the acceptance of nonlinear response studies in professional practice. The deployment of a
new class of column models such as those presented in this study that account for localized
phenomena such as shear and lap splice slip in a consistent iterative element formulation
will help minimize the non-convergence issues that arise with the large collection of zero-
length nonlinear spring and plastic hinge elements currently in use in nonlinear column
response simulations.
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