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Abstract: This study aimed to investigate the statistical correlation between the static and dynamic
Young’s modulus of prasinites, a metabasic rock type that outcrops at various localities in the
southern part of the Attica peninsula. A total of 39 cylindrical specimens was prepared and an
extensive experimental program was carried out to determine the static and dynamic deformational
properties for each specimen. Using ordinary least squares regression techniques, a new empirical
linear equation was established between the aforementioned properties that can be used in the study
region, or elsewhere where metabasic rocks with similar characteristics are investigated.
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1. Introduction

Knowledge of the elastic (or Young’s) modulus is of vital importance in many aspects
of geoengineering applications when it comes to the correct design of mining and civil
works founded in or on rock formations, as well as in various sectors of the construction
industry when natural stones are used as building materials.

Several methods that are categorized as static and dynamic have been developed to
determine the Young’s modulus. Static methods are destructive, time-consuming, and
expensive, as they require suitable strain measurement devices and specimens of high
quality, which are loaded to failure in a uniaxial compression experiment. On the other
hand, the dynamic methods, which are non-destructive, are based upon the response of
the specimen to the acoustic excitation. In most cases, these non-destructive techniques are
less costly and time-consuming.

Young’s modulus determined by dynamic methods (Ed) is usually greater than that
determined by static methods (Es). This difference is attributed to various causes, such
as the different strain rates induced by the acoustic waves versus static loading, drainage
conditions of the experiments, heterogeny of the material, anisotropy effects, and the differ-
ent amplitude of the induced strain [1]. The latter is considered to be the dominant cause,
where structural features such as cracks and pores can undergo large deformations during
a static experiment, but may remain unaffected by the passage of acoustic waves [1,2].
According to extensive data compiled in [2,3], the ratio of Ed to Es varies between 0.85 up
to 3, and this discrepancy tends to decline for rocks that exhibit a higher elastic modulus
and lower porosity.

Considerable attention has been paid to the comparison between Es and Ed for various
rock types and several empirical equations are quoted in the literature [4–11]. These equa-
tions are either linear in form, matching Equation (1), or non-linear, matching Equation (2).

Es = a*Ed + b (1)

Es = a*(Ed)b (2)
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where the constant terms a and b are material-dependent.
The usage of such equations allows the estimation of Es in cases where Ed is known.

However, several experiments should be performed to calibrate these equations to obtain
reliable results for the petrological type under consideration.

This study aimed to report the results of an experimental program regarding the
examination of a possible correlation between Es and Ed for prasinites, a metabasic rock
type outcropping in the Attica peninsula, Greece. As determined from the literature, this is
one of the first efforts on this topic and the proposed equation will be a valuable tool for
engineers dealing with this petrological type.

2. Materials and Methods
2.1. Materials

Prasinites are basic metamorphic rocks of volcanic origin. In the field, they appear
as massive, isolated blocks, slightly weathered to fresh, with a characteristic light to
moderately dark oil-green color. Powder X-ray diffraction analyses revealed a mineralogical
paragenesis typical of greenschist facies i.e., actinolite, albite, epidote, chlorite, and quartz.
The fine-grained matrix of prasinites is cross-cut by a network of calcite veins.

Sample collection was carried out such that the samples included a wide range of
physical characteristics that affect the properties of the material, such as the density of the
network of calcareous veins, as typically shown in Figure 1.
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2.2. Methods

As the content of this study, 39 cylindrical specimens of NX diameter (54.4 mm) and
a height-to-diameter ratio between 2.5 and 3.0 were prepared from rock blocks collected
from the field. The experimental program included all the tests necessary to determine
the dry density (γd), the compressional (VP), and shear (VS) wave velocities, as well as the
static and dynamic Young’s modulus for each specimen.

2.2.1. Dynamic Young’s Modulus

Using the ultrasonic pulse method [2], the wave velocities (VP, VS) were determined
by dividing the distance traversed by the waves by the travel time. The operating frequency
of the transducers was 1 MHz. The dynamic Young’s modulus (Ed) was calculated from
the ultrasonic wave velocities and the dry density in accordance with Equation (3).

Ed = ρd*(VS)2*(3*(VP)2 − 4*(VS)2)/((VP)2 − (VS)2) (3)

2.2.2. Static Young’s Modulus and Uniaxial Compressive Strength

For the determination of the static Young’s modulus and uniaxial compressive strength
(UCS), the specimens were compressed in a 5000 kN-capacity loading frame. To measure
the axial deformation of the specimen, two aluminum rings were attached to the middle
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third of the specimen, as shown in Figure 2. Three linear variable differential transducers
(LVDTs), mounted on the rings at an angle of 120◦ apart, measured the distance of the rings
continuously throughout the experiments. The axial strain of the specimen was evaluated
as the average deformation deduced from the three LVDT measurements. Diametral
strain was evaluated by the circumferential deformation of the specimen, measured with a
circumferential extensometer mounted on the specimen around its mid-height. The tests
were executed by lateral displacement control with a constant strain rate of 15 µm/min.
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Figure 2. Experimental configuration for axial strain measurements.

The static Young’s modulus was then calculated as a least-square fit along the near-
constant portion of the average axial stiffness–axial stress curve, as shown in Figure 3.
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3. Results and Discussion

The descriptive statistics of the deformational properties of prasinites studied are
summarized in Table 1. The table also includes the results for the UCS values, but only for
characterization purposes.
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Table 1. Dynamical and mechanical properties of prasinites in this study.

Es (GPa) Ed (GPa) UCS (MPa)

Min. 45.6 62.0 88.6
Max. 98.9 106.7 244.1
Mean 75.8 86.4 161.2
S.D. 1 13.4 11.2 40

1 Standard deviation.

According to classification schemes regarding the deformability [12] and the uniax-
ial compressive strength of the intact rock [13], the prasinites of the study area can be
characterized as rocks of low to very low deformability and high to very high strength.

Figure 4 shows the ratio of Ed to Es for the studied rocks. The ratio varies between
0.98 and 1.49 and tends to have lower values for stiffer specimens. This result agreed with
previous findings [2].
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Figure 4. Comparison of static and dynamic Young’s modulus for prasinites.

The relationship between static and dynamic Young’s modulus has been investigated
for various rock types of sedimentary, metamorphic, and igneous origin [4–11]. Through
the results of these studies, linear and non-linear equations were developed with very good
coefficients of determination (R2). As illustrated in Figure 5, the relationship between these
two properties was also clear for the rocks studied in this work. The empirical relation
is characterized by a very good coefficient of determination (R2 = 0.83) and is defined by
Equation (4).

Es = 1.09*Ed − 17.99 (4)
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Figure 5. Empirical relationship between Es and Ed for prasinites.

Although the above results confirm the findings of previous studies, the derived
mathematical formulations differ from each other, as can been seen in Figures 6 and 7.
The random selection of an empirical relationship from the literature may result in un-
derestimation or overestimation of the static Young’s modulus in the study area. The
magnitude of these differences seems to depend on the selected equation and the range of
the measured values.
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4. Conclusions

Bearing in mind that the static methods are time-consuming and costly, it is a challenge
to investigate indirect ways of estimating the static Young’s modulus. The purpose of
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this study was to propose predictive models based on dynamic Young’s modulus values
for prasinites.

When applying simple linear regression to the results obtained from the laboratory
program, it became clear that Ed was a very good indicator of Es for this petrological type.

The current findings are in line with the results quoted in the literature, in terms of the
applicability of Ed to estimate Es. However, the derived equations for various rock types
are different from each other, suggesting that these relationships are rock type-dependent,
a feature that is also frequently reported for relationships between other properties of
intact rock.
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