Previous Issue
Volume 5, March
 
 

Electricity, Volume 5, Issue 2 (June 2024) – 11 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
12 pages, 734 KiB  
Article
The Implementation and Evaluation of Virtualized Protection Intelligent Electronic Devices into a Virtual Substation
by Dennis Rösch, Kevin Schäfer and Steffen Nicolai
Electricity 2024, 5(2), 385-396; https://doi.org/10.3390/electricity5020020 (registering DOI) - 13 Jun 2024
Viewed by 84
Abstract
This paper presents an investigation into the virtualization of substation protection IED functions using a sophisticated co-simulation environment that integrates virtual intelligent electronic devices (vIEDs) with a real-time power grid simulation. Anchored by the IEC 61850 protocol, this study constructs a virtualized IED [...] Read more.
This paper presents an investigation into the virtualization of substation protection IED functions using a sophisticated co-simulation environment that integrates virtual intelligent electronic devices (vIEDs) with a real-time power grid simulation. Anchored by the IEC 61850 protocol, this study constructs a virtualized IED framework, emphasizing the encapsulation of protection schemes using the example of different types of overcurrent protection within a containerized vIED. Using open-source software, this study aims to replicate the communication and functional aspects of physical IEDs. This study uses a co-simulation environment that couples virtualized network components with a real-time power grid simulation to validate the vIEDs against real substation hardware. Simulation results from induced short-circuit events confirm the operational congruence of the vIEDs with their physical counterparts, demonstrating their potential to serve as cost-effective and adaptable testbeds for substation automation. This paper concludes that virtualized IEDs represent a cost-effective, flexible alternative for substation automation testing, with future research directed towards increasing the functional complexity and real-world applicability of these virtual systems. Full article
(This article belongs to the Special Issue Electricity in 2024)
15 pages, 517 KiB  
Article
Virtual Power Plants: Challenges, Opportunities, and Profitability Assessment in Current Energy Markets
by Zahid Ullah, Arshad Arshad and Azam Nekahi
Electricity 2024, 5(2), 370-384; https://doi.org/10.3390/electricity5020019 (registering DOI) - 12 Jun 2024
Viewed by 114
Abstract
The arrival of virtual power plants (VPPs) marks important progress in the energy sector, providing optimistic solutions to the increasing need for energy flexibility, resilience, and improved energy systems’ integration. VPPs harness several characteristics to bring together distributed energy resources (DERs), resulting in [...] Read more.
The arrival of virtual power plants (VPPs) marks important progress in the energy sector, providing optimistic solutions to the increasing need for energy flexibility, resilience, and improved energy systems’ integration. VPPs harness several characteristics to bring together distributed energy resources (DERs), resulting in economic gains and improved power grid reliability. Nevertheless, VPPs encounter major challenges when it comes to engaging in energy markets, mainly because there is no all-encompassing policy and regulatory framework specifically designed to accommodate their unique characteristics. This underscores the necessity for research endeavours to develop more advanced methods and structures for the long-term viability of VPPs. To address this concern, the study advocates for the implementation of a multi-aspect framework (MAF) as a systematic approach to thoroughly examine each aspect of virtual power plants (VPPs). A STEEP (social, technological, environmental, economic, and political) analytical tool is utilized to evaluate the challenges, opportunities, and benefits of a VPP in the existing energy markets. The proposed approach highlights important factors and actions that need to be taken to tackle the challenges related to VPP’ entry into energy markets. This study suggests that further support is required to promote the fast and widespread adoption of long-term VPP implementations. For this reason, a more favourable policy and regulatory framework based on social, technological, economic, environmental, and policy considerations is necessary to realize the genuine contributions of VPPs. Full article
(This article belongs to the Topic Smart Energy Systems, 2nd Edition)
19 pages, 1916 KiB  
Article
Enhancing Distribution Grid Efficiency and Congestion Management through Optimal Battery Storage and Power Flow Modeling
by Víctor Taltavull-Villalonga, Eduard Bullich-Massagué, Antonio E. Saldaña-González and Andreas Sumper
Electricity 2024, 5(2), 351-369; https://doi.org/10.3390/electricity5020018 - 9 Jun 2024
Viewed by 251
Abstract
The significant growth in demand for electricity has led to increasing congestion on distribution networks. The challenge is twofold: it is needed to expand and modernize our grid to meet this increased demand but also to implement smart grid technologies to improve the [...] Read more.
The significant growth in demand for electricity has led to increasing congestion on distribution networks. The challenge is twofold: it is needed to expand and modernize our grid to meet this increased demand but also to implement smart grid technologies to improve the efficiency and reliability of electricity distribution. In order to mitigate these congestions, novel approaches by using flexibility sources such as battery energy storage can be used. This involves the use of battery storage systems to absorb excess energy at times of low demand and release it at peak times, effectively balancing the load and reducing the stress on the grid. In this paper, two optimal power flow formulations are discussed: the branch flow model (non-convex) and the relaxed bus injection model (convex). These formulations determine the optimal operation of the flexibility sources, i.e., battery energy storage, with the objective of minimizing power losses while avoiding congestions. Furthermore, a comparison of the performance of these two formulations is performed, analyzing the objective function results and the flexibility operation. For this purpose, a real Spanish distribution network with its corresponding load data for seven days has been used. Full article
(This article belongs to the Special Issue Electricity in 2024)
17 pages, 1386 KiB  
Review
Electricity Theft Detection and Prevention Using Technology-Based Models: A Systematic Literature Review
by Potego Maboe Kgaphola, Senyeki Milton Marebane and Robert Toyo Hans
Electricity 2024, 5(2), 334-350; https://doi.org/10.3390/electricity5020017 - 7 Jun 2024
Viewed by 496
Abstract
Electricity theft comes with various disadvantages for power utilities, governments, businesses, and the general public. This continues despite the various solutions employed to detect and prevent it. Some of the disadvantages of electricity theft include revenue loss and load shedding, leading to a [...] Read more.
Electricity theft comes with various disadvantages for power utilities, governments, businesses, and the general public. This continues despite the various solutions employed to detect and prevent it. Some of the disadvantages of electricity theft include revenue loss and load shedding, leading to a disruption in business operations. This study aimed to conduct a systematic literature review to identify what technology solutions have been offered to solve electricity theft and the effectiveness of those solutions by considering peer-reviewed empirical studies. The systematic literature review was undertaken following the guidelines for conducting a literature review in computer science to assess potential bias. A total of 11 journal articles published from 2012 to 2022 in SCOPUS, Science Direct, and Web of Science were analysed to reveal solutions, the type of theft addressed, and the success and limitations of the solutions. The findings show that the focus in research is channelled towards solving electricity theft in Smart Grids (SGs) and Advanced Metering Infrastructure (AMI); moreover, there is a neglect in the recent literature on finding solutions that can prevent electricity theft in countries that do not have SG and AMI installed. Although the results reported in this study are confined to the analysed research papers, the leading limitation in the selected studies, lack of real-life data for dishonest users. This study’s contribution is to show what technology solutions are prevalent in solving electricity theft in recent years and the effectiveness of such solutions. Full article
Show Figures

Figure 1

21 pages, 5826 KiB  
Article
Combined Light and Data Driving Stages without Capacitors for Energy Transformation
by Michael Windisch, Felix A. Himmelstoss, Monica Leba, Olimpiu Stoicuta and Helmut L. Votzi
Electricity 2024, 5(2), 313-333; https://doi.org/10.3390/electricity5020016 - 5 Jun 2024
Viewed by 370
Abstract
Three LED drivers which can be used for illumination, but whose main task is the transmission of information (data) via the light of the LEDs, are explored in this paper. The converter circuits need no capacitors for the energy transformation and avoid an [...] Read more.
Three LED drivers which can be used for illumination, but whose main task is the transmission of information (data) via the light of the LEDs, are explored in this paper. The converter circuits need no capacitors for the energy transformation and avoid an inrush current. The lack of necessity of electrolytic capacitors reduces cost and space. Dimming the illumination is also easy to achieve. The control concept of the converters and the generation of pulsing of the LEDs for transmitting the information (data) are explained. The converters can also be expanded to more stages to drive more LEDs with different types of information. All three converters are explained in detail; all presented circuits are built up and simulated with LTSpice. Several data transmission concepts are applied and demonstrated through simulations. Full article
(This article belongs to the Special Issue Electricity in 2024)
Show Figures

Figure 1

18 pages, 4455 KiB  
Article
A Single-Buyer Model of Imbalance Cost Pass-Through Pricing Forecasting in the Malaysian Electricity Supply Industry
by Fatin Khairunnisa Khairuddin, Farah Anishah Zaini, Mohamad Fani Sulaima, Nur Hazahsha Shamsudin and Mohd Shahrin Abu Hanifah
Electricity 2024, 5(2), 295-312; https://doi.org/10.3390/electricity5020015 - 11 May 2024
Viewed by 449
Abstract
The imbalance cost pass-through (ICPT) is a flexible component of the incentive-based regulation (IBR) that empowers power producers to adjust tariffs in response to variable fuel prices, thereby enhancing the economic resilience of electricity generation. In Malaysia, the Energy Commission has conducted biannual [...] Read more.
The imbalance cost pass-through (ICPT) is a flexible component of the incentive-based regulation (IBR) that empowers power producers to adjust tariffs in response to variable fuel prices, thereby enhancing the economic resilience of electricity generation. In Malaysia, the Energy Commission has conducted biannual reviews of fuel and other generation costs. Any cost savings or increases identified during these reviews will be passed on to customers in the form of rebates or surcharges. Meanwhile, if an increment in the ICPT price signal can be provided to electricity providers and consumers, early preparation for operation budgeting can be realised, and energy management program development can be properly prepared. Due to this reason, this study proposes ICPT price forecasting for the electricity market in Peninsular Malaysia that will benefit the stakeholders. The study aims to construct an ICPT-related baseline model for the peninsular generation data by employing three forecasting methods. The forecasting performance is analysed using the mean absolute percentage error (MAPE). In light of our findings, the ARIMA method is one of the most accurate forecasting methods for fuel prices compared to the moving average (MA) and LSSVM methods. The observed price differences between the ARIMA and LSSVM models for ICPT are minimal. The ICPT price for July–December 2022 and January–June 2023 is MYR 0.21/kWh for the ARIMA and MYR 0.18/kWh for LSSVM, which are close to the actual TNB’s ICPT tariff. As for forecasting, the ICPT price is expected to drop in the next announcement. The findings of this study may have a positive impact on the sustainability of the energy sector in Malaysia. Full article
Show Figures

Figure 1

24 pages, 2533 KiB  
Article
Evaluating Preparedness and Overcoming Challenges in Electricity Trading: An In-Depth Analysis Using the Analytic Hierarchy Process and a Case Study Exploration
by Suraj Regmi, Abhinav Rayamajhi, Ramhari Poudyal and Sanjeev Adhikari
Electricity 2024, 5(2), 271-294; https://doi.org/10.3390/electricity5020014 - 11 May 2024
Viewed by 1349
Abstract
The economy of South Asia is experiencing growth, yet it faces constraints due to heavy reliance on fossil fuels and frequent power outages. Access to diverse energy sources, particularly electricity, is crucial for sustaining this growth. One feasible solution involves neighbouring countries engaging [...] Read more.
The economy of South Asia is experiencing growth, yet it faces constraints due to heavy reliance on fossil fuels and frequent power outages. Access to diverse energy sources, particularly electricity, is crucial for sustaining this growth. One feasible solution involves neighbouring countries engaging in the trade of renewable electrical energy. Hydropower stands as one of the many energy sources available in South Asia. However, sectorial constraints pose significant challenges to energy trade initiatives. This study utilises the Analytic Hierarchy Process (AHP) to evaluate Nepal’s readiness and identify obstacles to its cross-border energy trade with India and Bangladesh. A comprehensive analysis of these obstacles is imperative for formulating effective strategies and policies. Additionally, this study offers recommendations for enhancing preparedness and resolving issues related to energy trading, which may apply to similar cross-border situations. This study ranks energy trading obstacles with neighbouring nations using the AHP, offering key insights for stakeholders and policymakers. Using a non-probabilistic purposeful sampling technique, 25 expert respondents from the energy sector and prominent academicians were selected as part of the data collection procedure. At every level of the interview process, their perspectives were invaluable in guaranteeing a thorough and rigorous investigation. Full article
(This article belongs to the Topic Electricity Demand-Side Management, 2nd Volume)
Show Figures

Figure 1

17 pages, 4659 KiB  
Article
Green-Powered Electric Public Mobility: Integrating Urban and Interurban Routes—A Case Study Analysis
by Alessandro Franco, Giovanni Lutzemberger, Marco Giorgio Bevilacqua, Francesco Giuseppe Quilici and Matilde Vezzani
Electricity 2024, 5(2), 254-270; https://doi.org/10.3390/electricity5020013 - 8 May 2024
Viewed by 552
Abstract
This article proposes a particular strategy to proceed with a progressive electrification of public transport systems in cities. Starting from a bus operation model, the possible electrification of two routes is analyzed, one urban and another extra-urban in the city of Pisa. An [...] Read more.
This article proposes a particular strategy to proceed with a progressive electrification of public transport systems in cities. Starting from a bus operation model, the possible electrification of two routes is analyzed, one urban and another extra-urban in the city of Pisa. An estimate is made of the energy uses associated with certain operating modes. The maximum level of consumption is estimated at approximately 280 kWh per day per bus for the urban route and excluding some special days, less than 215 kWh per day for the extra-urban route, for which a hybrid bus is proposed. Starting from an estimate of the daily consumption for the management of the two routes, the sizing of a photovoltaic (PV) plant distributed on some modular shelters which serves to power the same routes, is carried out. The resulting system has a power of the order of 190–200 kW. The modular solution is also outlined, and an installation is proposed. The analyzed case lends itself to being easily replicated. Full article
(This article belongs to the Topic Integration of Renewable Energy)
Show Figures

Figure 1

27 pages, 11489 KiB  
Article
Optimized and Sustainable PV Water Pumping System with Three-Port Converter, a Case Study: The Al-Kharijah Oasis
by Mohamed Selmy, Mohsen Z. El sherif, Miral Salah Noah and Islam M. Abdelqawee
Electricity 2024, 5(2), 227-253; https://doi.org/10.3390/electricity5020012 - 4 May 2024
Viewed by 627
Abstract
In this paper an efficient, compact, and cheap power source design for an off-grid PV water pumping system is investigated. The proposed system consists of a PV array, battery, three-port converter (TPC), three-phase voltage source inverter, and induction motor pump. Power is extracted [...] Read more.
In this paper an efficient, compact, and cheap power source design for an off-grid PV water pumping system is investigated. The proposed system consists of a PV array, battery, three-port converter (TPC), three-phase voltage source inverter, and induction motor pump. Power is extracted from PV sources during the daytime and used to charge batteries through the three-port converter, then used later to supply load during the nighttime. An intelligent MPPT method is used to obtain PV maximum power; a jellyfish optimization technique with different control algorithms is used to optimize and tune controllers’ parameters among the system. Different modes for the TPC are discussed depending on PV power availability. The proposed system is simulated to assess system performance under different conditions; also the system is efficient with reduced number of components than conventional converters. A complete unified power management over PV input port, battery port, and load port has occurred for all operation modes. At all operation modes, the system has been feeding load without any unmet loads. A real case study in Al-Kharijah oasis is studied and simulation results are listed; for the Dom case DC bus ripple factor voltage percentage equals 0.8%, in the Dim case equals 3%, and in the Siso mode equals 9%. Full article
(This article belongs to the Topic Integration of Renewable Energy)
Show Figures

Figure 1

16 pages, 6929 KiB  
Article
Single-Stage LLC Resonant Converter for Induction Heating System with Improved Power Quality
by Anand Kumar, Anik Goswami, Pradip Kumar Sadhu and Jerzy R. Szymanski
Electricity 2024, 5(2), 211-226; https://doi.org/10.3390/electricity5020011 - 26 Apr 2024
Viewed by 449
Abstract
This paper proposes a single-stage direct AC to high-frequency (HF) AC resonant converter based on LLC configuration for induction heating (IH) systems or HF applications. Unlike conventional converters for IH systems, the proposed topology converts the utility frequency to HF AC in a [...] Read more.
This paper proposes a single-stage direct AC to high-frequency (HF) AC resonant converter based on LLC configuration for induction heating (IH) systems or HF applications. Unlike conventional converters for IH systems, the proposed topology converts the utility frequency to HF AC in a single stage without using a DC link inductor and capacitors and takes the advantages of LLC configuration. Additionally, it improves the power factor to 0.9–1, lowers the THD (3.2% experimentally), and protects against the high-frequency components. An embedded control scheme was designed to keep the HF current oscillating at a resonant frequency, ensuring zero-voltage switching. The operating principle of the proposed topology was investigated using mathematical equations and equivalent circuits. Finally, it was verified using computer simulation, and an experimental prototype of 1.1 kW was developed to demonstrate the proposed topology’s uniqueness. Full article
(This article belongs to the Topic Power Converters)
Show Figures

Figure 1

37 pages, 25724 KiB  
Article
Development of a New Modelling Concept for Power Flow Calculations across Voltage Levels
by Tobias Riedlinger, Patrick Wintzek and Markus Zdrallek
Electricity 2024, 5(2), 174-210; https://doi.org/10.3390/electricity5020010 - 1 Apr 2024
Viewed by 654
Abstract
In the context of the energy transition, the share of new loads such as charging infrastructure for electromobility and electric heat pumps as well as feed-ins such as photovoltaic systems will steadily increase. This results in an increased degree of complexity for strategic [...] Read more.
In the context of the energy transition, the share of new loads such as charging infrastructure for electromobility and electric heat pumps as well as feed-ins such as photovoltaic systems will steadily increase. This results in an increased degree of complexity for strategic network planning. In particular, the power flow analyses for the dimensioning of transformers and lines per network level currently still require different methods for the correct dimensioning of these equipment. They need to be carried out in separate data sets. For the dimensioning of the equipment simultaneity factors are predominantly used for realistic load assumptions in strategic network planning. These simultaneity factors and resulting load assumptions are determined from the planning perspective of the transformers and from the planning perspective of the lines per network level to be able to dimension the corresponding equipment. This results in different power flow results for the analysis and evaluation of different network levels in particular. This contribution presents a new concept for network modelling in which the simultaneity of the different planning perspectives of the different network levels results from a single power flow calculation in a coherent data set. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop