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Abstract: As a new technology for harvesting distributed energy, the triboelectric nanogenerator
(TENG) has been widely used in harvesting wind energy. However, the wind-driven TENG (WD-
TENG) faces the problems of high frictional resistance and low mechanical energy conversion
efficiency. Here, based on optimizing the structure of the wind turbine, a rotational double-electrode-
layer WD-TENG (DEL-WD-TENG) is developed. When the rotational speed is less than 400 round
per minute (rpm), the dielectric triboelectric layer rubs with the inner electrode layer under its gravity;
when the rotational speed is higher than 400 rpm, the dielectric triboelectric layer rubs with the outer
electrode layer under the centrifugal force. The double-electrode-layer structure avoids the energy
loss caused by other forces except gravity, centrifugal, and electrostatic adsorption, which improves
the mechanical energy conversion efficiency and prolongs the working life of the DEL-WD-TENG.
The conversion efficiency from mechanical energy to electricity of the DEL-WD-TENG can reach
10.3%. After 7 million cycles, the transferred charge of the DEL-WD-TENG is reduced by about 5.0%,
and the mass loss of dielectric triboelectric layer is only 5.6%. The DEL-WD-TENG with low frictional
resistance and high energy conversion efficiency has important application prospects in wind energy
harvesting and self-powered sensing systems.

Keywords: triboelectric nanogenerator; wind energy harvesting; high mechanical energy conversion
efficiency; low frictional resistance

1. Introduction

As a common source of renewable energy in daily life, the proportion of wind power
in global electricity generation is steadily increasing. According to the report of Global
Wind Energy Council (GWEC), wind power will account for 12% of global electricity gener-
ation by 2023 [1]. Wind turbines based on electromagnetic induction comprise the main
technology of wind power generation. However, due to high cost, complex structure, heavy
weight, and wind speed limits, the usage scenarios of wind turbines are limited to areas
far from cities and buildings [2]. With the development of new generation information
technology such as the Internet of Things, numerous and widely distributed sensors have a
significant demand for distributed energy. Hence, it is of great importance to study new
wind energy harvesting technologies and develop portable wind energy harvesters. Tribo-
electric nanogenerator (TENG), which can efficiently convert various forms of mechanical
energy in the environment into electricity, was invented in 2012 [3]. With the advantages
of simple preparation, low cost, wide material sources, multiple working modes, and
high energy conversion efficiency at low frequencies, TENG is promising in wind energy
harvesting and self-powered systems [4].
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Up to now, wind-driven TENGs (WD-TENGs) consist mainly of rotating structure
and flutter structure WD-TENGs. When the flutter structure WD-TENG collects wind
energy, the wind blows the film to generate vibrations [5–16]. During the vibration process,
the contact and separation movement between the dielectric triboelectric layer and the
electrode is realized to generate current. The flutter structure WD-TENG is small in size and
low in cost, but it has few application scenarios and a small working wind speed range. The
rotating structure WD-TENG drives the rotor to realize the mutual friction motion between
the dielectric triboelectric layer and the electrode through the rotation of the fan blades
blown by the wind to generate current. Compared with the flutter structure WD-TENG,
the rotating structure WD-TENG has the advantages of high output, high efficiency, high
stability, long working life, and a wider speed range of wind collected. In recent years, a
variety of rotating structure WD-TENGs have been developed [17–25]. In 2015, Li et al.
reported a rotational WD-TENG that can complete free conversion between contact and
non-contact modes [26]. At low rotational speeds, the WD-TENG works in a contact state
to supplement triboelectric charge, and at high rotational speeds, the WD-TENG works in
a non-contact state to reduce wear. In 2021, Chen et al. reported a soft contact rotating WD-
TENG. Soft and density animal fur is used to reduce frictional loss and improve electrical
output of WD-TENG [27]. In 2021, Yong et al. reported a self-powered system based on
an auto-switching dual-rotating axis TENG that can efficiently collect wind energy over
broadband wind speeds (2.2–16 m/s) [28]. Appropriate contact between arched protrusion
and stator generated by the elasticity of dielectric triboelectric layer can reduce frictional
resistance and abrasion. These works improved the output performance of WD-TENGs and
broadened the range of wind energy collection, which is of great significance for promoting
the application of WD-TENGs. However, they focused on the improvement of output
performance and the reduction of abrasion. The reduction of frictional resistance brought
by the external forces and the improvement of mechanical energy conversion efficiency are
ignored. Hence, WD-TENGs with low frictional resistance, low abrasion, and high energy
conversion efficiency should be developed.

Here, based on optimizing the structure and parameters of the wind turbine, a rota-
tional double-electrode-layer WD-TENG (DEL-WD-TENG) is developed. The DEL-WD-
TENG first selects the horizontal axis wind turbine with higher wind energy utilization
rate as the wind energy collection device, and further improves the wind energy utilization
rate by optimizing the number of blades. Secondly, it uses electrostatic adsorption force
and centrifugal force to make the triboelectric layer adsorbed on the electrode. The main
interaction between the electrode and the dielectric triboelectric layer is electrostatic adsorp-
tion force, which can effectively reduce the frictional resistance and abrasion, prolonging
the working life and energy conversion efficiency of WD-TENG. Finally, a double-layer
TENG structure is proposed so that the DEL-WD-TENG can work with most wind speeds.
When the rotational speed is less than 400 round per minute (rpm), the triboelectric layer
rubs with the inner electrode layer. When the rotational speed is higher than 400 rpm,
the triboelectric layer rubs with the outer electrode layer under the action of centrifugal
force. The efficiency of mechanical energy to electricity of DEL-WD-TENGs can reach
10.3%. After 7 million cycles, the transferred charge of the DEL-WD-TENG is reduced by
about 5.0%, and the mass loss of the friction layer is only 5.6%. The DEL-WD-TENG with
low frictional resistance and high energy conversion efficiency has important application
prospects in wind energy harvesting and self-powered systems.

2. Results and Discussion
2.1. Energy Conversion Efficiency Calculation

The WD-TENG is mainly used to harvest wind energy from the surrounding envi-
ronment and convert it into electricity. Wind energy in the natural environment generates
rotational mechanical energy through the wind turbine, which is further converted into
electric energy through the WD-TENG and ultimately powers the electronic devices, thus
forming self-powered systems, as shown in Figure S1. Hence, there are two aspects to
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improve the energy conversion efficiency from wind energy to electric energy. First, the
number of wind turbine blades should be optimized to improve the energy conversion
efficiency from wind energy to rotary mechanical energy. Second, the efficiency of mechan-
ical energy to electricity is improved, thus improving the energy conversion efficiency of
the WD-TENG.

According to the relative position of the rotating axis of the wind turbine and the
ground, the wind turbine is divided into two types: horizontal and vertical axis wind
turbines. Wind energy utilization coefficient CP (the ratio of the energy of a wind turbine
can obtain from the wind in a unit time) is used to evaluate the performance of a wind
turbine, and the Cp of the horizontal-axis wind turbine is higher than that of the vertical
axis wind turbine. The Cp of the horizontal-axis wind turbine can be further improved by
optimizing the structure [29].

The mechanical energy conversion efficiency of WD-TENG is defined as the ratio of
the electrical energy supplied to the load to the input mechanical energy, which can be
expressed by the following Equation:

η =
Eoutput

Einput
, (1)

where η is the energy conversion efficiency of TENG; and Eoutput and Einput are the output
electrical energy and input mechanical energy, respectively. The specific equations are
as follows:

Eoutput =
∫ t

0
I2Rdt; (2)

Einput =
∫ t

0

T·N
k

dt, (3)

where R and I are external load resistance and current, respectively; T is the torque gen-
erated by rotational friction; N is the rotational speed; and k is a constant with a value
of 9549.

Hence, to improve the energy conversion efficiency of the WD-TENG, it is necessary
to optimize the structure of the wind turbine to increase the conversion efficiency of wind
energy to rotary energy and reduce the frictional loss of the WD-TENG to improve the
energy conversion efficiency of the TENG.

2.2. Optimization of Wind Turbines

A horizontal-axis wind turbine with higher Cp and lower starting wind speed is
selected. Figure 1a shows a wind turbine with nine blades. By changing the number of
blades (n = 3−9), the rotational speed of different wind turbines at different wind speeds
and the time taken by different wind turbines to reach the maximum rotational speed at
the same wind speed are analyzed, respectively. Under the wind speed of 3.5 m/s, the
rotational speed of the wind turbine increases with the increase in blade number, as shown
in Figure 1b. As can be seen from Figure 1c,d, it takes a short time for the wind turbine
with nine blades to reach the maximum speed, which has the highest rotational speed
under different wind speeds. Therefore, the wind turbine with nine blades is selected.
The influences of the rotor mass and windscreen area on rotational speed are shown in
Figure 1e,f, respectively. Reducing the mass of the rotor and the windscreen area can further
improve the rotational speed of the wind turbine at the same wind speed, thus improving
the wind energy collection efficiency. Finally, a horizontal-axis wind turbine with nine
blades and a weight of 90 g is used. The diameter of the WD-TENG is set as 100 mm.
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Figure 1. (a) Optical image of wind turbine blades. (b) Rotational speed with different numbers of
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and different wind speeds. (d) Time of different wind turbine blades to reach maximum speed.
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wind turbine blade on the rotational speed.

2.3. Structure and Working Principle of DEL-TENG

A double-electrode-layer WD-TENG (DEL-WD-TENG) is designed in which the in-
teractions between the dielectric triboelectric layer and the electrode are electrostatic ad-
sorption and centrifugal force. Figure 2a shows the torque measurement system of the
DEL-WD-TENG. The detailed structure of the DEL-WD-TENG is shown in Figure 2b,
which is composed of a rotor, a polytetrafluoroethylene (PTFE) dielectric triboelectric layer,
and a double-electrode-layer stator. The DEL-WD-TENG has a coaxial barrel structure. The
PTFE layer is fixed on an acrylic rod of the rotor between the inner and outer electrode
layers. The rotor is connected to the wind turbine and rotates, driven by the wind.

Rotational speed determines the working state of the DEL-WD-TENG. When the
rotational speed is lower than 400 round per minute (rpm), the PTFE film rubs with the
inner copper (Cu) electrode layer under its gravity, as shown in Figure 2c. As a brief
description, it is called the inner WD-TENG. The electrostatic adsorption between the
two triboelectric layers enables the PTFE film to be adsorbed on the inner Cu electrode,
which makes effective contact and reduces the friction loss caused by other forces. When the
rotational speed is higher than 400 rpm, the PTFE film is separated from the inner Cu layer
due to the centrifugal force, as shown in Figure 2d. It is called the outer WD-TENG. Under
the action of centrifugal force and electrostatic adsorption force, the PTFE film is attached
to the outer Cu electrode. Therefore, the DEL-WD-TENG operates in different operating
modes at different rotational speeds. The DEL-WD-TENG eliminates the mechanical energy
loss caused by other forces except electrostatic adsorption and centrifugal force, which
improves mechanical energy conversion efficiency and working life.

When the rotational speed is lower than 400 rpm, the working mechanism of the
inner WD-TENG is shown in Figure 2c. After working for several cycles, due to the
triboelectric effect, the Cu electrodes and PTFE films gain equal positive and negative
charges, respectively [30]. When the PTFE films and Cu electrodes are in the position
of Figure 2e<i>, the inner WD-TENG is in electrostatic equilibrium state, and there is
no charge transfer between the two Cu electrodes. As the PTFE films slides toward Cu
electrode 2, electrons flow from Cu electrode 2 to Cu electrode 1 due to potential difference,
thus forming current on the external load, as shown in Figure 2e<ii>. When the PTFE
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films is fully attached to Cu electrode 2, the inner WD-TENG achieves another electrostatic
equilibrium state, as shown in Figure 2ce<iii>. As shown in Figure 2e<iv>, when the
PTFE film gradually slides to Cu electrode 1, electrons will flow from Cu electrode 1 to Cu
electrode 2, creating a current in the opposite direction in the external circuit. When the
PTFE film is separated from Cu electrode 2 again, one charge transfer cycle is completed.
Due to the same structure and working mode, the working mechanism of the DEL-WD-
TENG when rotational speed is higher than 400 rpm is the same, as shown in Figure S2.
Even if the PTFE films slide in the opposite direction, the working mechanism is also the
same, but the current is in the opposite direction.
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WD-TENG split structure. Schematic diagram of the working mechanism of the DEL-WD-TENG
when the rotational speed is lower than 400 rpm (c) and higher than 400 rpm (d). (e) Working
mechanism of the DEL-WD-TENG when the rotational speed is lower than 400 rpm: <i> static
equilibrium state, fully overlapping position; <ii> intermediate state, PTFE film is sliding apart;
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To further verify the working mechanism of the DEL-WD-TENG, the finite element
simulation (FEM) method is used to simulate the electric potential distribution, as shown
in Figure 2f. When PTFE film is completely attached to Cu electrode 1 or 2, the potential
difference reaches the maximum. As PTFE films gradually slide towards copper 2 or 1, the
potential difference decreases, as shown in Figure 2f(<ii>,<iii>). The potential difference
verified the working mechanism of the DEL-WD-TENG.

2.4. Output Performance of the DEL-WD-TENG

The effect of different grid numbers (X) on the energy conversion efficiency of the
DEL-WD-TENG is studied. As shown in Figure S3, when X is 6, short circuit current (ISC)
and mechanical energy conversion efficiency are the highest. When X is 4, the large area of
PTFE film attached to Cu electrode increases the electrostatic adsorption and friction loss
between the PTFE film and Cu electrodes, resulting in an increase in the input mechanical
energy and a decrease in the mechanical energy conversion efficiency. When X is 8, the
decrease in grid area leads to the decrease in adsorption between the PTFE film and the Cu
electrode, which reduces the output performance of the DEL-WD-TENG. Hence, X is set as
6 in the following experiment.

The output performance and energy conversion efficiency of the DEL-WD-TENG at
different rotational speeds is shown in Figure 3. When the rotational speed is lower than
400 rpm, the transferred charge of the inner WD-TENG decreases from 250 nC to 200 nC
with the increase in rotational speed, as shown in Figure 3a. The corresponding charge
density decreases from 25 to 20 µC m−2. The ISC of the inner WD-TENG increases from 2.5
to 10 µA, as shown in Figure 3b. The output voltage of the inner WD-TENG also decreases
with the increase in rotational speed [31,32]. The decrease in transferred charge and output
voltage is attributed to the increase in centrifugal force and the decrease in adsorption
between the two triboelectric layers. When the rotational speed is higher than 400 rpm,
as the centrifugal force increases with the increase in rotational speed, the transferred
charge, ISC, and output voltage of the outer WD-TENG are slightly increased, which can
reach 310 nC, 38 µA, and 3500 V, as shown in Figure 3d–f, respectively. Therefore, the
DEL-WD-TENG can adapt to any rotational speed.

As shown in Figure S4, when the rotational speed is lower than 400 rpm, the outer
WD-TENG has almost no output, and vice versa. Hence, this part of the output is negligible.
The mechanical energy conversion efficiencies of the DEL-WD-TENG under different
rotating speeds and different loads are measured, as shown in Figure 3g,h. When the
rotational speed is lower than 400 rpm, the maximum energy conversion efficiency of the
DEL-WD-TENG can reach 10.3%; and when rotational speed is higher than 400 rpm, the
maximum energy conversion efficiency of the DEL-WD-TENG can reach 7.2%, which is
still improving with the increase in rotational speed. Compared with other WD-TENGs,
the mechanical energy conversion efficiency at 300 rpm is significantly improved, as shown
in Figure 3i [27,31,33,34].

To test the long-term stability of the DEL-WD-TENG, a long-term operation experiment
is conducted. As shown in Figure 4a, the transferred charge of the DEL-WD-TENG is
relatively stable, and the total attenuation is less than 5% after more than 200 h of continuous
operation (7 million cycles) at 500 rpm. Moreover, the mass of PTFE films is reduced from
1.6004 g to 1.5102 g, and the loss is only 5.6%, as shown in Figure 4b. As shown in Figure 4c
and Video S1, 200 green LEDs can easily be lit by the DEL-WD-TENG at 200 rpm.
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2.5. Demonstration of Self-Powered System

Distributed sensors play an important role in the era of Internet of things, big data, etc.
Powering such a large number of distributed sensors is a challenge. Installing WD-TENGs
in places with high wind speed can convert wind energy into electricity. The electric energy
can be stored in capacitors through power management circuits to power sensors [35,36].
The power management circuit of the DEL-WD-TENG via a tip–tip air discharge switch
is shown in Figure S5. The charging time of the capacitor at different rotational speeds is
shown in Figure 5a. The higher the rotational speed, the shorter the charging time. As
shown in Figure 5b and Video S2, four commercial temperature/humidity sensors can be
directly driven by the DEL-TENG through the power management circuit. The DEL-WD-
TENG provides a power supply curve for commercial wireless temperature sensor nodes
with ZigBee wireless transmission function, as shown in Figure 5c and Video S3. When the
rotational speed is 500 rpm, data transmission can be completed once every two minutes,
as shown in Figure 5d. The data transmission frequency can be adjusted as required to
remotely monitor the surrounding environment.
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3. Conclusions

In conclusion, based on optimizing the structure and parameters of a horizontal-axis
wind turbine, a DEL-WD-TENG is developed. The main interaction between the electrode
and the dielectric triboelectric layer comes via the electrostatic adsorption force, which
can effectively reduce frictional resistance and abrasion, improving the working life and
energy conversion efficiency of the WD-TENG. When the rotational speed is lower than
400 rpm, the triboelectric layer rubs with the inner electrode layer; when the rotational
speed is higher than 400 rpm, the triboelectric layer rubs with the outer electrode layer
under the action of centrifugal force. The efficiency of mechanical energy to electricity of
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the DEL-WD-TENG can reach 10.3%. After 7 million cycles, the transferred charge of the
DEL-WD-TENG is reduced by about 5.0%, and the mass loss of the dielectric triboelectric
layer is only 5.6%. The DEL-WD-TENG with low frictional resistance and high energy
conversion efficiency has important application prospects in wind energy harvesting and
self-powered systems.

Future research directions: increase charge density and increase the output perfor-
mance of the WD-TENG, i.e., select materials with large electronegativity differences
according to the triboelectric sequence to increase the transferred charges and increase
the charge density by modifying the surface through polarization, charge injection, and
chemical or physical aspects to produce micro–nano structures and improve output and
energy conversion efficiency.

Further reduce resistance and wear: use printed circuit boards and other technologies
to eliminate the geometric concave–convex structure of the electrode, reduce the resistance
generated by the triboelectric layer with the electrodes, and improve energy conversion
efficiency; choose a soft and dense dielectric triboelectric layer to reduce the wear and tear
on the triboelectric layer.

Improve the wind energy utilization rate of the wind turbine: further improve the
wind energy utilization rate by optimizing the structure of the wind turbine; continue to
increase the number of layers to improve space utilization.

4. Experimental Section

Fabrication of the DEL-WD-TENG: The wind turbine blade is a common fan blade
with a diameter of 53.3 cm. The thicknesses of the Cu electrode and the PTFE film are 0.3
and 0.05 mm, respectively. We selected PVB tubes with inner diameters of 80 and 100 mm,
respectively, and with a thickness of 5 mm, and used a cutting machine to cut them into
a tubular structure with a length of 100 mm as the support structure of the TENG. We
used a paper cutter to cut a 1 mm-thick copper sheet into 6 pieces with two dimensions
of 43.5 mm × 100 mm and 51.5 mm × 100 mm, respectively, which are used as electrode
layers. The 6 equally divided rectangles are glued to the outside of the PVB tube with an
inner diameter of 80 mm and an inner-side diameter of 100 mm, respectively, with 3M glue.
The two electrodes are separated by 1 mm, and the separated electrodes are connected
and fixed on the acrylic plate as stators of the inner and outer TENG with wires. The rotor
structure is drawn using the software Corel DRAW. On the rotor design drawing, we drew
a circle with a size of 100 mm and three rectangles with a size of 100 mm × 3 mm, and drew
three squares with a size of 3 mm × 3 mm on the circle, which are inscribed at the vertices
of the congruent triangles with a diameter of 92 mm. The circles have the same center. We
imported the drawing of the rotor into the laser cutting machine via Corel DRAW software;
the laser cutting machine comes with the software required to automatically recognize the
graphics. We selected a 3 mm thick acrylic plate, put it inside the laser cutting machine
box, adjusted the cutting origin, set the power, and carried out the cutting. We glued the
three cuboids obtained by cutting to the circle with acrylic glue to obtain acrylic columns
distributed in congruent triangles, and we connected the other side to the flange with
3M glue as the rotor of the TENG. We used scissors to glue the 0.05-mm thick PTFE film.
The PTFE film was cut into a rectangle of 65 mm × 80 mm, ultrasonically cleaned with
deionized water, wiped with ethanol, and finally dried with nitrogen as a triboelectric layer.
The PTFE film was then glued to the acrylic column with Kapton, and the acrylic column
was placed between the two TENGs. The flange and the fan blades are connected via a
coupling, supported between the bearings, and the effect of the acrylic column rotating
between the two TENGs is achieved via natural wind blowing.

Measurement of electrical signals: All tests are performed at room temperature and
with a relative humidity of about 30%. The voltage, current, and transferred charge are
measured with Keithley 6514 system electrometer. The resistors used are ZX21g rotary
resistance boxes and solid carbon (glass glaze) high-voltage resistors, respectively. The
capacitors used are inline ceramic capacitors. Torque and rotational speed are measured
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by a torque machine (Dayang Sensors LTD, DY-200. Bengbu Dayang Sensing System
Engineering Co., Ltd., Bengbu, China).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nanoenergyadv3030012/s1, Figure S1: A self-powered environmental
monitoring system through harvesting wind energy by WD-TENG; Figure S2. Schematic diagram
of the working mechanism of the outer WD-TENG; Figure S3. Comparison of output performance
and mechanical energy conversion efficiency of DEL-WD-TENG with different grids. Electric output
of the outer WD-TENG with (a) 4 grids, (b) 6 grids, and (c) 8 grids at different rotational speeds.
(d) Electrical output of 4 grids, 6 grids, and 8 grids of the inner WD-TENG at different rotational
speeds. Comparison of mechanical energy conversion efficiency with different grids of the (e) inner
WD-TENG and (f) the outer WD-TENG; Figure S4. (a). Short-circuit current of the inner WD-TENG
when rotational speed is higher than 400 rpm and (b) Short-circuit current of the outer WD-TENG
when rotational speed is lower than 400 rpm; Figure S5. Power management circuit diagram of
DEL-WD-TENG via a tip-tip air discharge switch. (a) Current direction when the tip-tip air discharge
switch is on state, the energy transferred from the DEL-WD-TENG to the inductor. (b) Current
direction when the tip-tip air discharge switch is off state, the energy transfers from the inductor
to the capacitor. Video S1: Light up LEDs. Video S2: Power commercial temperature and humidity
sensors. Video S3: Continuously powering wireless temperature sensor.
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