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Abstract: Peptides, both natural and synthetic, are well suited for a wide range of purposes and offer
versatile applications in different fields such as biocatalysts, injectable hydrogels, tumor treatment,
and drug delivery. The research of the better part of the cited papers was conducted using various
database platforms such as MetalPDB. The rising prominence of therapeutic peptides encompasses
anticancer, antiviral, antimicrobial, and anti-neurodegenerative properties. The metals Na, K, Mg,
Ca, Fe, Mn, Co, Cu, Zn, and Mo are ten of the twenty elements that are considered essential for life.
Crucial for understanding the biological role of metals is the exploration of metal-bound proteins
and peptides. Aside from essential metals, there are other non-essential metals that also interact
biologically, exhibiting either therapeutic or toxic effects. Irregularities in metal binding contribute to
diseases like Alzheimer’s, neurodegenerative disorders, Wilson’s, and Menkes disease. Certain metal
complexes have potential applications as radiopharmaceuticals. The examination of these complexes
was achieved by preforming UV–Vis, IR, EPR, NMR spectroscopy, and X-ray analysis. This summary,
although unable to cover all of the studies in the field, offers a review of the ongoing experimentation
and is a basis for new ideas, as well as strategies to explore and gain knowledge from the extensive
realm of peptide-chelated metals and biotechnologies.

Keywords: peptides; metal complexes; biological activities

Key Contribution: This review presents the metal complexes of both traditionally popular metals and
essential elements such as Cu, Zn, Co, Fe and non-essential elements Pd, Pt, Ni, Ag and lanthanides
with amino acids and peptides, as well as their application in the medicine, the pharmacy and
biotechnologies.

1. Introduction

Nature has fine-tuned protein sequences, structures, and binding sites over thousands
of years. Amino acid building blocks exhibit both chemical and structural versatility,
efficiently and specifically binding to other biological macromolecules. Numerous peptides
are either naturally occurring or derived from parent proteins through cleavage. As a result,
peptides—whether natural, derived or synthetic—are exceptionally well-suited for various
purposes and find applications across a wide range of scenarios [1] (see Figure 1).

Among the long list of applications of therapeutic peptides [2] are combating cancer [3],
microbial infections [4] (Figure 2), viral infections [5], and neurodegenerative diseases [6],
among others. Peptides can autonomously organize into various structures, such as nanos-
tructures [7–9], microstructures [10], hydrogels [11], treatment of cancerous growths [12],
and drug delivery [13].
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Metal ions have the ability to facilitate the self-assembly of peptides, leading to the 

formation of supra-molecular structures. These structures are able to serve various func-

tions, such as catalysts [14,15] or forming assemblies with nanocavities that can be modi-

fied, potentially enabling enantioselective recognition [16]. Figure 3, which is shown be-
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Figure 2. Classification of antimicrobial peptides.

Metal ions have the ability to facilitate the self-assembly of peptides, leading to
the formation of supra-molecular structures. These structures are able to serve various
functions, such as catalysts [14,15] or forming assemblies with nanocavities that can be
modified, potentially enabling enantioselective recognition [16]. Figure 3, which is shown
below, depicts how metal complexes and peptides create metal–peptide assemblies.
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Figure 3. Metal complexes with peptides.

Peptides serve as recognition elements in molecular probes because of their specific
binding capabilities [17,18]. Additionally, their capacity to bind to metals is employed
for direct detection of those metals [19,20]. The structure of the gold complex is given in
Figure 4 and the Cu(II) and Ni(II) complex in Figure 5, respectively. Metallopeptides are
also utilized as electrical probes to identify bacteria [21,22].
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Figure 4. Glycine–glycine–histidine (Gly–Gly–His, GGH) monolayer on a gold surface with Cu2+

ions. Secondary amines, carrying different charges depending on the electrolyte’s pH, are indicated
in red Reprinted/adapted with permission from Ref. [19]. 2019, Synhaivska et al. [19].
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Metal–peptide complexes offer chemical stabilization to the metal through chelation.
Within the food industry, peptides function as chelators, enhancing the bioavailability of
mineral supplements by safeguarding them against oxidation and altering their solubility
properties [23,24].

Additionally, peptides’ metal-binding capacity has been harnessed to enhance the
biocompatibility of gold nanoclusters for imaging [25], and bound lanthanide serves as
an imaging agent [26]. Moreover, the specific binding between natural peptides and
heavy metals can be utilized for metal remediation [27,28]. The structure and biosynthetic
pathways of the complex are given in Figure 6.
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Figure 6. The structure and biosynthetic pathways of glutathione (GSH) and phytochelatin (PC)
are explained, utilizing three-letter amino acid codes for abbreviations. (A) In GSH and PC biosyn-
thesis, there are two and three reactions, respectively. Initially, a cysteine unit binds with the
carboxylic group of the side chain of a glutamic acid residue to form γ-glutamylcysteine, catalyzed
by glutamate–cysteine ligase (GCL). Then, γ-glutamylcysteine combines with a glycine residue to
produce glutathione, catalyzed by glutathione synthetase (GSHS). PC-synthase (PCS) can potentially
bind two or more GSH units to create phytochelatins. (B) Additionally, examples of PC–metal
complexes involving divalent metal cations (M2+) are presented, with cysteine residues highlighted
in red Reprinted/adapted with permission from Ref. [27]. 2020, Balzano et al. [27].
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The methods for synthesis, heavy metal toxicity, the biosynthesis of metallothioneins
and phytochelatins in microalgae, the interaction of metal complexes with peptides, the
functions and nature of zinc signals, structure of metal–peptides, relationship of SAR,
and biological activity are reported in the following literature reviews: [1,24,25,27,29–39].
Some metal complexes can be used as potential therapeutics to treat Alzheimer’s [29,40–42],
neurodegenerative disorders, Wilson’s [43], Parkinson’s disease [44,45] and Menkes dis-
ease [46]. The mechanisms of action of these compounds are different and include the
modification of DNA/RNA, permeabilization, protein and cell wall synthesis, and mod-
ulation of gradients of cellular membranes. Table 1, shown below, provides a list of
neurodegenerative disorders and a list of references to articles with a greater focus on them.

Table 1. Various diseases and articles related to them.

Disease References

Alzheimer’s [29,40–42]

Wilson’s [43]

Parkinson’s [44,45]

Menkes [46]

We hope that this review will help researchers whose main focus is on inorganic
synthesis and reveal the hidden potential in ligand molecules like α-amino acids and
peptides. It is worth mentioning that although this review covers literature published in
the last two decades, a single review cannot cover all the obtained data. While choosing
papers, we took into consideration the potential opportunities for biological activities that
might be applicable to researchers in the field, as well as the nature of the transition metal.
In the review, we discuss complexes of both traditionally popular metals and essential
elements (Cu, Zn, Co, Fe) and non-essential elements (Pd, Pt, Ni, Ag and lanthanides).

It is for this reason that the data presented in this review are classified by the essential
and non-essential elements in these ligands, and not by the nature of the ligand molecule.

1.1. Metal Complexes of Peptides with Some Essential and Non-Essential Elements
1.1.1. Some Essential Elements
Copper (I)

Copper holds a crucial status as a metal that is essential for various biological functions,
contributing significantly to both structural integrity and biochemical processes. Facilitating
its transportation are specialized copper chaperones, a necessity due to their inherent
toxicity, particularly stemming from their capability to transition between their reduced
form, Cu(I), and oxidized state, Cu(II) [47]. In the realm of structural NMR (Nuclear
Magnetic Resonance), the distinction between these two states is stark, as Cu(I) exhibits
diamagnetic properties while Cu(II) manifests paramagnetic behavior. The handling of
Cu(I) samples poses a primary challenge, demanding meticulous preparation within a
glove box environment and ensuring airtight sealing to prevent oxidation upon exposure
to air [48]. The structure of the copper complex is given in Figure 7.

In exploring the binding sites, both linear and cyclic peptides have served as valuable
models, mimicking the conserved sequence essential for copper chaperone interactions.
Investigation into their binding modes has been conducted through mutation studies
and manipulation of environmental factors. For instance, altering the conserved Met
residue within the binding sequence severely hindered copper complexation [44], while
adjustments in pH levels led to varying binding modes [49]. These findings imply that
pH conditions can influence the coordination environment of the metal, highlighting the
utility of peptide–metal models in elucidating potential release mechanisms. The possible
mechanism of action of copper complex [44] is given in Figure 8.



BioTech 2024, 13, 9 6 of 26
BioTech 2024, 5, x FOR PEER REVIEW 6 of 27 
 

 

 

Figure 7. Ensemble derived from NMR data of copper-bound peptide. Complete 50-member en-

semble representing all sample conformations superimposed on backbone Reprinted/adapted with 

permission from Ref. [48]. 2013, Shoshan et al. [48]. 

In exploring the binding sites, both linear and cyclic peptides have served as valuable 

models, mimicking the conserved sequence essential for copper chaperone interactions. 

Investigation into their binding modes has been conducted through mutation studies and 

manipulation of environmental factors. For instance, altering the conserved Met residue 

within the binding sequence severely hindered copper complexation [44], while adjust-

ments in pH levels led to varying binding modes [49]. These findings imply that pH con-

ditions can influence the coordination environment of the metal, highlighting the utility 

of peptide–metal models in elucidating potential release mechanisms. The possible mech-

anism of action of copper complex [44] is given in Figure 8. 

 

Figure 8. Possible mechanism of action of copper complex Reprinted/adapted with permission 

from Ref. [44]. 2014, Miotto et al. [44]. 

Further structural examinations focused on the interaction between Cu(I) and the N-

terminal A 16 fragment of amyloid beta (A) and sought to ascertain the involvement of all 

three His residues in metal ion binding [50]. Notably, these studies were conducted on 

small peptides derived from the binding sites of larger molecules, underscoring their rel-

evance in dissecting intricate molecular interactions. 

Copper (II) 

Copper(II) stands out as the heaviest among the paramagnetic essential metals, at-

tracting considerable attention in studies involving various metal-binding proteins [51]. 

Figure 7. Ensemble derived from NMR data of copper-bound peptide. Complete 50-member
ensemble representing all sample conformations superimposed on backbone Reprinted/adapted
with permission from Ref. [48]. 2013, Shoshan et al. [48].

BioTech 2024, 5, x FOR PEER REVIEW 6 of 27 
 

 

 

Figure 7. Ensemble derived from NMR data of copper-bound peptide. Complete 50-member en-

semble representing all sample conformations superimposed on backbone Reprinted/adapted with 

permission from Ref. [48]. 2013, Shoshan et al. [48]. 

In exploring the binding sites, both linear and cyclic peptides have served as valuable 

models, mimicking the conserved sequence essential for copper chaperone interactions. 

Investigation into their binding modes has been conducted through mutation studies and 

manipulation of environmental factors. For instance, altering the conserved Met residue 

within the binding sequence severely hindered copper complexation [44], while adjust-

ments in pH levels led to varying binding modes [49]. These findings imply that pH con-

ditions can influence the coordination environment of the metal, highlighting the utility 

of peptide–metal models in elucidating potential release mechanisms. The possible mech-

anism of action of copper complex [44] is given in Figure 8. 

 

Figure 8. Possible mechanism of action of copper complex Reprinted/adapted with permission 

from Ref. [44]. 2014, Miotto et al. [44]. 

Further structural examinations focused on the interaction between Cu(I) and the N-

terminal A 16 fragment of amyloid beta (A) and sought to ascertain the involvement of all 

three His residues in metal ion binding [50]. Notably, these studies were conducted on 

small peptides derived from the binding sites of larger molecules, underscoring their rel-

evance in dissecting intricate molecular interactions. 

Copper (II) 

Copper(II) stands out as the heaviest among the paramagnetic essential metals, at-

tracting considerable attention in studies involving various metal-binding proteins [51]. 

Figure 8. Possible mechanism of action of copper complex Reprinted/adapted with permission from
Ref. [44]. 2014, Miotto et al. [44].

Further structural examinations focused on the interaction between Cu(I) and the
N-terminal A 16 fragment of amyloid beta (A) and sought to ascertain the involvement
of all three His residues in metal ion binding [50]. Notably, these studies were conducted
on small peptides derived from the binding sites of larger molecules, underscoring their
relevance in dissecting intricate molecular interactions.

Copper (II)

Copper(II) stands out as the heaviest among the paramagnetic essential metals, at-
tracting considerable attention in studies involving various metal-binding proteins [51].
Research endeavors have employed signal broadening techniques to pinpoint the residues
involved in binding [52], with such phenomena often offering insights into the sequence of
binding events [53]. When proton (1H) spectra exhibit broadening effects, complementary
information can be extracted from the corresponding carbon-13 (13C) spectra [54]. Typically,
these investigations necessitate the initial assignment of the 1H spectrum followed by
titration experiments with Cu(II) to identify the specific binding groups. Subsequently, the
formation of the bound complex can be confirmed either through experimental means [53]
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or through computational simulations [55]. This allows for the positioning of the Cu(II)
ion within the identified binding site, ultimately yielding a detailed depiction of the bound
structure. Figure 9 show metal-binding proteins [51], while Figure 10 provides a schematic
representation of the proposed structures [52].
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of (A) the “sausage” diagram of the superimposed 35 DYANA backbone structures of oxidized
Synechocystis PCC6803 plastocyanin; (B) the restrained energy-minimized DYANA mean structure
of oxidized Synechocystis PCC6803 plastocyanin, showing the elements of the secondary structure
in different colors. The copper atom is shown in green at the top of the model. The four ligands
(His39, Cys83, His86, and Met91) are represented as ball-and-stick colored according to the CPK code
Reprinted/adapted with permission from Ref. [51]. 2011, Bertini et al. [51].

Recently, Georgieva et al. proposed the formation of complexes between Cu(II) and
hemorphin peptide derivatives in an aqueous solution with a pH of 10.98 [56]. Through
meticulous examination of spectroscopic data and voltametric calculations, complete agree-
ment has been reached, confirming the formation of stable copper(II) complexes with
peptides in aqueous solutions. These complexes exhibit a 1:2 stoichiometry for Cu-H-V,
Cu-AH-V, Cu-NH7C, and Cu-NCH7, while a 1:1 stoichiometry is observed for Cu-AC-V
and Cu-C-V. Notably, the virucidal activity against human respiratory syncytial virus and
adenovirus (HRSV-2) at 30 and 60 min remains weakly affected by these complexes, similar
to the starting peptide compounds [56]. Figure 11 illustrates the structures of two of these
newly identified complexes.
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Hickey et al. documented the discovery of a copper complex featuring a styrylpyridine
group, which exhibited an affinity for Aβ plaques within human brain tissue [42]. Figure 12
depicts the structure of these 64Cu complexes.

Given the challenges in directly measuring copper(II)-bound complexes, diamagnetic
metals with square planar binding geometry often serve as substitutes for deriving the
bound structure. Through line-broadening analysis, the position of copper binding can be
inferred. If there is experimental evidence indicating similarity in binding modes, Cu(II) can
be introduced into structure calculations, enabling the determination of copper(II)-bound
structures. This methodology has been successfully applied to peptide–metal complexes
utilizing palladium(II) [57], silver(I) [58], and nickel(II) [59,60].
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Line-broadening analysis of proton (1H) spectra has been instrumental in identify-
ing residues involved in binding Cu(II) to model copper(II)-binding sites [61], as well as
in copper(II)-mediated aggregation processes [62]. Additionally, line-broadening effects
in carbon-13 (13C) spectra can be utilized [63], while chemical shift deviations can be
monitored through various experiments including 1H-1D and 2D 15N-HSQC, 13C-HSQC,
and 1H-1H TOCSY experiments. Furthermore, precise determination of the binding ni-
trogen in histidine residues has been achieved through proton spin–lattice relaxation rate
studies [64]. Sun et al. describes the synthesis, design and investigation of transition
metal complexes with flexible histidine-containing peptides [65]. Copper(II) complexes of
glycylglycylglycine peptides were also obtained [66]. Copper has the ability to amplify
the antimicrobial activity of antibiotics, including viomycin and capreomycin. The com-
plex of copper and viomycin has hydrogen bonds that make it stable and provide helical
conformation in the peptide, making the DNA susceptible to strong degradation [67];
the described mechanism is connected to the modulation of the antigenomic δ-ribozyme
catalytic activity [68].
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Figure 12. Structures of bis(thiosemicarbazonato)CuII complexes CuII(atsm) and new hybrid
thiosemicarbazonato-pyridylhydrazide CuII complexes with Aβ plaque targeting benzothiazole
(CuIIL1) and styrylpyridine functional groups (CuIIL2 R = CH3; CuIIL3 R = CH2CH2N(CH3)2)
Reprinted/adapted with permission from Ref. [42]. 2013, Hickey et al. [42].

Zinc (II)

Zinc stands out as a crucial ion involved in structural, catalytic, and regulatory func-
tions within proteins, being present in approximately 10% of all known proteins [31,58].
Notably, zinc finger proteins represent a prominent category among these, showcasing
their flexibility and stability through metal-binding interactions. To unravel the intricacies
of zinc finger binding, both short and longer peptides have been extensively utilized. These
peptides serve as invaluable tools for modeling various aspects of zinc finger behavior,
including metal coordination, folding dynamics, and actual binding processes [69–72].
Figure 13 gives a comparison between the α-peptide and oligourea backbones, as well as
an illustration of the structures.
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Figure 13. Design guided by the structure of composite proteins containing artificial helical foldamer
region. (a) Comparison of α-peptide (green) and oligourea (orange) backbones and overlay of their
helical structures (α-helical tetrapeptide vs. 2.5-helical triurea) illustrating the structural resemblance
(dimensions, handedness, polarity) between the two helical backbones. (b) Application to the
construction of a composite Cys2His2 zinc finger with a ββα fold. (c) Sequence of designed composite
zinc finger ureaFN3 and the native zinc finger nativeFN3 derived from Zif268 Reprinted/adapted with
permission from Ref. [72]. 2019, Lombardo et al. [72].
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In the realm of peptide modeling, cyclic peptides featuring linear tails have emerged
as particularly promising candidates. These structures exhibit notable conformational and
thermodynamic stability when compared to their linear counterparts, effectively mimicking
the zinc-ribbon fold characteristic of zinc fingers. Moreover, cyclic peptides demonstrate
enhanced binding affinity towards Zn(II) ions, underscoring their utility in zinc finger
modeling [73]. Through peptide-based investigations, insights into secondary structural
elements common in zinc fingers have been gleaned, shedding light on their pivotal role in
both folding and zinc binding processes. Notably, peptide engineering efforts have led to
the development of modified peptides that retain tertiary folds and stability comparable
to their natural zinc finger protein counterparts, even with substantial alterations to their
native residues [74]. Figure 14 presents an NMR confirmed structure of ZnLZR.
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Figure 14. Solution structure of ZnLZR (pH 6.3, 298 K) deduced from NMR studies. (A) Superim-
position of the 10 lowest energy structures calculated using XPLOR. All side chains except those of
the DPro-Pro motif and that of the lysine serving as branching point between the cycle and the tail
were removed for clarity. (B) Lowest-energy structure with the six NH···S hydrogen bonds displayed
as black dashed lines. (C) Superimposition of the lowest-energy structure of Zn·LZR (green) with
the zinc-ribbon domains of the subunit 9 of Thermococcus celer RNA polymerase II (blue, pdb 1QYP)
and (D) Clostridium pasteurianum Zn loaded rubredoxin (blue, pdb 1IRN) Reprinted/adapted with
permission from Ref. [73]. 2013, Jacques et al. [73].

The binding of zinc ions can induce significant conformational changes in peptides [75],
a phenomenon exemplified by its ability to trigger the oligomerization of amyloid beta, a
42-amino acid polypeptide associated with Alzheimer’s disease. To study such processes
effectively, truncated peptides preserving the beta-sheet formation region while minimiz-
ing complete oligomerization have been employed. For instance, investigations into the
familial Taiwanese mutation D7H region of amyloid beta, which impacts zinc-induced
oligomerization, have been facilitated through the use of stable homodimers formed via
zinc binding [40,41]. Figure 15 below represents the arrangement of Zn ions in solution
within the rat Aβ(1–16) dimer complexes.

Furthermore, exploring the resistance of rats to Alzheimer’s disease has provided
valuable insights into zinc-induced dimerization within amyloid beta proteins. Utilizing
truncated peptides, researchers have elucidated the interface involved in zinc-induced
dimerization, showcasing a potential avenue for the rational design of drug compounds
aimed at disrupting plaque-forming processes.
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Figure 15. Structure of the rat Aβ(1–16) dimer complexes with Zn ions in solution (the 20 NMR
conformers have been deposited in the Protein Data Bank with accession code 2LI9). Only the
backbone atoms (Cα, C, and N) and the side chains of the His residues are shown. Chains A and
B of the dimer are shown in red and blue, respectively. The N- and C-termini of both chains are
labeled. (A) The family of 20 calculated NMR structures. (B) Coordination of the zinc ion by the
histidine residues in the representative structure after additional QM/MM geometry optimization.
The average distance between the Zn2+ ion and the nitrogen atoms of the His residues (Nd1 and Nε2)
is 2.07 ± 0.05 Å Reprinted/adapted with permission from Ref. [40]. 2012, Istrate et al. [40].

Cobalt (II) and (III)

Cobalt, existing in both its (II) and (III) oxidation states, though present in trace
amounts within the body, holds vital significance as an essential element. However, when
present in excess, cobalt poses toxicity risks attributed to its capacity for generating re-
active oxygen species and displacing iron in metalloenzymes, thereby rendering them
inactive [33]. Predominantly paramagnetic, cobalt manifests distinct characteristics in its
(III) state, where it can adopt both high- and low-spin configurations, the latter being
diamagnetic [33]. For instance, the elucidation of a diamagnetic Co(III) complex with
a peptide-porphyrin conjugate was achieved through conventional methodologies [76].
Notably, the large paramagnetic chemical shifts (PCSs) and minimal paramagnetic relax-
ation enhancements (PRE) exhibited by high-spin Co(II) render it conducive to structure
determination [32]. Figure 16, Figure 17, and Figure 18 depict the structure of Co(III)
complexes including light-activated Co(III) prodrugs; the general mechanism of action of
cobalt complexes for delivering drugs through reduction activation; the molecular structure
of Co(III)-mimochrome IV in stereo view, representing the average structure derived from
both NMR experimental data and RMD calculations, respectively.
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Figure 18. Molecular structure of Co(III)-mimochrome IV. Stereo view of the average structure, as
obtained from NMR experimental data and RMD calculations Reprinted/adapted with permission
from Ref. [76]. 2003, Lombardi et al. [76].

Similarly, the binding site of a cobalt(III)–Schiff base complex to another amyloid beta
protein fragment was elucidated using 1H-NMR, with binding histidines identified through
line-broadening effects [77]. Figure 19 presents transition metal complex suggestions.
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Figure 19. Transition metal complexes proposed by Heffern et al. (A) Amyloid-b (Ab) peptides used
in these studies. Ab16 was used as a soluble peptide model to understand the interactions between
Co–sb complexes and the N terminus of the Ab peptide. Ab42 was used to understand the effects of
Co–sb complexes on peptide oligomerization and synaptic binding. (B) Transition metal complexes
and naming schemes used in this work. Co–acacen and Co–benacen are Co–sb complexes that can
coordinate His residues through dissociative ligand exchange of the axial ammines. The behavior
of Co–sb on modulating Ab was compared to Pt–phen, a PtII complex previously shown to disrupt
Ab-induced neurotoxicity. (C) Proposed scheme of the modulation of Ab activity by Co–acacen. Co–
acacen is believed to coordinate the His residues of Ab through the two axial positions. Computational
studies suggest the simultaneous coordination of His6 and either His13 or His14 as the most stable
conformation. His coordination alters the Ab structure, disrupting oligomerization pathways and
synaptic binding Reprinted/adapted with permission from Ref. [77]. 2014, Heffern et al. [77].

Further insights into cobalt binding were gleaned from an investigation into cobalt(II)
binding to fibrinopeptide B, a factor implicated in thrombosis. Although the peptide structures
were determined in the presence of cobalt(II) and gadolinium(III), the metal ions were not
visualized within the structures [78]. Moreover, a 30-amino acid peptide initially recognized
for its manganese-binding capabilities, derived from a decapeptide repeat in the calcium
protein Cap43, was also found to exhibit affinity for Co(II). Line-broadening observed during
the interaction enabled the identification of binding histidine residues, while the pH range
conducive to binding was elucidated as part of the binding mechanism. Subsequent modeling
efforts generated and minimized postulated coordination spheres of Co(II) based on NMR
data, utilizing software like HyperChem™ [79]. Figure 20 displays the model depicting the
probable coordination spheres of Co(II) with the multi-histidine peptide fragment.
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Figure 20. Model of the most likely coordination spheres of Co(II) with the multi-histidine pep-
tide fragment: (a) Co-{3Nε(Im)-3O(Glu-COO−)}, (b) Co-{3Nε(Im)-3O(1Glu-COO−, 2H2O)}; (c) Co-
{3Nε(Im)-3O(1 Glu-COO−, 1 Thr-O, 1 H2O)} Reprinted/adapted with permission from Ref. [79]. 2013,
Peana et al. [79].
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Additionally, the conformational alterations of peptides upon binding to chiral cobalt
oxide nanoparticles were investigated to explore chiral evolution phenomena. Tripep-
tide ligands exhibited distinct peak sets attributed to the high PCS of the nanoparticles,
facilitating structure determination owing to their minimal PRE effects [80].

Iron (II) and (III)

Iron stands as an indispensable element crucial for oxygen transport within the body,
with both excess and deficiency leading to various disorders [34,35]. Existing in both ferric
and ferrous forms, iron exhibits paramagnetic properties, and the interconversion between
these forms plays a central role in its functionality. Given the facile oxygenation of ferrous to
ferric iron ions, meticulous sample preparation within an oxygen-free glove box environment
is imperative to mitigate undesired reactions. The following studies underscore innovative
strategies for investigating iron, highlighting the efficacy of a multidisciplinary approach.
Figure 21 below illustrates the circulation and distribution of iron within the human body.
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Figure 21. Iron distribution and circulation. Nonheme dietary iron Fe3+ is reduced to Fe2+ by the iron
reducing DCYTB (1) prior to its uptake at the apical membrane of enterocytes via DMT1(2). Fe2+ can
then be directly used for intracellular mechanisms, stored when bound to ferritin or released directly
into the circulation (3). (4) Therefore, reduced iron Fe2+ is transported by ferroportin (FPN), the only
known iron exporter so far, and then oxidized by hephaestin Hp to be then bound to Tf (5). Most of
the iron resent in the circulation is bound to Tf. As a result, erythrocyte precursors (erythroblasts)
take up this transferrin-bound iron via TfR1(6). Fe3+ bound to transferrin is reduced in the endosome
by ferrireductase STEAP3 to Fe2+ (7) where it is exported via DMT1 (8) into the cytosol and enters the
labile iron pool. Mature RBCs circulate in the blood for around 120 days (9) until they are removed
from the circulation during rythrophagocytosis. The illustration was created using BioRender.com
(accessed on 3 April 2021) Reprinted/adapted with permission from Ref. [35]. 2021, Vogt et al. [35].

Detection of iron binding is notably achieved through the observation of line-broadening
effects proximal to the binding site. For instance, a study involving the grafting of a
six-residue iron-binding motif onto a 29-residue peptide utilized NMR spectroscopy to
discern line-broadening phenomena indicative of specific interactions between the peptide
and Fe(III) ions. Complementary techniques such as circular dichroism, isothermal titra-
tion calorimetry, capillary zone electrophoresis, thermal denaturation, and computational
modeling were employed to elucidate the binding mode and structure of the peptide
model system [81]. In magnetotactic bacteria, biomineralization processes are governed by
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magnetite-associated proteins featuring short sequences capable of binding iron. Peptides
derived from these iron-binding regions were subjected to reactions with Fe(II), Fe(III),
Ni(II), and Zn(II) ions, enabling the determination of specificity, binding coefficients, and
key binding residues through NMR spectroscopy. Subsequent coprecipitation assays were
employed to ascertain the significance of each binding residue [82]. Additionally, computa-
tional methodologies were integrated with NMR spectroscopy to elucidate the structures of
artificial peptides forming chiral helicate complexes with Fe(II) and Co(II) ions [83]. Further-
more, the utility of 1D and 2D NMR techniques capable of directly detecting paramagnetic
complexes was demonstrated using the eight-amino acid microperoxidase-8 bound with
heme iron as a model peptide for the cytochrome C binding site. Excitation sculpting with
gradients was employed to suppress water signals in Fe(II)-bound samples for acquiring
1D spectra, while a superWEFT pulse sequence was utilized for measuring Fe(III)-bound
samples [84,85].

1.1.2. Some Non-Essential Elements

A variety of non-essential metals have been implicated in contributing to the pathogen-
esis of Alzheimer’s disease, prompting investigations into their interactions with amyloid
beta-derived peptides to unravel potential mechanisms of action. For instance, studies
have explored the interactions of aluminum and palladium with these peptides [57,86].
Figure 22 depicts the overlap of Aβ12 structures with and without, and Figure 23 represents
the three-dimensional arrangement of the Pd(Aβ4-16) complex.
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Figure 22. The structures of Ab12 with (green) and without metal (orange). Proposed binding sites of alu-
minium metal are also shown. C-terminus binding site has relatively lower energy, and is also compatible
with NMR studies Reprinted/adapted with permission from Ref. [86]. 2013, Narayan et al. [86].
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Nickel NMR measurements serve as a valuable tool for detecting the binding of nickel
ions in diamagnetic form, thereby serving as a model for understanding the behavior of
paramagnetic ions that may otherwise pose challenges for structural characterization [87].
Studies comparing different forms of nickel-binding peptides offer insights into the role of
nickel complexation in peptide structure and hint at the potential roles of paramagnetic
ions. The amino-terminal copper- and nickel-binding (ATCUN) motif, found in numerous
proteins, has been extensively investigated using linear and cyclic peptide models with
various divalent ions, including Co(II), Ni(II), and others [50,88]. Nickel itself has been
implicated in metal-induced toxicity and carcinogenesis, prompting studies on Ni(II)-
peptide models derived from the C-terminal of histone H2B to elucidate potential roles
in carcinogenesis [89]. Additionally, interactions of Ni(II) with peptides derived from
the human Toll-like receptor (hTLR4) have been studied due to nickel’s ability to elicit
allergic responses [90]. Figure 24 illustrates the configuration of the Pd(II) complex [58],
and Figure 25 shows the stereo view of the superimposed 20 lowest energy structures of
Ni2+-H2B105–112 obtained from NMR data [89].
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Figure 24. The structure of Pd(II) complex reported by Mital et al. The 3D structure of Phe-Arg-
His-amide (FRH) peptide represented the N-terminal ATCUN/NTS motif saturated with Pd(II)
ions based on collected NMR constraints and crystallographic data available for GGH tripeptides
Reprinted/adapted with permission from Ref. [57]. 2020, Mital et al. [57].
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Figure 25. (a) Stereoview of superposition of the 20 lowest energy structures of Ni2+-
H2B105–112 obtained from NMR data; (b) overlaid mean (black, E = 9460.38 kcal mol−1/gradient
= 957.7 kcal mol−1 Å −1) and geometric optimized (red, E = 168.6 kcal mol−1/gradient =
0.09 kcal mol−1 Å −1) Reprinted/adapted with permission from Ref. [89]. 2010, Nunes et al. [89].
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Gallium, a diamagnetic ion, has been shown to effectively substitute Fe(III) binding in
Fe2S2 clusters while preserving the overall structure [91]. Palladium, also diamagnetic, has
been utilized as a model for Cu(II) binding in amyloid beta-derived peptides and prion
protein peptide derivatives due to its similar square planar geometry [57,92]. Investigations
into the pH dependence of palladium coordination using Pd(II)-peptide complexes have
further expanded our understanding [93]. Tsiveriotis et al. presented the interaction
of histidyl containing peptides with Pt(II) and Pd(II) [94]. Figure 26 depicts the chelate
structure of metal complexes containing Pt(II) and Pd(II), and Figure 27 represents the
configuration of certain metal complexes containing Pd(II).
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et al. Reprinted/adapted with permission from Ref. [94]. 1999, Tsiveriotis et al. [94].
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Figure 27. The structure of some metal complexes with Pd(II) Reprinted/adapted with permission
from Ref. [94]. 1999, Tsiveriotis et al. [94].
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New square planar bis-chelated palladium amino acid complexes with proline and
proline homologs were obtained [95]. The structures of novel catalyst complexes were
established by X-ray analysis. Figure 28 presents the chelate structure of metal complexes
containing Pd(II).
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peptide in SDS micellar solution. 

Figure 28. Compound structures and numbering scheme for proline and proline homolog complexes.
Stereochemistry is shown at all chiral centers Reprinted/adapted with permission from Ref. [95].
2019, Hobart et al. [95].

Silver, a toxic diamagnetic ion, interacts with the human copper transporter 1 (hCtr1).
Structural studies involving an Ag(I) complex with a micelle-bound peptide derived
from hCtr1 have suggested that the membrane surface may influence the structure of the
extracellular domain of the protein and its binding to Ag(I) [96]. Similarly, studies on
peptides derived from the human copper transporter 2 (hCtr2) have shown that Ag(I)
binding occurs when the peptide is in its trimeric form [58]. Figure 29 displays a collection
of backbone atoms from 20 structures with the most favorable target functions for the
wild-type peptide in SDS micellar solution.
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Cu(I) [44,47–50] Ni(II) [87,89,90] 
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Zn(II) [31,40,41,69–75] Pt(II) [94] 

Figure 29. Ensemble of backbone atoms of 20 structures with the lowest target functions for the
WT peptide in SDS micellar solution Reprinted/adapted with permission from Ref. [96]. 2013,
Wang et al. [96].

Platinum, another diamagnetic metal with potent anticancer properties, has been stud-
ied for its binding with a peptide comprising the receptor binding sequence of transferrin,
employing titration followed by NMR to determine the binding [97].

Lanthanides, mostly paramagnetic, are frequently used as shift reagents to monitor
significant changes in chemical shift that occur in their proximity. Studies involving
lanthanides and peptides have aimed at conjugating lanthanide–peptide complexes to
proteins to leverage the shift reagent properties on the protein structure. For example,
NMR-derived structures of fibrinopeptide B in the presence of salts, including Ga(III),
have been elucidated [89]. Additionally, investigations into the binding properties of
small peptides derived from Ca(II)-binding sites with toxic lanthanides such as La(III),
Eu(III), and Tb(III) have been conducted to evaluate their potential for diagnostic use as
contrast agents [98]. The structure of La(III) complexes [98] is given in Figure 30. The
metal complexes of Y(III), La(III), Ce(III), Pr(III) and Nd(III) with glycyi-L-proline were
synthesized by Sandhu et al. [99]. The summary table with some essential and non-essential
elements is given in Table 2.
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Figure 30. NMR structure of LaP2. Left: lowest energy ball-and-stick structure, stabilizing interactions
represented as orange lines; middle: superimposition of the backbones and Trp side chains of the
10 lowest energy structures; right: superimposition of the 10 lowest energy structures (backbone
and Trp side chain: sticks, coordinating side chain: lines) Reprinted/adapted with permission from
Ref. [98]. 2009, Cisnetti et al. [98].
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Table 2. Summary table with some essential and non-essential elements.

Essential Elements References Non-Essential Elements References

Cu(I) [44,47–50] Ni(II) [87,89,90]

Cu(II) [42,51–56] Pd(II) [57,92–94]

Zn(II) [31,40,41,69–75] Pt(II) [94]

Co(II) and Co(III) [32,33,76–80] Ag(I) [58,96]

Fe(II) and Fe(III) [34,35,81–85] Ga(III) [78,91]

La(III), Eu(III), Tb(III) [98]

A series of solid research works is devoted to the synthesis and characterization of
transition metal complexes with amino acids and peptides. Commonly, such complexes are
synthesized using the approaches of classical chemistry of non-organometallic compounds.

The summary data on the structure of the complexes and the donor atoms involved in
the coordination are given in Table 3.

Table 3. Summary data on the structure of the complexes and the donor atoms involved in the
coordination.

Technique Donor Atom Metal Structure References

1D 1H and 2D 1H−1H TOCSY NMR S Cu(I) [44]

COSY, TOCSY and NOESY, or
ROESY S Cu(I) [48]

X-ray crystallography, elemental
analysis, UV–Vis, 1H-, 13C-NMR,
LC/MS

N, S Cu(II) [42]

1D 1H and 2D 1H−1H TOCSY and
NOESY, HMQC, HSQC, 1H-15N 2D
NMR

S Cu(II) [51]

UV–Vis, ESI-MS, EPR, COSY,
ROESY and TOCSY NMR O, N Cu(II) Square planar or square

pyramidal geometries [52]

UV–Vis, CD, ESR, NMR
spectroscopic and MS methods N Cu(II) [54]

Voltametric (cyclic) and spectral
(UV–Vis and fluorimetric) analytical
techniques, IR, EPR

O, N, S for L1, L3, L6
and O, N for L2, L4 Cu(II) [56]

UV–Vis, EPR, 1H–1H TOCSY,
1H–13C HSQC

N, O Co(II) and Mn(II) Octahedral [79]

1H NMR, 1H-1H TOCSY N, O Co(III) [77]

1D 1H and 2D NMR, CD and
computational methods N Fe(II) and Co(II) [83]

UV–Vis, 1D 1H NMR spectra or 2D
soft-COSY experiments

S Zn(II) [73]

ESI-MS, TOCSY, NOESY, ROESY,
1H-13C HSQC and 1H-15N HSQC
NMR

N Pd(II) Square planar [57]

X-ray crystallography, NMR, HRMS N, O Pd(II) Square planar [95]

ESI–MS, TOCSY and ROESY,
1H-15N HSQC NMR N Al(III) [86]

UV–Vis, CD, ROESY, TOCSY,
NOESY NMR N Ni(II) and Cu(II) Square planar [87]

1H-, 13C- and 195Pt-NMR N Pd(II) Square planar [94]
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2. Conclusions

In summary, essential metals play pivotal roles in various biological processes, ranging
from oxygen transport to enzymatic catalysis. Their involvement in structural integrity,
regulation, and signaling underscores their indispensability for life. While their deficiency
can lead to debilitating disorders, excess levels can result in toxicity and disease. Through
meticulous research spanning diverse methodologies, scientists have elucidated the intri-
cate mechanisms underlying the interactions of essential metals with peptides and proteins,
shedding light on their physiological functions and potential implications in diseases such
as Alzheimer’s. Furthermore, ongoing exploration of metal-peptide interactions holds
promise for the development of novel therapeutic strategies and diagnostic tools. Thus,
understanding the roles of essential metals in biological systems remains a cornerstone in
advancing our knowledge of human health and disease.

In conclusion, the intricate interplay between non-essential metals and peptides un-
derscores the multifaceted nature of their interactions and their potential implications in
various biological processes and diseases, such as Alzheimer’s disease and carcinogenesis.
Through diverse methodologies ranging from NMR spectroscopy to computational mod-
eling, researchers have elucidated the binding modes, structural changes, and functional
consequences of these interactions. Investigations into metals like nickel, palladium, silver,
and platinum have provided valuable insights into their roles in toxicity, carcinogenesis,
and therapeutic potential. Furthermore, studies involving lanthanides have offered novel
approaches for utilizing their paramagnetic properties as shift reagents for structural anal-
ysis. Continued exploration of these metal–peptide interactions promises to deepen our
understanding of their biological significance and may pave the way for the development of
novel diagnostic and therapeutic strategies in various fields of medicine and biotechnology.
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