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Abstract: Monoclonal gammopathy of undetermined significance (MGUS) is a pre-malignant plasma
cell disorder with an etiology that is incompletely understood. Modifiable risk factors and genetic pre-
dispositions likely interact to increase MGUS risk in specific individuals and populations. Identifying
geographic prevalence patterns and modifiable risk factors is critical for understanding the etiology
of MGUS. The aim of this review was to outline original research on MGUS prevalence across geo-
graphic locations and modifiable risk factors. We conducted a systematic review of 39 eligible studies
from PubMed®, Embase®, and Web of Science® written in English and published by February 2023.
Our protocol was registered in accordance with PROSPERO guidelines. Studies were synthesized
using Research Electronic Data Capture and appraised using the National Heart, Lung, and Blood
Institute study quality assessment tools. The prevalence of MGUS ranged from 0.24% to 9% across
geographic locations. Modifiable risk factors for MGUS include infections, autoimmune diseases,
chronic inflammatory conditions, lifestyle factors, environmental exposures, and ionizing radiation.
Therefore, the development of MGUS may be related to chronic antigenic stimulation and genetic
aberrations that promote clonal proliferation of plasma cells. Prospective studies assessing gene–
environment interactions are needed to further define risk factors for MGUS and inform screening
and preventative strategies.
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1. Introduction

Monoclonal gammopathy of undetermined significance (MGUS) is a plasma cell disor-
der that universally precedes multiple myeloma (MM), which accounts for approximately
10% of all hematologic malignancies [1–4]. The diagnosis of MGUS is often incidental and
relies on a serum monoclonal protein (M protein) level of <3 g/dL, <10% clonal plasma
cells in the bone marrow, and the absence of myeloma-defining events. MGUS is also asso-
ciated with other life-threatening disorders, including light chain amyloidosis, light chain
deposition disease, lymphoma, and lymphoproliferative diseases such as Waldenström
macroglobulinemia [5,6]. Even without progression to MM and other disorders, MGUS
can lead to clinical sequelae with long-term morbidity, such as osteoporosis, bone fractures,
peripheral neuropathy, arterial and venous thrombosis, and cardiovascular morbidities,
even without underlying risk factors for cardiovascular disease [7–9].

In the United States, MGUS affects 3% of the population above age 50 and carries an an-
nual 1% risk of progression to MM [10]. Meanwhile, less is known about global geographic
patterns in the prevalence of MGUS. The prevalence of MGUS is likely population-specific
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and highly dependent on the composition and interaction of the modifiable (medical, so-
cioeconomic, and environmental) and non-modifiable (demographic) risk factors affecting
the individuals in each population [11–25]. Specifically, race, ethnicity, and increasing age
are major non-modifiable risk factors for MGUS [26]. In Black as compared to White US
patients, MGUS is two to three times more common and has an earlier age of onset [27,28].
Although studying the role of genetic ancestry and self-identified race and ethnicity im-
proved our understanding of MGUS development, genetics alone may not provide an
explanation that fully addresses the racial and ethnic differences in the prevalence of MGUS.
Genome-wide association studies have failed to identify loci that explain the increased
MM risk in patients of African ancestry, suggesting more complex mechanisms could be
at play [29]. Race and ethnicity are dynamic sociocultural constructs, so disparities are
likely heavily influenced by modifiable risk factors, including geographic, cultural, and
social factors, in addition to genetic predispositions. Finally, given that MGUS prevalence
increases with age, there is potential for the aging process to contribute to the development
of the disease. The environment and behavioral factors play a crucial role in modifying
biological determinants of human health, including the epigenetic changes that occur
during aging [30,31]. Therefore, it is paramount to assess possible modifiable factors that
may contribute to the association between increasing age and the development of MGUS.

While recent advances have improved our understanding of the complex genetic and
non-genetic factors that cause MGUS progression to MM, the development of MGUS and
potentially modifiable risk factors for MGUS are less understood. As a result, screening
and prevention strategies for MGUS are largely understudied. Some studies suggest that
chronic exposure of the B-cell receptor to persistent exogenous or endogenous antigens
may lead to clonal B cell proliferation, antigen-driven selection of B cell clones, and the
subsequent development of MGUS [13–15,32–34]. Nonetheless, descriptive epidemiologic
studies and a thorough assessment of risk factors are paramount to understanding the
development of MGUS, developing screening guidelines, and implementing public health
policies for MGUS prevention.

Since MGUS prevalence is a function of the demographic composition of each group
and risk factors for MGUS may be population-specific, large population studies at various
geographic sites are needed. Poor knowledge of global geographic patterns in MGUS preva-
lence limits the generalizability of any suggested screening or preventive interventions.
Population-based screening for MGUS could also identify candidates for early treatment or
help guide optimal clinical management [35]. Using this lens, we discuss the geographic
prevalence patterns of MGUS and recent advances in knowledge of risk factors for MGUS
to assess the potential influence of non-modifiable versus modifiable risk factors associated
with MGUS. Then, using existing knowledge of risk factors, racial disparities in MGUS
prevalence, and the impact of non-genetic factors on plasma cell biology, we propose
a framework for viewing gene-environment interactions and explore future directions
for research.

2. Materials and Methods
2.1. Data Sources and Searches

This review was conducted between 11 November 2021 and 31 March 2023 and per-
formed in accordance with the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines [36,37]. (Table S1) The protocol for this study was
registered on the PROSPERO registry for systematic reviews (CRD42022312662; https:
//www.crd.york.ac.uk/Prospero/display_record.php?RecordID=312662 accessed 12 March,
2022). In collaboration with a librarian, we developed a search strategy and search terms
to query various databases. Searches on PubMed®, Embase®, and Web of Science® were
performed from December 2021 to February 2023 to identify relevant articles. Text headings
and medical subject heading (MeSH) terms used included MGUS, monoclonal gammopathy,
monoclonal gammopathy of undetermined significance, incidence, prevalence, and risk. We
also reviewed the references of the identified papers to look for studies relevant to our topic.

https://www.crd.york.ac.uk/Prospero/display_record.php?RecordID=312662
https://www.crd.york.ac.uk/Prospero/display_record.php?RecordID=312662
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2.2. Study Selection

Abstracts with available full-text articles were reviewed by K.V. and R.S. to determine
which articles examined the prevalence and risk factors for MGUS. We included studies that
(1) reported the prevalence of MGUS across various geographic locations; (2) investigated
non-genetic risk factors for developing MGUS; (3) were published before 28 February 2023;
and (4) were available in English. Studies on prevalence were limited to case–control
studies and cohort studies. However, to include all relevant data, we also reviewed case
series on risk factors for MGUS. We excluded case reports and abstracts without available
full text.

2.3. Data Extraction, Synthesis, and Quality Assessment

K.V. and R.S. reviewed all publication titles and abstracts and eliminated articles that
were not relevant to the review. K.V., R.S., and C.V.E. reviewed the full text of all articles
included. Data were then extracted by K.V. and R.S. from the articles that met the inclusion
criteria. A standardized data collection form was used and included the study title, authors,
year of publication, source of participants, sample size, mean age and sex composition
of the sample, race and ethnicity composition of the sample, country in which the study
was conducted, method used to diagnose MGUS, prevalence, risk factor(s) evaluated
if applicable, and effect estimates with 95% confidence intervals (CI). The standardized
data collection form and all related study data were managed using Research Electronic
Data Capture (REDCap) electronic data capture tools hosted at Boston University, CTSI
1UL1TR001430 [38–40]. REDCap is a secure, web-based application designed to support
data capture for research studies, providing (1) an intuitive interface for validated data entry;
(2) audit trails for tracking data manipulation and export procedures; (3) automated export
procedures for seamless data downloads to common statistical packages; and (4) procedures
for importing data from external sources. C.V.E. reviewed all data extracted and resolved
any discordance in article inclusion and data extraction. For the quality assessment of
individual studies, we used questions adapted from the screening study quality assessment
tools developed by the National Heart, Lung, and Blood Institute (NHLBI) and available
at https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed
on 19 February 2022). (Table S2 and S3) For studies included, data synthesis involved a
(1) description of the study; (2) description of the findings related to prevalence and risk
factors; and (3) statistical summary of the findings of each study. The statistical summary
included percentages for prevalence and calculated risk ratios or odds ratios (whichever
was applicable) with 95% confidence interval (CI) and two-sided p values. At the data
analysis stage, we gave preference to studies that defined prevalence according to country
and/or geographic location and studies that had information available on key demographic
criteria such as age, sex, race, or ethnicity. Due to the marked heterogeneity of the included
studies, we were only able to provide a descriptive summary and could not conduct a
meta-analysis with pooled statistical testing.

3. Results

We identified 2168 articles from MESH term searches of PubMed (n = 423), Embase
(n = 1732), and Web of Science (n = 12) (Figure 1). After excluding the 106 articles that
did not evaluate MGUS or investigated non-modifiable risk factors for developing MGUS,
we screened titles using Rayaan to eliminate duplicates (n = 321) [41]. We then screened
the abstracts of the remaining 1741 articles and further excluded articles assessing the
incorrect outcome (n = 1421), incorrect publication type (n = 158), incorrect population
(n = 44), and incorrect study design (n = 27). We further excluded four background articles
and 17 articles published in a non-English language. Thirty-one additional studies were
excluded after a full-text review. Therefore, a total of 39 articles were available for review.

https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
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Figure 1. PRISMA flow diagram. We screened article titles using Rayaan to exclude 321 dupli-
cates, 106 articles that did not evaluate MGUS or non-modifiable risk factors, and articles assessing
the wrong outcome, publication type, population, and study design [41]. We further excluded
(four) background articles, 17 articles published in a non-English language, and 31 articles after a
full-text review. Thirty-nine articles were reviewed.

3.1. Geographic Prevalence

The prevalence of MGUS in studies representing 18 geographic locations ranged from
0.24% to 9.0%. (Table 1) Sociodemographic characteristics, study setting, and methods of
MGUS detection varied across studies, and patient characteristics were not uniformly re-
ported. Among population-based studies using the agarose gel electrophoresis method for
MGUS diagnosis, the highest prevalence was reported in Black US women aged 50–79 at
9.0% (95% CI, 7.6–10.4) [42]. In a comparative study of Black Ghanaian males versus
White US males from Olmsted County, Minnesota (Midwest USA), aged 50–74, the preva-
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lence of MGUS was 5.84% (95% CI, 4.27–7.40) in Black Ghanaian males [43]. Additionally,
both the Iceland Age, Gene/Environment Susceptibility–Reykjavik (AGES) and the recent
Iceland Screens, Treats, or Prevents Multiple Myeloma (iSTOP-MM) population-based
studies report an approximate 5% prevalence of MGUS among patients aged > 50 in
Iceland (AGES: 5.2%; iSTOP-MM: 5%; 95% CI 4.9–5.2%) [44,45]. In a population-based
study by Kyle et al. involving predominantly White residents of Olmsted County, Min-
nesota, USA, MGUS prevalence was 3.2% (95% CI 3.0–3.5) in individuals > 50 years [46]. A
population-based study of Korean individuals > 65 years reported an MGUS prevalence
of 3.3% (95% CI, 2.0–4.6), which is comparatively lower than the prevalence in Western
countries for the age range studied [47]. Furthermore, in a large Japanese population of
atomic bomb survivors in Nagasaki aged > 50 years diagnosed by the cellulose acetate
method, the prevalence of MGUS was 2.4% (95% CI, 2.0–2.6), which is similar to the preva-
lence reported in a small cohort of 146 Japanese patients aged 63–95 years diagnosed by the
agarose gel electrophoresis method in Yokohama, Japan (2.7%; 95% CI not reported) [48,49].
Meanwhile, MGUS prevalence in a French study using the cellulose acetate method for
diagnosis was 1.10% (95% CI, not reported) [50]. An MGUS prevalence of 0.8 (95% CI,
0.3–1.4) was reported in a population-based study from China [51]. Notably, some studies
also included patients < 50 years of age, for which the prevalence of MGUS was lower
overall. For example, Landgren et al. evaluated 12,372 patients aged 10–49 years and
reported a prevalence of 0.34% (95% CI 0.11–0.45) [28]. In Nigeria, the prevalence of MGUS
was reported in a population study of 410 healthy subjects aged 20–80 at 0.24% (95% CI
0.01–1.38) [52]. Age-specific MGUS prevalence was not evaluated in this study.

Several large hospital-based studies using the agarose gel method for the diagnosis
of MGUS also provide important data regarding geographic prevalence estimates. An
MGUS prevalence of 6.3% was reported in a study of 6624 patients at King Fahad National
Guard Hospital in Riyadh, Saudi Arabia [53]. In a North Indian hospital, the prevalence
of MGUS was reported as 1.43% (95% CI not reported) in a cohort of 3429 patients [54].
A hospital-based study of 154,597 patients over the age of 50 at Peking Union Medical
College in Beijing, China, reported an MGUS prevalence of 1.11% (95% CI, 1.02–1.18) [51,55].
Among hospital-based studies utilizing higher sensitivity capillary zone electrophoresis
techniques, the highest prevalence of MGUS was reported at 8.19% (95% CI, not reported)
in a Taiwanese hospital-based study of patients aged > 50 years [56]. Similarly, one hospital-
based study of Black South African males aged > 30 years reported an MGUS prevalence
of approximately 8% (age > 30 years: 8.03%; 95% CI, 5.32–10.74, age > 50 years—8.11;
5.63–11.54) [57]. In an older population (>51 to >90), an Italian study by Vernocchi et al.
found an MGUS prevalence of 6.0% (95% CI, 5.7–6.3) [58]. Studies from Australia and
Germany reported MGUS prevalence of 4.6% (95% CI 3.8–5.3%) and 3.5% (95% CI 3.0–4.1)
in participants approximately 50 years and older, respectively [59,60].
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Table 1. Geographic prevalence of MGUS in various studies.

Reference Geographic
Location Age Setting Diagnostic

Method Diagnostic Criteria Sample Size Prevalence %
(95% CI) Notes

Bertrand et al. [42] United States 39 to 89 population-based agarose gel M protein < 3 g/dL 13,030 9.0 (7.6–10.4) Included only
Black females

Landgren et al. [43] Ghana 50 to 74 population-based agarose gel M protein < 3 g/dL 917 5.84 (4.27–7.40) Included only
Black males

Thordardottir [44] Iceland 66 to 98 Population-based agarose gel M protein < 3 g/dL 5764 5% (4.9–5.2)

Excluded patients
diagnosed with

multiple myeloma
via review of the
national cancer

registry data

Love et al. [45] Iceland 41 to >80 population-based agarose gel
M protein < 3 g/dL,
FLC ratio < 100, no
end-organ damage

75,422

All ages: 3.9
(3.8–4.0)

Age > 50: 5.0
(4.9–5.2)

Kyle et al. [46] USA >50 population-based agarose gel M protein < 3 g/dL 16,485 3.2 (3.0–3.5)

Bowden et al. [49] Japan 63 to 95 population-based agarose gel M protein < 3 g/dL 146 2.7 (not reported)

Compared
prevalence of

MGUS in Japan to
prevalence in the
US in the same

age group

Wu et al. [51] China 50 to 65 population-based agarose gel
M protein < 3 g/dL,
bone marrow < 10%,

no end-organ damage
1000 0.8 (0.3–1.4)

Landgren et al. [28] USA 10 to 49 population-based agarose gel M protein < 3 g/dL 12,372 0.34 (0.11–0.45)

Onwah et al. [52] Nigeria 20 to 84 population-based agarose gel M protein < 3 g/dL 410 0.24 (0.01–1.38)

Iwanaga et al. [48] Japan 42 to >80 population-based cellulose acetate M protein < 3 g/dL 52,781 2.1 (1.9–2.2)

Saleun et al. [50] France 30 to >80 population-based cellulose acetate M protein < 3 g/dL 30,279 1.10 (not reported)

Axelsson et al. [61] Sweden >70 population-based paper
electrophoresis

M protein < 3 g/dL,
bone marrow < 10%,

no end-organ damage
6995 0.9 (not reported)
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Table 1. Cont.

Reference Geographic
Location Age Setting Diagnostic

Method Diagnostic Criteria Sample Size Prevalence %
(95% CI) Notes

Park et al. [47] Korea 65 to 97 population-based not reported M protein < 3 g/dL 945 3.3 (2.0–4.6)

Suan et al. [59] Australia >50 population-based capillary zone M protein < 3 g/dL,
no end-organ damage 2993 4.6 (3.8–5.3))

Eisele et al. [60] Germany 47 to 75 population-based capillary zone M protein < 3 g/dL,
no end-organ damage 4702 3.5 (3.0–4.1)

Tamimi et al. [53] Saudi Arabia Not reported hospital-based agarose gel M protein < 3 g/dL,
no end-organ damage 6624 6.3 (not reported)

Chang et al. [56] Taiwan 58 to 85 hospital-based capillary zone
M protein < 3 g/dL,
bone marrow < 10%,

no end-organ damage
327 8.19 (not reported)

Cicero et al. [57] South Africa 35 to >85 hospital-based capillary zone M protein < 3 g/dL 386

All ages: 8.03
(5.32–10.74)

Age > 50: 8.11;
5.63–11.54

Included only
Black males

Veronicchi et al. [31] Italy <50 to >90 hospital-based capillary zone M protein < 3 g/dL 44,474 6.0 (5.7–6.3)
Prevalence

reported for
subjects > 50 years

Ma et al. [48] China >40 hospital-based capillary zone
M protein < 3 g/dL,
bone marrow < 10%,

no end-organ damage
1797 2.73 (not reported)

Han et al. [55] China 25 to 96 hospital-based capillary zone
M protein < 3 g/dL,
bone marrow < 10%,

no end-organ damage
154,597

All ages: 0.53
(0.49–0.57)

Age ≥ 50: 1.11
(1.02–1.18)

Gupta et al. [54] North India 40–88 hospital-based not reported

M protein < 3 g/dL,
bone marrow < 10%,

no end-organ damage,
no amyloidosis

attributed to plasma
cell disorder

3429 1.43 (not reported)
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3.2. Risk Factors for MGUS Development
3.2.1. Population-Specific Risk Factor Assessment

Few prevalence studies have also reported on risk factors associated with MGUS in
specific populations. In a study of 2933 Australian participants, there was no statistically
significant difference in smoking history, body mass index, and self-reported medical
illnesses in patients with or without MGUS [59]. Age and male sex were the sole risk
factors associated with the increased prevalence of MGUS in the Australian population [59].
Chang et al. evaluated environmental risk factors for MGUS and found that there was no
association between living environment (urban or suburban) and MGUS in the Taiwanese
population (0.77; 95% CI, 0.40–1.50) [56].

3.2.2. Autoimmune and Inflammatory Conditions

Autoimmune disease and chronic inflammation have been explored as potential
risk factors for MGUS development (Figure 2). In a case–control study in the United
Kingdom examining the primary care electronic medical records of 2363 MGUS patients
and 9193 matched controls, a personal history of autoimmune disease was identified as
a risk factor for MGUS (odds ratio [OR] = 1.84, 95% CI 1.47–2.30) [62]. Furthermore, in
a retrospective cohort of four million Black and White US male veterans, there was an
increased risk of MGUS in patients with autoimmune disease (relative risk [RR] = 1.67,
95% CI 1.47–1.90) [63]. Specific autoimmune diseases which portended an increased risk of
MGUS included systemic sclerosis (RR = 4.21, 95% CI 1.89–9.38), autoimmune hemolytic
anemia (RR = 2.58, 95% CI 1.07–6.20), pernicious anemia (RR = 1.97, 95% CI 1.16–3.34),
and ankylosing spondylitis (RR = 2.02, 95% CI 1.14–3.56) [64]. Similarly, a history of
autoimmune disease was associated with a significantly increased risk of MGUS in a large
population-based study in Sweden (OR = 2.1, 95% CI 1.9–2.4) [64]. This relationship was
particularly strong in patients with rheumatoid arthritis (RR = 2.2, 95% CI 1.7–2.7), Sjogren
syndrome (RR = 4.5, 95% CI 2.2–9.6), pernicious anemia (RR = 1.8, 95% CI 1.1–3.1), Guillain–
Barre (RR = 3.0, 95% CI (1.03–8.5), celiac disease (RR = 3.0, 95% CI 1.03–8.6), chronic
rheumatic heart disease (RR = 1.7, 95% CI 1.03–2.9), ankylosing spondylitis (RR = 2.7,
95% CI 1.4–5.2), and polymyalgia rheumatica (RR = 2.9, 95% CI 2.1–4.1) [64].
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risk of MGUS: (a) overall autoimmune and inflammatory states associated with a significantly
increased risk of MGUS [62–64]; (b) specific autoimmune and inflammatory disorders associated
with a significantly increased risk of MGUS [63,64].

An increased risk of MGUS was also identified in patients with chronic inflamma-
tory conditions (RR = 1.43, 95% CI 1.30–1.57) such as glomerulonephritis (RR = 2.62,
95% CI 2.06–3.34), osteoarthritis (RR = 1.37, 95% CI 1.23–1.53), and nephrotic syndrome
(RR = 2.68, 95% CI 1.68–4.27) [63].

3.2.3. Environmental Exposures

Environmental exposures, including air pollution, radiation, and occupational toxins,
have also been implicated as risk factors for MGUS (Figure 3). A prospective study by
Orban et al. evaluated the association between MGUS and long-term exposure to air
pollution (at least 10 years). After adjusting for sociodemographic factors (age, sex, and
socioeconomic status (SES)) and lifestyle factors (smoking status, physical activity, and
body mass index (BMI)), the study found that there was a significant association between
MGUS and long-term exposure to particulate matter with an aerodynamic diameter of
2.5–10 µm (OR: 1.32, 95% CI 1.04–1.67) [65].

Two studies examined the relationship between MGUS and radiation exposure in
survivors of atomic bombings in Japan. In one study of 74,411 survivors who lived in
Nagasaki city from 1988 to 2004, patients 30 years or older at the time of radiation exposure
had an almost 3-fold higher risk of MGUS than those exposed at younger ages (prevalence
ratio [PR] = 2.6, 95% CI 2.0–3.3, p < 0.001). Interestingly, in patients aged <20 years, there
was a statistically significant increase in the prevalence of MGUS for those residing <1.5 km
from the atomic bomb hypocenter (PR = 1.7, 95% CI 1.3–2.3) or for those exposed to >0.1 Gy
radiation (PR = 2.02, 95% CI 1.09–3.76, p = 0.03) [48,66]. There was no significant association
between MGUS and distance from the hypocenter or dose of radiation in patients 20 years
and older. In another study of 38,602 atomic bomb survivors who lived in Hiroshima from
1989 to 2018, age at exposure was an independent risk factor for developing MGUS by age
70. The risk of developing MGUS was highest in survivors who were exposed to radiation
at an age < 20 years old (exposed <10 years old adjusted OR = 1.72, 95% CI 1.24–2.37,
p < 0.0001; exposed 10–19 years old adjusted OR = 1.40, 95% CI 1.07–1.85, p = 0.0153) [67]. In
contrast to previous studies, there was no association between distance from the hypocenter
at the time of bombing and MGUS risk.
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In a case–control study of 285 MGUS cases in patients aged 40–89 years, asbestos,
fertilizers, mineral oils, and petroleum, paints, pesticides, and radiation were all associated
with a statistically significant increased risk of MGUS [68]. Radiation exposure had the
highest association with MGUS (OR = 6.5, 95% CI 2.10–20.12, p < 0.0001), followed by
exposure to asbestos (OR = 3.08, 95% CI 1.51–6.29, p < 0.001), and then exposure to mineral
oils and petroleum (OR = 2.18, 95% CI 1.42–3.35, p < 0.025) [68]. Agent Orange and its
contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was also found to be associated
with a 2.4-fold higher risk of MGUS in US Air Force personnel who were exposed to
the herbicide spray compared to those who were not exposed, even after adjusting for
age, race, and BMI [69]. Higher TCDD levels appeared to increase MGUS risk, with a
TCDD level > 10.92 ppt conferring the highest risk for MGUS (crude OR = 2.81, 95% CI
1.08–7.31, p = 0.03). However, after adjusting OR for age, race, and BMI, there was no
longer an association [69]. Moreover, a study of 678 male farmers in the Agricultural
Health Study showed that there was an increased risk of MGUS with the use of specific
pesticides, including dieldrin (5.6-fold, 95% CI, 1.9–16.6), carbon-tetrachloride/carbon
disulfide (3.9-fold, 95% CI, 1.5–10.0), and chlorothalonil (2.4-fold, 95% CI, 1.1–5.3) [70]. A
recent update to this study also found a significant association between MGUS risk and
the continued use of permethrin, a widely used pesticide in the current era (OR = 2.49,
95% CI 1.32–4.69) [71].
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3.2.4. Lifestyle

Several studies have also outlined modifiable lifestyle factors which increase the risk
of developing MGUS (Figure 4). For example, a retrospective study by Pasqualetti et al.
examined possible associations between substance use and occupational and environmen-
tal exposures in a cohort of 285 cases of MGUS. In this study, tobacco intake correlated
with a higher risk of MGUS development (OR = 1.4, 95% CI 1.03–1.89), but the association
was not statistically significant [68]. A later study by Pasqualetti et al. evaluated whether
the duration and amount of tobacco smoking are significantly associated with MGUS. No-
tably, heavy smoking (>20 cigarettes for >5 years) was found to be significantly associated
with the development of MGUS, while light smoking (<20 cigarettes/day for <5 years,
<20 cigarettes/day for >5 years or >20 cigarettes/day for <5 years) did not show a signifi-
cant positive association (OR = 2.22, 95% CI 1.02–4.86, p < 0.05; OR 1.31, 95% CI 0.95–2.28,
p value not significant) [72]. Similarly, a nested case–control study by Boursi et al. using a
primary care database found a positive association with ever-smoking history and MGUS
development (OR = 1.27, 95% CI 1.14, 1.40) [62]. In a study of 4814 participants, current
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smoking, defined as smoking cigarettes within the past year, was positively associated with
the development of MGUS in females after adjusting for age and education level (OR = 2.19,
95% CI 1.29–3.65, p = 0.003). However, current or past smoking history in males was not
significantly associated with the development of MGUS in this particular study [73]. In
contrast, a prospective cohort study of Black South African males highlighted that MGUS
was 5.6-fold more common in those who actively smoked cigarettes compared with those
who had never smoked in the univariable analysis (p = 0.001) and 4.5-fold more common
when BMI and HIV status were taken into consideration (p = 0.006) [57].
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Researchers have also examined the association between dietary habits and developing
MGUS. In a study by Schmidt et al., low fruit consumption was found to be positively
associated with the development of MGUS in women (OR = 1.82, 95% CI 1.14–2.84), with a
trend toward this association in men [73]. Similarly, a population-based study in Iceland
assessing dietary intake and MGUS risk found a lower risk of MGUS in participants who
consumed fruit three times weekly in adolescence (14–19 years old) compared to those who
did not (OR = 0.62, 95% CI 0.41–0.95). They also identified midlife consumption of whole
wheat bread, greater than five times per week, as protective against MGUS (OR = 0.75,
95% CI 0.57–0.99) [44].

On the other hand, evidence has been conflicting regarding the association between
obesity and MGUS depending on the measure of obesity being studied. Obesity, as mea-
sured by body mass index (BMI), was found to be significantly associated with MGUS risk
in one population-based study of females aged 40–79. The study reported an increased
risk of MGUS in obese females (OR = 1.80, 95% CI 1.04–3.14, p = 0.039) [74]. However,
in a study assessing the association between 11 different obesity markers (weight, BMI,
percent body fat, total body fat, visceral fat, subcutaneous fat, abdominal circumference,
lifetime maximum weight, and measured midlife BMI) and MGUS, no association was
found (ORs = 0.81 to 1.15) [75].

3.2.5. Infectious Diseases

Moreover, a history of infections has also been reported as a risk factor for MGUS.
Several infectious diseases have been implicated (Figure 5). Specifically, two large
population-based studies in the US and Sweden confirmed that a history of infection
was associated with a significantly elevated risk of MGUS (RR = 1.40, 95% CI 1.27–1.53;
OR = 1.6, 95% CI 1.5–1.7), respectively [63,64]. Both studies highlighted an increased risk
for MGUS in those with a history of herpes zoster (RR = 1.70, 95% CI 1.11–2.58; OR = 1.6,
95% CI 1.03–2.5), pneumonia (RR = 1.72, 95% CI 1.53–1.93; OR = 1.6, 95% CI 1.4–1.8),
and prior sepsis (RR = 1.32, 95% CI 1.02–1.71; OR = 1.7, 95% CI 1.2–2.4) [63,64]. A history
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of empyema (OR = 3.6; 95% CI, 1.5–8.4), Lyme disease (OR = 3.2; 95% CI, 1.8–5.7), and
gonorrhea (OR = 2.7; 95% CI, 1.1–6.5) conferred the highest risk for MGUS in the Swedish
population-based study [64].
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3.2.6. Socioeconomic Status

Socioeconomic status (SES) has also been explored as a potential risk factor for MGUS.
However, results have been conflicting. An Italian study by Pasqualetti revealed that low
SES was associated with a higher risk of MGUS (OR = 1.61, 95% CI 1.18–2.19), although the
results were not statistically significant [68]. On the other hand, a randomized controlled
trial conducted in Germany by Schmidt et al. showed that low socioeconomic status, as
measured by education level or income, conferred a lower risk of MGUS independent of
age, BMI, smoking status, presence of diabetes, and dietary factors [73].

4. Discussion

In this systematic review, we outline original research on the prevalence and risk
factors for MGUS across geographic locations to gain further insight into the potential
potency of sociocultural influences, lifestyle factors, medical conditions, and environmental
exposures as risk factors for MGUS. We updated a similar systematic review conducted
by Castaneda-Avila et al. in 2021, which looked at modifiable risk factors for MGUS since
several landmark population-based studies have been performed since that review [76].
To ascertain the true prevalence of MGUS, we identified 22 unique studies reporting on
the prevalence of MGUS across 18 geographic locations. We noted that the prevalence of
MGUS is highly varied. Population-based screening studies provide the most accurate
geographic prevalence estimates, while studies from hospital and outpatient settings tend
to overestimate MGUS prevalence. Moreover, despite uniform criteria for MGUS diagnosis,
a lack of standardization of MGUS detection methods, inconsistent use of standard diagnos-
tic criteria for study inclusion, and variations in study design limited our ability to directly
compare prevalence estimates across all studies. Nonetheless, we note that the influence of
race and age on MGUS prevalence remains apparent in population-based screening studies.
The highest prevalence of MGUS from population-based studies utilizing the agarose gel
electrophoresis method and similar diagnostic criteria was seen in Black US women (9.0%)
and Black Ghanaian men (5.84%). Meanwhile, a much lower prevalence of MGUS was
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reported in several countries across South and East Asia, highlighting the significance of
self-identified race on the prevalence of MGUS [42,43,48,51,55]. On the other hand, an
MGUS prevalence of approximately 5% was reported in both Icelanders (predominantly
White population) and Black Ghanaian men of similar ages, which could suggest sociocul-
tural and environmental factors are also at play [43–45]. Interestingly, in comparing two
studies of similar design and inclusion criteria, there was a higher prevalence of MGUS
in French (predominantly White) versus Nigerian (predominantly Black) individuals of
similar age, further solidifying a potentially significant influence of sociocultural and en-
vironmental factors on MGUS prevalence in specific populations [50,52]. Additionally,
population-based studies including younger patients (ages 10–20) diagnosed by the agarose
gel electrophoresis method reported the lowest prevalence of MGUS regardless of the racial
composition of the cohort [28,52]. Furthermore, studies from the same geographic loca-
tion reported similar MGUS prevalence despite the method of diagnosis (particularly the
cellulose acetate versus agarose gel methods) [48,49]. Therefore, particularly with older
techniques, the method of MGUS detection is unlikely to significantly influence the geo-
graphic prevalence estimates and patterns reported. Based on our review of geographic
prevalence studies, we propose that MGUS prevalence is likely highly dependent on the
demographic composition of each group (particularly age and race) and population-specific
sociocultural and environmental risk factors.

We further identified large cohort studies evaluating modifiable risk factors for MGUS
and identified prior infections, autoimmune diseases, chronic inflammatory conditions,
lifestyle factors such as tobacco use and low fruit consumption, environmental exposures,
and ionizing radiation as potential risk factors. Studies are conflicting regarding the
association between the development of MGUS and obesity, but evidence for the role of
obesity in myelomagenesis is increasing [75,77,78]. Meanwhile, the association between
MGUS and SES remains unclear as studies are conflicting. The discrepancy may, in part,
be explained by varying methods used to measure SES across studies. However, it is also
plausible that the relationship is population-specific and dependent on other modifiable
risk factors associated with SES in various geographic locations. More studies are needed
in this area.

Overall, the relationship between MGUS and the aforementioned risk factors is still
poorly understood. However, the data summarized in this review support the notion that
the etiology of MGUS and progressive clonal proliferation of plasma cells may be linked to
chronic antigen stimulation and genomic aberrations triggered by infectious organisms,
chronic inflammation, autoantigens, lifestyle factors, and environmental exposures [79].
Specifically, chronic infectious antigen exposure or chronic inflammation could trigger ge-
netic translocations that lead to the clonal proliferation of plasma cells [80–82]. Furthermore,
there may be a common susceptibility (such as immune dysregulation and augmented
immune response) for developing plasma cell dyscrasias and autoimmune diseases [81]. In
addition, obesity may lead to chronic antigen stimulation by increasing circulating leptin
levels, which can cause a chronic inflammatory state via activation of both innate and
acquired immune pathways [83]. Likewise, certain lifestyle conditions such as tobacco use
and low fruit consumption may lead to increased inflammation via increased free radical
production and decreased free radical clearance, respectively [84,85]. In particular, dietary
antioxidants in fruits have anti-carcinogenic effects by trapping free radicals and protecting
against oxidative stress [86–88]. With regard to environmental exposures, toxins, and
radiation could induce DNA damage via oxidative stress, which likely increases the risk of
translocations that eventually trigger monoclonal plasma cell proliferation [89]. Several
studies have also shown that particulate matter exposure via pollution may cause persistent
inflammation or stimulate the adaptive immune system [90–92]. For example, Toll-like
receptors may recognize particulate matter, which then leads to antigen presentation and
subsequent activation of plasma cells [90].

Our study has several limitations. First, our study did not include articles not pub-
lished in English. Our selection process may have also missed eligible studies if they were
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not available in the databases searched. Moreover, differences in MGUS detection methods,
study design, selection of patients, sample size and study power, and sociodemographic
characteristics may explain inconsistencies among prevalence studies and across certain
risk factors. Thus, it was difficult to understand the potential potency of modifiable risk
factors versus well-known demographic risk factors such as age, sex, and race across
different populations. In studies of MGUS prevalence, MGUS detection methods were
heterogeneous, and in some studies, myeloma-defining events (MDEs) were not assessed.
Studies that reported prevalence using more sensitive techniques could have reported
slightly higher MGUS prevalence. Studies not assessing MDEs may have also reported
higher MGUS prevalence by including patients with MM. Furthermore, the demographics
(age, race, ethnicity, and sex) of study populations varied widely, and in some prevalence
studies, race was not reported. Race and ethnicity could have been excluded from the
reports because of the homogeneity of the respective populations being studied. While
studies of homogenous populations could still provide clues about population-specific
risk factors, data may not be generalizable. Prevalence studies also reported data from
various sites, including outpatient clinics and inpatient hospital settings, as opposed to
entire populations. This could have resulted in selection bias as there may be an increased
likelihood of detecting MGUS in hospitalized patients or outpatient hematology clinics
testing symptomatic patients. Studies that included patients admitted to the hospital are at
a higher risk for detection bias due to medical comorbidities that may increase the risk of
MGUS compared to the general population. Interestingly, only one study from our data set
revealed an increased risk for MGUS among obese females [74]. The data on obesity and
MGUS are limited by the lack of a standardized quantifiable measure of BMI since most of
the data were obtained via self-reporting. Additionally, BMI alone does not account for
adipose content or fat–muscle ratio, so the data are difficult to interpret. BMI also does
not take into consideration other lifestyle factors, including diet and exercise, which may
predispose to MGUS risk. Finally, there are likely differences in sociocultural, lifestyle, and
environmental factors between populations in different geographic locations. However, it is
difficult to draw strong conclusions about this based on the large variability in populations
and studies assessed.

5. Conclusions

In summary, while age and race are broadly studied risk factors for MGUS, modifiable
risk factors and potential geographic patterns in prevalence are less well studied. Here, we
report that the geographic prevalence of MGUS is highly varied. Importantly, population-
based screening studies provide the most accurate geographic prevalence estimates, but
there are few of these studies in the current literature. Geographic prevalence patterns are
heavily influenced by the demographic composition of each cohort (particularly age and
race) and other population-specific risk factors such as sociocultural and environmental
factors. Other modifiable risk factors related to chronic antigen stimulation from certain
disorders, lifestyle factors, or environmental exposures appear to play a role, but large
prospective population-based studies are needed to confirm causality. It remains unclear
whether the association between MGUS and demographic risk factors such as age and race
and ethnicity are confounded by modifiable sociocultural, lifestyle, and environmental
factors. A full appraisal of causal risk factors for the development of MGUS will require
further research into the complex interactions between ancestry, individual genetics, so-
ciodemographic factors, and environmental factors. Therefore, future research should
involve large prospective population-based studies across geographic sites that employ
new computational methods to evaluate complex gene-environment interactions [35,45,93].
Deciphering the underlying causes of MGUS is paramount to addressing screening and
prevention strategies.
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