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Abstract: Landslides are among the most relevant and potentially damaging natural risks, causing
material and human losses. The department of Aube in France is well known for several major
landslide occurrences. This study focuses on the assessment of Landslide Susceptibility (LS) using the
Frequency Ratio (FR) as a statistical method, the Analytic Hierarchy Process (AHP) as a Multi-Criteria
Decision-Making (MCDM) method, and Random Forest (RF) and k-Nearest Neighbor (kNN) as
machine learning methods in the Aube department, northeast of France. Subsequently, the thematic
layers of eight landslide causative factors, including distance to hydrography, density of quarries,
elevation, slope, lithology, distance to roads, distance to faults, and rainfall, were generated in
the geographic information system (GIS) environment. The thematic layers were integrated and
processed to map landslide susceptibility in the study area. On the other hand, an inventory of
landslides was carried out based on the database created by the French Geological Survey (BRGM),
where 157 landslide occurrences were selected, and then RF and kNN models were trained to
generate landslide maps (LSMs) of the study area. The generated maps were assessed by using the
Area Under the Receiver Operating Characteristic Curve (ROC AUC). Subsequently, the accuracy
assessment of the FR model revealed more accurate results (AUC = 66.0%) than AHP, outperforming
the latter by 6%, while machine learning models results showed that RF gave better results than
kNN (<7.3%) with AUC = 95%. Following the analysis of LS mapping results, lithology, distance to
the hydrographic network, distance to roads, and elevation were the four main factors controlling
landslide susceptibility in the study area. Future mitigation and protection activities within the
Aube department can benefit from the present study mapping results, implicating an optimized land
management for decision-makers.

Keywords: landslide susceptibility; analytic hierarchy process; frequency ratio; random forest;
k-nearest neighbor; Aube department

1. Introduction

Landslides are well recognized among the prevalent geological hazards, impacting
ecological quality. For example, from 1997 to 2017, landslides caused 378 disasters [1]. In
terms of economics, the losses that have been due to landslides were estimated at many
billions of dollars [1]. The synergy of human activities and various physical factors favored
landslide occurrences in many vulnerable areas [2]. By harnessing the power of statistical,
MCDM, and machine learning techniques, we seek to overcome the limited information and
provide a comprehensive understanding of landslide susceptibility in the Aube department
area. In France, the density of landslides recorded between 1900 and 2020 has varied from
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0.2 per 10 km2 to over 1 per 10 km2. The most notable landslide occurrences include a
landslide in March 2014 in Bar-Sur-Aube, specifically below the Ste-Germaine farm, which
resulted in the fall of rocks and threatened two buildings and a communal road. Another
significant landslide occurred in 2003 upstream of the municipal road connecting Fontaine
to Bar-Sur-Aube.

In general, many approaches have been developed for evaluating landslide susceptibil-
ity mapping. The use of data-driven methods such as machine and deep learning, statistical
methods, and knowledge-driven methods in geographic information system (GIS) envi-
ronments have become popular in assessing landslide susceptibility. In knowledge-driven
methods, the dependence on the investigator’s prior knowledge has played a significant
role in the results of landslide analysis [3]. The qualitative or heuristic analytic hierarchy
process (AHP) method has become one of the best MCDM techniques adopted in landslide
susceptibility mapping [4]. AHP facilitates decision-making processes for individuals in
positions of authority by simplifying complex decisions into a sequence of comparative
evaluations and consolidating the outcomes. AHP methodically breaks down complex
decision problems into distinct hierarchical levels, enabling the quantification of subjective
viewpoints and their conversion into a cohesive decision model [5]. In addition, numerous
statistical models have been used for landslide susceptibility mapping, including logistic
regression (LR) [6], weight of evidence (WOI) [7], the frequency ratio (FR) [8], the Modified
information value (MIV) [9,10], and the index of entropy (IOE) [11].

Furthermore, data-driven techniques utilize artificial intelligence (AI) algorithms to
analyze and predict information by learning from training datasets. These algorithms
employ iterative modeling processes to extract valuable insights and patterns from data.
Among the adopted machine learning algorithms in landslide susceptibility mapping, we
can mention random forest (RF) [12], decision tree (DT) [13], k-nearest neighbor (kNN) [12],
support vector machine (SVM) [14], Bayesian network (BN) [15], Multilayer Perceptron
(MLP) [16], and deep learning models (DL) [17]. Due to its many benefits, random forests
(RFs) have recently received a lot of interest in the machine learning community. RF reg-
ularly produces trustworthy findings with exceptional precision, has a quick processing
speed, simplifies the model implementation process by requiring less parameter adjust-
ment, and provides exceptional effectiveness in processing high-dimensional data [18]. In
addition, the authors often adopt integrated approaches to solve LSM problems within
complex areas. For example, knowledge and data-driven models can be more accurate in
various geographical contexts [19].

It is important to note that there has yet to be previous research in landslide sus-
ceptibility assessment in the Aube department despite numerous landslide occurrences
in recent decades. The innovative aspect of this research lies in its use of Multi-Criteria
Decision-Making (MCDM), statistical, and machine learning models to develop a compre-
hensive landslide susceptibility map for the study region. This research aims to bridge the
existing gap by providing valuable insights into landslide susceptibility assessment in an
area previously unexplored, contributing significantly to both scientific knowledge and
practical applications. In order to perform the landslide susceptibility mapping for the
Aube department, RF, kNN, AHP, and FR models are implemented and then compared.
The three main steps in this investigation are as follows: (i) The selection of eight factors
conditioning the occurrence of landslides: lithology, slope, proximity to roads, proximity to
the hydrographic network, precipitation, altitude, proximity to faults, and the density of
quarries. The density of quarries is considered an anthropic activity to generate different
forms of landslide instabilities. (ii) Landslide modeling in a GIS environment. (iii) Lastly,
the investigation of the performance of these models using ROC and AUC. By comparing
the results of the four models, this study can help regional planners choose powerful
models for landslide prediction in the Aube department and other regions worldwide.
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2. Study Area and Data
2.1. Study Area

The Aube department is located in Northeastern France, the “Great East region”
(Figure 1), and is well recognized as an area of significant landslide risks. The investi-
gated area is about 6004 km2, consisting of three arrondissements: Bar-Sur-Aube, Nogent-
Sur-Seine, and Troyes. The Aube department lies at an altitude ranging from 17 and
382 m (Figure 1).
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Figure 1. Study area location of the Aube department.

The climatic conditions are characterized by the absence of intense cold or excessive
heat. This latter represents a temperate oceanic humid climate zone (Aube, 2016). The
annual rainfall of the Aube department varies between 380 and 1200 mm. Numerous
landslides have occurred in the area over time (see Figure 1).

Geologically, the study area is mainly formed by a lithologic sedimentary sequence
composed of limestone, clay, chalk, and colluvium.

2.2. Landslide Dataset

Landslide occurrence locations were obtained from the points collected by BRGM
(in .xls format). We acquired landslide occurrence information from the BRGM website
(https://www.brgm.fr/en/challenges/digital-data-services-infrastructure) (accessed on
14 October 2021). The georeferenced data were subsequently extracted following the
administrative boundaries of the Aube department. This extraction process involved
employing the Vector geoprocessing tool “cut” within the QGIS 3.14 software.

2.3. Controlling Factors Thematic Layers

To generate GIS layers of landslide-triggering factors, we used multiple datasets. Ac-
cording to previous studies on landslide-causing factors, many factors could interact to
increase the landslide risk, including geology, topography, hydrology, and land manage-
ment [20–23]. However, the choice of landslide susceptibility controlling factor has no
particular guidelines [24]. In the previously defined principal categories, and based on

https://www.brgm.fr/en/challenges/digital-data-services-infrastructure
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the study area characteristics, eight principal factors were selected for our study, namely,
elevation, lithology, slope, proximity to drainage, proximity to roads, quarry density, prox-
imity to faults, and rainfall. The table below presents each factor and its sources (Table 1).
Landslide potential mapping depends on the comprehensive assessment of causal fac-
tors, contingent upon relevant data availability within the study area. In this study, we
considered eight controlling factors that contribute to landslide occurrences, covering
the Aube department’s main aspects, including topographical, hydrological, geological,
climatological, and anthropogenic aspects. Multicollinearity pertains to the absence of
independence among the various factors that contribute to landslides, which can manifest
within the used datasets [25]. Variance Inflation Factor (VIF) is the inverse of tolerance.
The multicollinearity of landslide factors was evaluated based on VIF (Table 2). All factors
expressed tolerable values with VIF less than 10.

Table 1. The current study source of the used data (i.e., integrated control factors).

Triggering Factors Data Source

Elevation ASTER-DEM-30 m resolution (https://earthexplorer.usgs.gov), accessed on 5 October 2021.
Lithology Geological map of the Aube department by BRGM (scale 1:25.000)

Slope Extracted from ASTER-DEM (30 m resolution)
Precipitations Obtained from a time series of PERSIANN-CDR (Resolution: 0.04 degrees).

Proximity to roads Derived from GIS data of the IGN database
Proximity to drainage Derived from GIS data of the IGN database

Density of quarries Generated from points collected by BRGM (.xls format)
Faults density Geological map of the department of Aube, France (scale 1:25.000).

Table 2. The VIF values for the used data (i.e., integrated control factors).

Factors Elevation Fault Hydrology Lithology Quarries Rainfall Road Slope

VIF 3.6453 1.1516 1.6088 1.2097 1.3613 3.3052 1.1283 1.0367

Lithology

Several studies have highlighted the crucial significance of lithology in landslide
susceptibility mapping [26]. Extensive research supports that rock chemical properties and
geotechnical characteristics directly influence the occurrence of landslides. The necessary
data about lithologic units in the study area were acquired from the BRGM website (https://
www.brgm.fr/en/challenges/digital-data-services-infrastructure) (accessed on 14 October
2021). The data were subsequently extracted following the administrative boundaries of
the Aube department. Figure 2a shows the lithologic map of the Aube department, where
13 lithologic units are distinguished and gathered further into five main groups based on
their proprieties.

Slope

The slope gradient represents the degree of inclination. Various material properties
influence it, including cohesion, permeability, deformation behavior, shear strength, and
stress distribution. Landslide events often result from the outcome of the interaction
between the angle of slope inclination and the material characteristics [27]. We classified
the produced slope map into five intervals, namely, 0–5, 5–10, 10–15, 15–20, and 20–60
(Figure 2b).

Rainfall

Rainfall represents a highly critical factor influencing slope instability and landslide
occurrence. It has a major influence by altering rock formations along discontinuity planes,
leading to decreased cohesion within the rock mass and subsequently increasing the
probability of landslides. Rainfall effects were considered after calculating the average

https://earthexplorer.usgs.gov
https://www.brgm.fr/en/challenges/digital-data-services-infrastructure
https://www.brgm.fr/en/challenges/digital-data-services-infrastructure
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10-year precipitation, using the raster calculator tool and subsequently resampling the
resulting layer to a 30 m resolution (Figure 2c).

Road

Road construction activities conducted across slopes can induce destabilization through
two distinct mechanisms. Firstly, the terracing of road slopes can augment their gradient,
rendering them more susceptible to landslides. Secondly, the construction of roads at
foothills and the subsequent removal of lateral support from adjacent slopes substantially
increase landslide occurrence probability. The study area map of distance to roads is repre-
sented in Figure 2d, where five distance classes were adopted with a minimum of 0 km to a
maximum of about 6 km.

Hydrology

The proximity to the hydrological network (drainage), such as stream banks and rivers,
can compromise slope stability in numerous ways. Stream erosion, for instance, negatively
impacts lateral slope stability and heightens the likelihood of rock ruptures [28]. The study
area map of distance to the hydrological network is represented in Figure 2e.

Fault

Fault planes have been demonstrated to create fragility zones, thus intensifying the
susceptibility of steep slopes to rupture. Additionally, many studies have demonstrated that
local vibrations induced by seismic activity along geological faults can trigger landslides
and other destructive phenomena [29]. We employed the Euclidean Distance tool integrated
into the QGIS 3.14 software. Subsequently, the obtained features were converted into binary
rasters using the rasterization tool to calculate the distance from faults (Figure 2f).

Quarry’s density

The quarry’s density is an important variable in landslide mapping [30]. The quarries
involve extracting valuable materials (e.g., rocks, minerals) using explosive methods. The
resulting vibrations can significantly impact the stability of terrains within quarries and
their surrounding areas. We utilized the Heat-Map tool within the QGIS 3.14 software to
assess quarry density. The generated quarries’ density influence factor map is presented
in Figure 2g.

Elevation

Elevation is crucial in landslides, impacting the following factors: slope characteristics,
water velocity, precipitation, erosion, and gravitational force. These influences are partic-
ularly pronounced at higher altitudes, making such areas more susceptible to landslide
occurrences. Organic matter, particularly soil nitrogen and carbon, causes hydrogenate
activity at higher elevations, which weakens the soil and increases its susceptibility to
landslides [31]. To analyze the elevation patterns, the resulting elevation map is categorized
into five distinct groups: 17 m, 108.25 m, 199.5 m, 290.75 m, and 382 m (Figure 2h).
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(e) distance to hydrographical network; (f) distance to faults; (g) density of quarries; and (h) elevation.

3. Methods

The processing steps involved in this study include the generation of thematic layers
representing various landslide causative factors using a geographic information system
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(GIS) environment. These thematic layers are then integrated and processed to create a
comprehensive landslide susceptibility map of the study area in the Aube department,
France. Additionally, an inventory of landslides is conducted based on data provided by
the French Geological Survey, which is used to train the machine learning models and
validation task. Figure 3 shows the flowchart of the present study.

Earth 2023, 4, FOR PEER REVIEW  7 
 

 

(GIS) environment. These thematic layers are then integrated and processed to create a 

comprehensive  landslide susceptibility map of  the study area  in  the Aube department, 

France. Additionally, an inventory of landslides is conducted based on data provided by 

the French Geological Survey, which  is used to train the machine  learning models and 

validation task. Figure 3 shows the flowchart of the present study. 

 

Figure 3. Flow chart. 

3.1. Analytic Hierarchy Process (AHP) 

The AHP method was introduced by Saaty [5] and is applied to assign normalized 

weights to each trigger or thematic layer. It is widely accepted as a Multi-Criteria Analysis 

(MCA) technique for decision making in natural hazard management [32]. The AHP de-

composes and makes pairwise comparisons, reducing inconsistencies and providing a pri-

ority vector [5]. The analytical hierarchy process involves three main steps: (I) defining the 

elements or parameters (thematic layers) for the AHP model; (II) generating a pairwise 

comparison matrix (Table 3) that includes all thematic layers based on a given scale from 

1 to 9, where a score of 1 represents equal importance and extreme importance is repre-

sented by score of 9 for one theme over the other; and (III) obtaining the thematic layers’ 

final weight from the normalized eigenvalue or priority vectors associated with the ratio 

matrix maximum  eigenvalue  [33]. The  following  formula  is used  to  calculate  the  con-

sistency ratio (CR) (Equation (1)): 

𝐶𝑅
𝐶𝐼
𝑅𝐶𝐼

  (1)

where RCI indicates the random coherence index, which is dependent on the order of the 

matrix, and CI indicates the coherence index, which can be calculated according to Equa-

tion (2) (see Table 4): 

𝐶𝐼 𝜆𝑚𝑎𝑥 𝑛 / 𝑛 1   (2)

Figure 3. Flow chart.

3.1. Analytic Hierarchy Process (AHP)

The AHP method was introduced by Saaty [5] and is applied to assign normalized
weights to each trigger or thematic layer. It is widely accepted as a Multi-Criteria Analysis
(MCA) technique for decision making in natural hazard management [32]. The AHP
decomposes and makes pairwise comparisons, reducing inconsistencies and providing a
priority vector [5]. The analytical hierarchy process involves three main steps: (I) defining
the elements or parameters (thematic layers) for the AHP model; (II) generating a pairwise
comparison matrix (Table 3) that includes all thematic layers based on a given scale from 1
to 9, where a score of 1 represents equal importance and extreme importance is represented
by score of 9 for one theme over the other; and (III) obtaining the thematic layers’ final
weight from the normalized eigenvalue or priority vectors associated with the ratio matrix
maximum eigenvalue [33]. The following formula is used to calculate the consistency ratio
(CR) (Equation (1)):

CR =
CI

RCI
(1)
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where RCI indicates the random coherence index, which is dependent on the order of
the matrix, and CI indicates the coherence index, which can be calculated according to
Equation (2) (see Table 4):

CI = (λmax − n)/(n − 1) (2)

Table 3. Pairwise comparison matrix and normalized principal eigenvector for evaluating landslide
causative factors in the AHP.

Factor Lithology Slope Precipitation Elevation Distance-
Roads

Distance-
Drainage

Density of
Quarries

Distance-
Faults

Lithology 1 2 3 3 4 4 6 8
slope 1 3 4 3 3 5 6

precipitation 1 1/2 2 2 4 5
Elevation 1 3 4 6 8

Distance to roads 1 2 3 3
Distance to

hydrography 1 3 1

Quarries density 1 2
Distance to faults 1

Table 4. RCI values for different values of a number of criteria [5].

n 1 2 3 4 5 6 7 8 9 10

(RCI) 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

If the CR value is less than or equal to 0.10, it indicates an acceptable level of consistency
in the matrix, allowing the analysis to proceed. Conversely, if the CR value is greater than
0.10, adjustments to the pairwise comparison matrix are necessary to identify and rectify
any inconsistencies [34]. A CR value of 0 signifies a perfect consistency level in the pairwise
comparison. In the present study, with n = 7, the CR value is calculated as 0.042, which
is strictly less than 0.10. Hence, the pairwise comparison matrix consistency level is
deemed tolerable.

3.2. Frequency Ratio (FR)

The frequency ratio model is a commonly employed bivariate statistical model in
spatial hazard assessment [35]. It allows for determining the probabilistic relationship
between dependent and independent variables. In this study, the frequency ratio model is
applied to establish the relationship between each landslide location and a particular class
of landslide occurrence factor, utilizing Equation (3):

FR =
W/G
M/T

(3)

where W is the area of a class of the causal factor, G is the total area of the causal factor, M is
the count of pixels in the class area of the causal factor, and D is the total number of pixels
of the total study area. Subsequently, the landslide susceptibility index based on the FR
model is calculated using Equation (4):

LSM =
n

∑
i=0

FRi (4)

3.3. k-Nearest Neighbor (k-NN)

The k-nearest neighbor algorithm is a supervised learning algorithm utilized for
classification and prediction [36]. It operates based on the proximity principle, which
suggests that data points with similar features are close to each other. The kNN algorithm
assigns a class to a point based on the nearest neighbors in its classification configuration.
It calculates the distance between the target point and its closest neighbors to determine
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the class assignment using distance metrics such as the Euclidean or Manhattan distance.
By considering the chosen number of neighbors (K), it selects the class with the highest
number of votes from these neighbors. The kNN algorithm employs a subordinate density
approach and a decision rule to group similar pixels in the feature space. This implies
that pixels located nearby in this space are considered part of the same class. This model
finds applications in various fields such as pattern recognition, image processing, and data
analysis. It enables the classification or prediction of data points based on the characteristics
of their nearest neighbors, leveraging the concepts of proximity and similarity.

3.4. Random Forest (RF)

Random forests (RFs) constitute an ensemble of classification and regression trees
(CART) pioneered by Breiman [37]. This machine learning algorithm demonstrates com-
parable or superior accuracy to adaptive boosting while offering faster computational
performance [37]. An advantageous feature of RF is its ability to handle continuous and cat-
egorical variables. Additionally, RF exhibits robustness against predictor noise, eliminating
the need to preselect variables [38]. To regulate model complexity, users typically modify
two hyperparameters in RF. Firstly, the number of trees or iterations (ntree) influences the
number of decision trees; excessively large values may result in overfitting. Secondly, mtry
determines the number of randomly sampled indicators considered as candidates at each
split. We tune the ntree and mtry parameters in this case study as they profoundly impact
our random forest model’s performance. In the present study, the model performance is
evaluated by systematically tuning the hyperparameters using the grid search method [39]
in conjunction with cross-validation (CV) techniques; indeed, grid search could further
improve the prediction capability of the ML model [40].

4. Results

The results obtained from the three models AHP, kNN, and RF highlight the following
elements, and the most exposed area to landslide risks is in the heart of the study area.
This area consists of a clay band with high drainage density. Abrupt variations mark the
transitions between this zone and the limestone layer, thus increasing the potential for
landslides. Additionally, this area receives significant annual precipitation, ranging between
867 and more than 1100 mm/y. Areas with moderate susceptibility are characterized by
flat topography, average altitude, and alluvial lithology.

These zones are typically far from erosion factors such as roads and the hydrographic
network. Conversely, regions with low landslide potential are located in the northern part
of the study area. These areas are characterized by gentle slopes, lower precipitation levels
compared to the southwest zone, and a lithologic composition with lower clay content.
Table 5 presents the relation between the influencing factors and landslide occurrences
using FR and AHP methods.

Quantitatively evaluating the accuracy of landslide susceptibility maps generated by
different classification models (Figure 4) is a crucial step in the process [41]. Additionally,
validating the landslide susceptibility model is essential to ensure the practical significance
of the resulting maps [42]. For ML-derived maps (Figure 4A,B), most of landslides are
located in the very high LS class. A close association with hydrological network and
clay geological formation is observed. The AHP-derived map (Figure 4C) shows that
the landslide occurrences are more concentrated in the high-elevation area of very high
landslide susceptibility. Through the AHP, the geological and topographical control seems
clearer. The FR-derived map (Figure 4D) shows that landslide occurrences are located in
moderate, high, and very high LS classes. The topographical factor is more dominated as
well as the hydrographic network effect. Additionally, various statistical indices, including
ROC, are used to assess the predictive performance of the models employed in this study.
Based on the validation dataset, the FR model accuracy assessment yields more precise
results (AUC = 66.0%) than AHP, outperforming it by 6%. Furthermore, the machine
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learning models exhibit superior performance, with RF surpassing kNN by more than 7.3%
and achieving an AUC of 95% (Figure 5).

Table 5. Spatial relation between thematic layers and landslides using FR and AHP methods.

Factor Classes
Area

(Pixels)
Area
(%)

Landslide
(Pixels)

Landslide
(%) FR

AHP

Assigned
Rate

Weight
%

Slope

0–5 3,824,230 57.150 9985 57.378 1.003 2

23%
0–10 2,167,308 32.400 5482 31.502 0.971 4

10–15 515,048 7.700 1295 7.442 0.966 7
15–20 132,478 1.970 408 2.345 1.189 8
>20 52,169 0.770 232 1.333 1.730 10

Density of
quarries

0–0.07 3,044,553 45.500 6091 35.002 0.768 2

3.5%
0.07–0.2 2,253,187 33.670 5687 32.680 0.970 4
0.2–0.30 814,266 12.160 3573 20.532 1.684 6
0.3–0.5 462,708 6.910 1634 9.390 1.358 8

>0.5 116,519 1.750 423 2.431 1.388 10

Distance/
Drainage

0–250 2,863,670 42.790 4358 25.043 0.584 10

5.7%
250–500 580,094 8.660 1042 5.988 0.691 8
500–750 752,296 11.240 1279 7.350 0.653 6
750–1000 1,000,062 14.940 2948 16.941 1.134 2

>1000 1,495,111 22.340 7781 44.713 2.001 1

Distance/fault

0–500 4,371,259 65.328 10,829 62.228 0.951 10

3%
500–1000 572,063 8.549 1052 6.045 0.707 10

1000–1500 575,109 8.595 1537 8.832 1.027 8
1500–2000 575,109 8.595 1427 8.200 0.954 6

>2000 597,693 8.932 2563 14.728 1.648 4

Distance/
Road

0–200 1,566,631 23.413 735 4.224 0.180 10

7.7%
200–400 744,322 11.124 800 4.597 0.413 8
400–600 1,069,166 15.979 1560 8.964 0.560 6
600–800 1,404,849 20.995 3645 20.946 0.997 2

>800 1,906,265 28.489 10,668 61.303 2.152 1

Precipitation

830–900 1,997,712 29.856 5999 34.473 1.154 6

11%
900–950 1,829,344 27.339 3193 18.348 0.670 7
950–1000 1,639,949 24.509 3123 17.946 0.732 8

1000–1060 612,114 9.148 1475 8.476 0.925 9
>1060 612,114 9.148 3618 20.791 2.270 10

Elevation

20 634,093 9.476 3786 21.759 2.297 2

16.9%
100 3,517,229 52.565 6381 36.672 0.697 4
200 1,554,779 23.236 4820 27.701 1.191 6
300 837,664 12.519 2048 11.770 0.939 8

>300 147,468 2.204 365 2.098 0.951 10

Lithology

1 1,019,944 15.243 4321 24.830 1.627 8

29.2%
2 1,595,959 23.851 2528 14.527 0.608 6
3 254,879 3.809 386 2.218 0.592 4
4 1,610,862 24.074 5736 32.962 1.368 2
5 2,209,589 33.022 4428 25.445 0.770 8
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However, when comparing the different models used for landslide susceptibility
mapping, it becomes evident that the RF model outperforms the others, demonstrating
the highest level of performance. The resulting landslide susceptibility map generated
with the RF model exhibits superior accuracy and predictive capability compared to the
maps produced by the kNN and AHP models. The RF model proves to be the most
reliable and robust in accurately identifying areas prone to landslides. The high precision
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and reliability exhibited by the RF model solidify its position as the preferred choice for
landslide mapping purposes. Researchers and practitioners can confidently rely on the RF
model for effective and accurate identification of landslide-prone areas, aiding mitigation
and management efforts.

As shown in Figure 6A, the relative importance of the controlling factors on landslide
risk derived from the RF shows a decreasing tendency ordered as lithology, distance to
hydrography, elevation, distance to roads, slope, rainfall, distance to faults, and density
of quarries. Using the kNN algorithm, the factor’s relative importance order from most
to least important follows lithology, distance to hydrography, distance to roads, elevation,
slope, rainfall, distance to faults, and density of quarries (Figure 6B).
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Generally, the relevance of landslide controlling factors shows some coincidence,
which is observed with the first most important factors, namely lithology and distance
to hydrography. The third most important factor for RF is elevation, while the elevation
factor is placed in the fourth position for kNN and replaced by distance to roads. Likewise,
density of quarries is ranked as the least important factor for the two models. However,
the importance of kNN’s last factors is considered negligible. At the same time, the RF
has considerable importance in our study and in many previous landslide studies that
can demonstrate the relative effectiveness of RF model in accurate feature importance
computation [37].

5. Discussions

The results of this study underscore the significance of landslides as a main natural haz-
ard capable of causing substantial material and human losses. The Aube Department has
witnessed several significant landslide incidents, establishing it as a critical area warranting
further investigation. The primary objective of this research was to assess landslide sus-
ceptibility in the region, employing a combination of statistical analysis, machine learning
techniques, and multi-criteria decision-making methods.

The landslide susceptibility maps obtained in this study underwent a thorough evalu-
ation using the Receiver Operating Characteristic (ROC) curve analysis. This evaluation
allowed for a comprehensive assessment of the model’s performance in predicting land-
slides. The accuracy assessment revealed compelling insights into the effectiveness of the
different approaches. The FR model demonstrated exceptional accuracy among the evalu-
ated models, as indicated by its considerable AUC value of 66.0%. This finding highlights
the FR model’s ability to identify areas susceptible to landslides accurately.

On the other hand, the AHP method, while still effective, exhibited slightly lower
accuracy, with a 6% difference compared to the FR model. Moreover, the machine learning
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models showcased their potential in landslide susceptibility mapping. The RF algorithm
stood out among the machine learning models, surpassing the kNN algorithm with a
remarkable AUC value of 95%. The RF model’s superior performance further solidifies its
position as the preferred choice for accurate and reliable landslide mapping.

The high precision and reliability exhibited by the RF model have significant im-
plications for both researchers and practitioners involved in landslide mitigation and
management. They can confidently rely on the RF model’s robust capabilities to effectively
identify areas prone to landslides. By leveraging the accurate information provided by
the RF model, mitigation efforts can be better targeted, and appropriate management
strategies can be implemented to ensure the safety and well-being of the affected areas. A
comprehensive analysis of the landslide susceptibility results showed that several factors
played significant roles in influencing landslide occurrence in the study area. Among these
factors, lithology, distance to the hydrographic network, distance to roads, and elevation
emerged as the main controlling factors shaping the susceptibility to landslides.

The lithologic composition of the area was found to have a profound influence on
landslide occurrence. Certain lithologic units displayed higher susceptibility due to their
inherent characteristics, such as low cohesion or high permeability. Additionally, proximity
to the hydrographic network and roads proved to be crucial factors, as areas near these
features exhibited increased vulnerability to landslides. This can be attributed to the
potentially destabilizing effects of water flow and human activity. These results (controlling
factor importance) correlate well with the findings of other studies, e.g., [43,44].

Additionally, elevation was another crucial factor affecting landslide susceptibility.
Steep slopes and areas at higher elevations were more prone to landslides due to gravita-
tional forces and increased instability. These findings highlight the significance of terrain
characteristics in determining landslide susceptibility in the study area.

Understanding the dominant controlling factors influencing landslides in the study
area provides valuable insights for developing effective mitigation strategies and land-use
planning measures. Incorporating this knowledge into land-use policies can help minimize
the exposure of vulnerable areas to human settlements and infrastructure. Additionally,
identifying these controlling factors can aid in designing and implementing targeted
engineering measures and slope stabilization techniques. Overall, these findings contribute
to a better understanding of landslide dynamics and support proactive measures to reduce
the risks associated with landslides in the region. Otherwise, through the use of many
diverse machine learning models, ensemble learning increases prediction accuracy. Another
cutting-edge method, deep learning, achieves strong capabilities and adaptability through
layered idea hierarchy without requiring human feature extraction [45,46].

6. Conclusions

This study aimed to assess landslide susceptibility in the Aube department (Northeast
France) using AHP, FR, RF, and kNN models. Effective landslide controlling factors were
carefully carried out, including distance to hydrography, density of quarries, elevation,
slope, lithology, distance to roads, distance to faults, and rainfall. The accuracy assessment
demonstrated that RF and kNN were the best models for mapping landslide susceptibility
in the study area. The derived maps from applying the models were categorized into five
classes: very high, high, moderate, low, and very low landslide susceptibility.

The zones of high landslide susceptibility were mainly detected in clays and fluvial
alluvium terrain. Based on the analysis of landslide susceptibility results in the study
area, the primary factors influencing landslide susceptibility were lithology, elevation,
distance to the hydrographic network, and distance to roads. On the other hand, density
of quarries, rainfall, distance to faults, and slope presented a relatively minor influence.
Validation of the landslide susceptibility maps using AUC revealed that ML models had
performed better than statistical ones did. Considering the four models, in ascending order,
the performances were 59.9%, 66.0%, 87.7%, and 95.0% for the AHP, FR, kNN, and RF
models, respectively. The approach adopted in the present study was highly successful
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in assessing the susceptibility of landslides in the Aube department region, especially by
using kNN and RF ML models.

Furthermore, the map depicting the landslide susceptibility zones in the Aube de-
partment has provided valuable information about potential risks in both the present and
future. Thus, it can be a practical resource for planners and decision-makers involved in
land-use planning and natural hazard management in the region, as it can help prevent
potential hazards by providing appropriate safety measures. The methodology utilized in
this study could also be adapted in other regions with similar characteristics to accurately
identify the geophysical and geomorphological features.
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