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Abstract: Microalgae cultivation is a promising approach for sustainable CO2 fixation. This work
describes the optimization of a laboratory-scale experimental model for microalgae cultivation under
CO2 supplementation. The experimental model was developed using a stirred clear glass reactor,
white LED strips, connection system caps with three ports, tubes, valves, regulators, and N2-CO2

compressed gas cylinder. Three microalgae strains were used: Raphidocelis subcapitata ATCC22662,
Desmodesmus communis NIVA-CHL 7, and Chlorella sorokiniana NIVA-CHL 176. The appropriate
medium for cultivation of each of these strains was selected. The optimized experimental model
demonstrated the positive influence of CO2 supplementation on microalgae growth, particularly for
Chlorella sorokiniana.

Keywords: stirred glass reactors; connection system caps; white LED strips; microalgae biomass
accumulation

1. Introduction

Among the various technologies and strategies explored for CO2 capture [1–6], microalgae-
based systems offer a sustainable approach [7–11]. Microalgae consume CO2 during
photosynthesis, producing biomass that accumulates bioactive compounds [12–14]. Mi-
croalgae’s fast growth rates, high photosynthetic efficiency, and potential to thrive in
diverse environments make them an attractive candidate for large-scale CO2 capture and
utilization [15,16].

Microalgae photobioreactors, despite their disadvantages related to capital cost and
energy consumption for mixing, have a low contamination risk and a high CO2 feed
efficiency [17] and are suitable for the production of microalgae biomass, accumulating
high amounts of value-added compounds [18], especially in mixotrophic conditions [19].

This work describes the optimization of a closed photobioreactor type and laboratory-
scale experimental model for microalgae cultivation under CO2 supplementation. The
experimental model was developed using a stirred clear glass reactor, white LED strips,
connection system caps with three ports, tubes, valves, regulators, and CO2 compressed
gas cylinder. The work explores the various aspects of microalgae utilization for CO2
fixation, including the selection and screening of suitable strains, cultivation media, and
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conditions for enhanced CO2 uptake. At the end the work, the challenges and perspectives
of scaling up the experimental model for microalgae-based CO2 capture biotechnologies
are discussed.

2. Materials and Methods
2.1. Microalgae Strains and Cultivation Media

Three distinct microalgae species were selected: Raphidocelis subcapitata ATCC22662,
(formerly known as Selenastrum capricornutum), Desmodesmus communis NIVA-CHL 7, and
Chlorella sorokiniana NIVA-CHL 176. These unicellular organisms exhibit diverse growth
patterns, existing either as individual cells, chains, or clusters.

For the cultivation of the selected microalgae strains, three distinct freshwater media
were chosen: BG-11, bold basal medium—BBM, and Z8 [20,21]. These cultivation media
were selected due to their suitability for supporting the growth and proliferation of fresh-
water microalgae [22–25]. The macro- and micronutrient composition of each medium is
described in Table 1.

Table 1. Cultivation media (1 L).

BG-11 [26] BBM [27] Z8 [28]

NaNO3: 17.6 µM
K2HPO4: 0.23 µM

MgSO4·7H2O: 0.3 µM
CaCl2·2H2O: 0.24 µM
Citric Acid: 0.31 µM

Ammonium-iron Citrate: 0.021 µM
Na2EDTA·2H2O: 2.7 × 10−6 M

Na2CO3: 0.19 µM

BG-11 microelement solution
H3BO3: 46 M

MnCl2·4H2O: 9 M
ZnSO4·7H2O: 0.77 mM
Na2MoO4·2H2O: 1.6 M

CuSO4·5H2O: 0.3 M
Co(NO3)2·6H2O: 0.17 M

NaNO3: 2.94 mM
CaCl2·2H2O: 0.17 mM
MgSO4·7H2O: 0.3 mM

K2HPO4: 0.43 mM
KH2PO4: 1.29 mM

NaCl: 0.43 mM

EDTA solution: 0.5 mL/L
EDTA 0.171 M
KOH 0.552 M

FeSO4·7H2O 0.018M solution
(H2SO4 acidulated): 0.05 mL/L

H3BO3—0.178 M: 0.05 mL/L

BOLD Stock 50 µL/L:
H2SO4 98%: 9.98M

ZnSO4·7H2O: 1.50 µM
MnCl·4H2O: 0.36 µM
Na2MoO4: 0.26 µM

CuSO4·5H2O: 0.31 µM
Co(N03)2·6H2O: 0.84 µM

Stock 1
NaNO3: 5.50 M

Ca(NO3)2·4H2O: 0.254 M
MgSO4·7H2O: 0.101 M

Stock 2
K2HPO4: 0.178 M
Na2CO3: 0.198 M

Stock 3
FeCl3·6H2O: 0.103 M

EDTA: 0.133 M
Stock 4

Na2WO4·2H2O: 0.010 µM
(NH4)6Mo7O24·4H2O: 0.0071 µM

KBr: 0.101 µM
KI: 0.291 µM

ZnSO4·7H2O: 0.0997 µM
Cd(NO3)2·4H2O: 0.0503 µM
Co(NO3)2·6H2O: 0.0501 µM

CuSO4·5H2O: 0.0501 µM
NiSO4(NH4)2SO4·6H2O: 0.0507 µM

Cr(NO3)3·9H2O: 0.0102 µM
V2O5: 0.0049 µM

KAl(SO4)2·12H2O: 0.0999 µM
H3BO3: 0.5008 µM

A 1% inoculum of each microalgae strain was introduced into the corresponding
selected medium. Subsequently, the cultures were carefully monitored over a span of
two weeks. The cultivation was carried out in the AlgaeTron A230 (Photon Systems
Instruments, Drásov, Czech Republic), an incubator designed to provide optimal growth
conditions for microalgae. The AlgaeTron was maintained at a constant temperature of
25 ◦C, with a photosynthetically active radiation of 200 µE m−2 s−1. The photoperiod
was set to 13 h of daylight followed by 11 h of darkness to mimic natural light cycles.
Additionally, the cultures were continuously stirred at 100 rpm to ensure homogenous
nutrient distribution and prevent settling, using a platform shaker (Unimax 1010, Heidolph,
Schwabach, Germany).

During the experimental period, the growth of microalgae was closely observed in the
three chosen culture media. The monitoring spanned a total of 15 days, during which the
progression of microalgae development was assessed using three essential parameters:

• Optical Density (OD): The optical density was measured at specific intervals to track
the changes in the concentration of microalgae in each culture medium. OD values
served as a quantitative indicator of microalgae growth and population density. This
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parameter was measured using an Ocean FX® UV-Vis spectrometer from Ocean Optics
(Duiven, The Netherlands).

• Turbidity: Turbidity measurements were performed to determine the degree of cloudi-
ness or haziness in the culture media caused by the presence of microalgae. Turbidity
served as an additional parameter to assess the growth and aggregation of microalgae
in the different media. The used equipment was Grant Bio DEN-1B Turbidimeter
(Cambridge, UK).

• Biomass Accumulation: At the end of the 15-day cultivation period, the biomass of
microalgae in each culture medium was determined. Biomass quantification provided
valuable insights into the overall productivity and growth performance of the microal-
gae strains in their respective environments. The biomass was dried at 105 ◦C for 4 h
in a laboratory oven (Memmert UE200, Buechenbach, Germany) and weighed on an
analytical balance (MS105DU, Mettler Toledo, Columbus, OH, USA).

2.2. Experimental Model for CO2 Capture

The experimental setup comprises the following components: a CO2 source (7% CO2
+ 93% N2) represented by a gas cylinder (Siad, Bucharest, Romania), a GLS 80 Duran®

clear glass reactor with connection caps with three ports and stirring system (DKW Lfe
Sciences, Wertheim, Germany), a magnetic agitator (Arex 6, Velp, Usmate Velate, Italy),
tubes, valves, regulators, and a white LED strip (MY2250 Myria, Complet Electro Serv,
Voluntari, Romania) serving as an additional light source—Figure 1.
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Figure 1. The experimental setup for screening the development of microalgae for CO2 fixation. 

Parallel reactors were employed, with triplicate cultures of selected microalgae and 
the CO2 supplementation [29–31]. Reference reactors were included for each microalgae 
strain, maintaining the microalgae cultures without CO2 bubbling. 

The experimental model consists of a systematic workflow with the following se-
quential steps: 

Figure 1. The experimental setup for screening the development of microalgae for CO2 fixation.

Parallel reactors were employed, with triplicate cultures of selected microalgae and
the CO2 supplementation [29–31]. Reference reactors were included for each microalgae
strain, maintaining the microalgae cultures without CO2 bubbling.

The experimental model consists of a systematic workflow with the following sequen-
tial steps:

• Gas Mixing and Flow Control: The gases are provided from a gas cylinder through a
regulator. The gas flow rate was precisely determined using a flowmeter (Masterflex
Variable-Area Flowmeter, Radnor, PA, USA) that ensured consistent and controlled
N2-CO2 supply.

• CO2 Bubbling in the Reactors: The pre-mixed gas is introduced into the first reactor of
each series, where it undergoes bubbling through the culture medium. The stirring
system implemented within the photobioreactor allows for prolonged gas–water
interaction, promoting efficient CO2 absorption by the microalgae.

• Gas Transfer to Subsequent Reactors: After the initial reactor, the gas exits and proceeds to
the second reactor in the series. Here, it again undergoes bubbling through the culture
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medium, facilitating further CO2 absorption. The process is subsequently repeated in
the last reactor of each series, ensuring an optimized gas–microalgae interaction.

The development of microalgae was monitored along with the influence of CO2 by
measuring optical density and cell count [32], using a Marienfeld hemocytometer (Lauda-
Königshofen, Germany) and an optical microscope, DM1000 LED (Leica Microsystem,
Mannheim, Germany).

3. Results and Discussions
3.1. Optimum Cultivation

The microalgae growth was monitored by optical density and turbidity. Analyzing
these parameters provides insights into the optimal cultivation medium for each microalgae
species. All experiments were conducted in triplicate to ensure statistical rigor and reliable
data collection. The optical density and turbidity revealed distinct trends among the
microalgae strains under investigation—Figure 2.
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For Chlorella sorokiniana, the optical density values (Figure 2) exhibited similar trends
to the other two microalgae species. BG-11 and BBM media demonstrated steady growth,
with slightly higher OD values observed in BBM medium at day 15. Z8 medium supported
relatively slower growth of Ch. sorokiniana, as indicated by the lower OD values compared
to the other two media.

For D. communis, the OD values varied across the three media during the experiment.
On day 1, the OD values were relatively low and comparable in all media, with slightly
higher values observed in Z8 medium. However, as the cultivation progressed, the OD in-
creased significantly in all media, with the highest growth observed in Z8 medium at day 15.
Notably, BG-11 and BBM media also supported considerable growth of Desmodesmus com-
munis, but Z8 demonstrated superior performance in promoting cellular development [33].

Similarly, R. subcapitata displayed variations in OD values in response to different
media. On day 1, the OD values were relatively similar across all three media, but diverged
as the cultivation continued. BG-11 medium showed a significant increase in OD values,
reaching the highest level at day 8, followed closely by Z8 medium. Though supporting
growth, BBM medium displayed a slightly slower growth rate than the other two media.
Overall, R. subcapitata showed promising growth in all tested media, with the highest OD
values recorded in BG-11 and Z8 at day 15.

The evolution of the turbidity values during the experiments is presented in Figure 3.
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Turbidity values (Figure 3) for D. communis increased gradually in all three media
from day 1 to day 15. Among the three media, Z8 consistently showed the highest turbidity
values, promoting the highest cell growth for D. communis. BBM and BG-11 also supported
the growth, with BBM showing slightly higher turbidity values than BG-11 throughout the
cultivation period.

Turbidity values for R. subcapitata increased steadily over time in all three media.
Similar to D. communis, Z8 medium displayed the highest turbidity values for R. subcapitata,
indicating its favorable impact on cell growth. BBM and BG-11 also supported the growth,
with BBM showing slightly higher turbidity values, especially at later time points.

Turbidity values for Ch. sorokiniana increased consistently over the cultivation period
in all three media. Interestingly, BG-11 medium demonstrated the highest turbidity values
for Ch. sorokiniana at later time points, surpassing the values observed in Z8 medium. BBM
also supported the growth, with relatively lower turbidity values than BG-11 and Z8.

Overall, the turbidity results suggest that different microalgae species respond dif-
ferently to the various media used for cultivation. Z8 medium appeared to effectively
promote D. communis and R. subcapitata growth, while BG-11 showed promising results for
Ch. sorokiniana.

To confirm the selection of the most suitable cultivation media, biomass accumulation
(Figure 4) was assessed for each microalgae strain after 15 cultivation days [16].
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Consistent with the optical density and turbidity findings, D. communis and R. subcapi-
tata achieved higher biomass production in the Z8 medium, highlighting its proficiency in
supporting their growth. Chlorella sorokiniana showed the highest biomass production in
the BG-11 medium, while in BBM and Z8 media, it exhibited lower biomass yields. This
finding suggests that BG-11 medium is the most suitable for cultivating Ch. sorokiniana
among the tested media.
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Based on the comprehensive evaluation of growth indicators and biomass accumula-
tion, we identified D. communis in Z8 and Ch. sorokiniana in BG-11 as the most promising
candidates for CO2 biofixation in subsequent experiments. While R. subcapitata also exhib-
ited favorable results, the literature analysis [32,34] revealed its heightened sensitivity to
water acidulation, which could potentially arise during CO2 bubbling.

3.2. CO2 Biofixation Using Microalgae

The growth of microalgae was compared for microalgae with and without supplemen-
tation, for microalgae with a higher growing rate, that is, Ch. sorokiniana and D. communis.
Figure 5 illustrates the evolution of the optical density for microalgae growth with and
without CO2.
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In the experimental treatment without CO2 supplementation, Ch. sorokiniana exhibited
steady growth throughout the 15 days. The optical density (Figure 5) increased gradually
but remained relatively low, reaching a maximum of 0.299 at day 13. In the variant with
CO2 supplementation, Ch. sorokiniana showed enhanced growth compared to the control
variant. The OD increased more rapidly, reaching a higher value of 0.784 at day 15. The
CO2 supplementation significantly stimulated the growth of Chlorella sorokiniana, leading
to a substantial development.

In the control (without CO2 supplementation), D. communis also displayed gradual
growth over the 15 days, with the optical density reaching 0.116 at day 11. In the CO2
supplementation variant, D. communis showed a similar growth pattern to the control
culture until day 11. However, after day 11, the OD increased rapidly in the presence of
CO2, reaching a higher value of 0.703 at day 13. The CO2 supplementation had a notable
impact on the growth of D. communis during the last two days of cultivation.

In both cases, the addition of CO2 positively influenced the growth of the microalgae.
The CO2 supplementation accelerated biomass production and resulted in higher final
OD values than non-CO2 variants. The results suggest that CO2 supplementation plays a
crucial role in enhancing the growth of both Ch. sorokiniana and D. communis, especially
during the later stages of cultivation.

Figure 6 represents the evolution of cell number for microalgae growth using CO2.
In the control (without CO2 supplementation), both strains started with no detectable

cells on day 1 and gradually increased in terms of cell number (Figure 6). CO2 supplemen-
tation significantly increased microalgae cell multiplications.

Overall, CO2 supplementation increases both cell number and cell density. The
experimental model optimized during this work allows an efficient CO2 sequestration in
microalgae biomass. Upscaling of the model should enhance the benefits of sequential
gas transfer and reduce the costs of mixing and agitation. Exposure to the sunlight in
shadow conditions, i.e., photosynthetically active radiation lower than 300 µE m−2 s−1,
could further reduce operating cost and improve yields.
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4. Conclusions

Optimal growth media were determined. For D. communnis and R. subcapitata, the
Z8 medium demonstrated the highest growth-promoting capabilities, yielding superior
results compared to other media. On the other hand, Chlorella sorokiniana exhibited the best
performance in the BG-11 medium.

The workflow and parallel reactor configuration allow a comparison of microalgae
strains and CO2 supplementation. The sequential gas transfer from one reactor to another
increases the efficiency of CO2 sequestration.
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