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Abstract: New interferometric IR techniques have recently been developed to allow Sun-Jupiter-like
detections in deep space. These techniques demand a high angular resolution, a high sensitivity
towards signal detection buried in noise, and a well-defined bandwidth of spectral resolution.
Micro-lens arrangements have helped increase the use of these parameters for IR detectors. In this
paper we present a finite element method (FEM)-based simulation of a typical micro-lens array, to
be used in mid-IR cameras, where the aperture geometry and radius of curvature are varied for
design optimization. Moreover, we show the spot and optical aberrations produced by two types of
geometrical arrangements. This procedure could be helpful in improving the IR detector signal in
the exoplanets exploration, in systems placed outside of the earth’s atmosphere.
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1. Introduction

Exoplanetary searches have increased in importance in recent years, due to advance-
ments in the interferometric detection techniques outside of the Earth’s atmosphere [1–3].
However, these techniques require a high angular resolution and a high sensitivity towards
signals buried in noise, as well as a well-defined spectral bandwidth and resolution [4].
Micro-lens arrays can improve some parameters of IR detectors for the IR interferometry,
and reduce problems originating inside the optical system, such as wavefront correction
and issues with the field of view (FOV), to name a few [5–7].

Micro-lens arrays are arrangements of small-size lenses, called lenslets, distributed
side by side to cover the surface of a CCD sensor, where portability is mandatory. A
lenslet generally has a circular aperture, due to its easy construction. However, this circular
aperture includes a non-active area in the array, due to the distance between two lenslets,
that results in an efficiency deterioration. Furthermore, part of the radiation is incident
out-of-focus on another pixel, producing crosstalk. Some of the design parameters, such
as the radius of curvature, the geometry of the aperture, and the lens material, may be
analyzed using a finite element method (FEM). This procedure was employed recently to
evaluate the aberrations and the spot in the focal plane.

In this paper, we present a numerical analysis, based on FEM, for a micro-lens array
with two different apertures—circular and square—and two radii of curvature. The analysis
was performed on an MIR wavelength, used in exoplanetary detection, λi = 9.492 µm [8].

2. Materials and Methods

Each lenslet was a convexo-planar lens, due to their easy fabrication. We performed
two numerical studies for two different types of lenslet apertures (circular and square) and
two frontal radii of curvature.

Figure 1 shows a single lenslet of the array. The focal plane located at the focal
distance for the test wavelength f (λi) represents the sensor surface. The lens maker’s
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formula indicates the focal length as a function of the radii of curvature, Rai and Rb, the
refractive index for lens material and surrounding medium, n(λi), and n(λs), respectively,
and the micro-lens thickness, P.

f (λi) =

{
[β]

1
Rai

− 1
Rb

+
Pβ

n(λi)RaiRb

}−1
, (1)
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length f(λ1) = 1.23 μm for study one, and f(λ2) = 2.46 μm for study two, from the surface sensor. The 
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Here, β = n(λi) − n(λs). Equation (1) is valid for any wavelength, refractive indices, and 
radii of curvature of the lens. In our case, the source wavelength was λi = 9.492 μm, corre-
sponding to the mean wavelength for exoplanetary exploration. The surrounding material 
was vacuum (n(λs) = 1), and the lens material was Ge (n(λi) = 4.0044). Rai was the radius of 
curvature for the front surface, with values of Ra1 = 3.7 μm for study one, and Ra2 = 7.4 μm 
for study two. The radius of the curvature for the back surface was Rb = ∞ for both studies, 
considering that this surface was flat. The lenslet thickness was P = 3.7 μm, which corre-
sponded to the minimum commercial size. The aperture D = 2Ra1 had a circular shape for 
study one, and a square shape with sides equal to Ra2 for study two. 

Figure 2 shows the micro-lens arrangements for the two cases of studies. The total 
size of the array corresponded to one-tenth of the commercial dimensions of the CCD 
sensor, with 160 × 120 pixels. Each pixel had dimensions 7.4 × 7.4 μm, or 118.4 × 88.8 μm 
for 16 × 12 pixels. We planned for 10 × 10 sub-arrays of micro-lenses, joined side by side, 
to complete the minimum size for the sensor surface. The aperture for study one was cir-
cular, as shown in Figure 2a. The lenslet in study two was square in form, as shown in 
Figure 2b. The geometric aperture changes between the studies had the purpose of de-
creasing the non-active area between the micro-lenses where the light was incident, but 
was not imaged on the sensor surface. 

 
Figure 2. (a) Matrix of 12 × 16 elements with the radius of curvature Ra1 = 3.7 μm and circular aper-
ture of D = 2Ra1. (b) Matrix of 12 × 16 elements with the radius of curvature Ra2 = 7.4 μm and square 
aperture with a side size of D = Ra2. 

Figure 1. Each lenslet is convexo-planar, with a flat base width of P = 3.7 µm, placed at the focal
length f (λ1) = 1.23 µm for study one, and f (λ2) = 2.46 µm for study two, from the surface sensor. The
radius of curvature is Ra1 = 3.7 µm, with a circular aperture for the first study. For the second study,
the radius of curvature is Ra2 = 7.4 µm. The circular aperture of diameter D has a value of 2Ra1. The
side of the square aperture is equal to Ra2.

Here, β = n(λi) − n(λs). Equation (1) is valid for any wavelength, refractive indices,
and radii of curvature of the lens. In our case, the source wavelength was λi = 9.492 µm,
corresponding to the mean wavelength for exoplanetary exploration. The surrounding
material was vacuum (n(λs) = 1), and the lens material was Ge (n(λi) = 4.0044). Rai was the
radius of curvature for the front surface, with values of Ra1 = 3.7 µm for study one, and
Ra2 = 7.4 µm for study two. The radius of the curvature for the back surface was Rb = ∞ for
both studies, considering that this surface was flat. The lenslet thickness was P = 3.7 µm,
which corresponded to the minimum commercial size. The aperture D = 2Ra1 had a circular
shape for study one, and a square shape with sides equal to Ra2 for study two.

Figure 2 shows the micro-lens arrangements for the two cases of studies. The total size
of the array corresponded to one-tenth of the commercial dimensions of the CCD sensor,
with 160 × 120 pixels. Each pixel had dimensions 7.4 × 7.4 µm, or 118.4 × 88.8 µm for
16 × 12 pixels. We planned for 10 × 10 sub-arrays of micro-lenses, joined side by side, to
complete the minimum size for the sensor surface. The aperture for study one was circular,
as shown in Figure 2a. The lenslet in study two was square in form, as shown in Figure 2b.
The geometric aperture changes between the studies had the purpose of decreasing the
non-active area between the micro-lenses where the light was incident, but was not imaged
on the sensor surface.
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Figure 2. (a) Matrix of 12 × 16 elements with the radius of curvature Ra1 = 3.7 µm and circular
aperture of D = 2Ra1. (b) Matrix of 12 × 16 elements with the radius of curvature Ra2 = 7.4 µm and
square aperture with a side size of D = Ra2.

The FEM model used in this investigation is described in [9]. The Zernike polynomials
in their polar form with σ as the radial distance, are shown in [10]. The non-polarized light
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source modeled had λi = 9.492 µm, placed at 15 µm from the lenslet surface, a spot radius
of about 44.4 µm, an intensity of 3.18 [mW/cm2], and an hexapolar normal distribution.

3. Results

A finite element simulation was performed for each case study, employing the same
wavelength, initial, and boundary conditions. In study one, the lenses had a circular
aperture and a curvature radius of 3.7 µm. In study two, the lenses had a square aperture
to avoid non-active areas, and a curvature radius of 7.4 µm.

3.1. RMS Spot Size

Figure 3 shows the spots at the focal plane for case studies one and two. A black circle
indicates the root mean square value of the radius of the spot. The colors represent the
ray as a function of the traveled distance from the source. This representation implies the
energy distribution, and which rays contributed to the wavefront and crosstalk error. The
RMS spot radius for case one (the square aperture) was only 298 nm larger than for case
two (circular aperture). This difference indicated that there was no apparent change in the
image on the sensor surface using a square aperture. However, when using the square
aperture, more energy was concentrated on the sensor surface by filling in the non-active
regions, improving the image quality. Moreover, the light focusing efficiency was almost
the same for studies one and two, with values of 33.44% and 33.41%, respectively.
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Figure 3. Spot images at the focal plane: (a) circular and (b) square aperture. The black circle indicates
the RMS spot radius. The colors represent the lateral ray displacement from the point on the aperture
to the position on the focal plane, and its contribution to wavefront and crosstalk error.

3.2. Optical Aberrations

Figure 4 shows the aberrations for case studies one and two. The piston and defocus
aberrations have been eliminated because their contribution may have been eliminated
during alignment. The values shown in the legend are the wavefront error in µm. As
expected, the wavefront errors for study two were smaller than for study one; 400 times
lower for the maximum error (dark blue) and 804 times smaller for the minimum error
(dark red).

The vertical aberration tilt, vertical coma, and spherical aberration were the most
significant in comparison to the other aberrations in both studies. However, the vertical tilt
aberration can be corrected by alignment, and does not affect the image quality. The vertical
coma aberration indicated a difference in the radii of curvature between the periphery and
the central zones. As expected, the vertical coma was not significant in case two. Finally,
the spherical aberration indicated the difference between the focal lengths for the periphery
and the center. As shown in Figure 4a, the error was concentrated at the center and the
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border. Nevertheless, as shown in Figure 4b, the relative error was distributed over the
entire micro-lens array. However, these were smaller in magnitude for the second case than
for the first case in study one.
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4. Conclusions

The FEM analysis applied for the determination of the aberration and the focal image
at the sensor surface produced by a micro-lens array is a valuable tool in lenslet design.
The micro-lens array with the square lenslet aperture reduced the crosstalk and results in a
decreasing wavefront error, by eliminating the non-active surface areas between lenslets.
FEM analysis allows for the optimization of optical design to improve IR detection in
interferometric systems.
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