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Abstract: Molten Salt Reactors (MSRs) have recently gained resurged research and development
interest in the advanced reactor community. Several computational tools are being developed to
capture the strong neutronics/thermal-hydraulics coupling effect in this special reactor configuration.
This paper presents a consistent one-dimensional (1D) multigroup neutron diffusion model for
MSR analysis, with the primary aim for fast and accurate calculations for long transients, as well
as sensitivity and uncertainty analysis of the reactor. A fictitious radial leakage cross section is
introduced in the model to properly account for the radial leakage effects of the reactor. The leakage
cross section and other consistent neutronics parameters are generated with the Monte Carlo code
Serpent using high-fidelity three-dimensional (3D) models. The accuracy of the 1D consistent model is
verified by the reference solution from the Monte Carlo model on the Molten Salt Reactor Experiment
(MSRE) configuration. The 1D consistent model successfully reproduced the integrated flux from
the 3D model and the reactor multiplication factor keff with the error in the range of 95 to 397 pcm
(per cent mille), depending on discretized energy group structures. The developed model is also
extended to estimate the reactivity loss due to fuel circulation in MSRE. The estimate of reactivity
loss in dynamics analysis is in great agreement with the experimental data. This model functions
as the first step in the development of a 1D fully neutronics/thermal-hydraulics coupled model for
short- and long-term MSRE transient analysis.

Keywords: molten salt reactors; neutronics; benchmark; reactor transients; multigroup diffu-
sion model

1. Introduction

Molten Salt Reactors (MSRs) have recently regained a lot of interest after their inclusion
in the Generation IV reactors roadmap [1]. In MSRs, the fuel is dissolved in a molten salt and
circulated in the primary loop. This design has several safety and operational advantages,
including the elimination of fuel meltdown accidents, online refueling and the continued
removal of fission products, high operation temperature and low operation pressure,
elimination of fuel fabrication, high negative temperature and void reactivity feedback
coefficients [2,3]. On the other hand, the flowing fuel also arises in phenomena that are
not present in the current Light Water Reactors (LWRs), such as the drift of the Delayed
Neutron Precursors (DNP) with the fuel flow and their redistribution inside the core as a
function of the flow speed. Most of the current computational tools for nuclear reactors
do not have capabilities to simulate MSRs. This incurs the requirement of developing new
tools that have the capabilities to capture the unique characteristics of MSRs to serve in the
design and safety analysis of this Generation IV concept.

Many computational tools were developed along the time for the Multiphysics sim-
ulation of MSRs. A few of the latest tools in this regard were reviewed in this study.
Fiorina et al. [4] developed an axisymmetric two-dimensional (2D), fully coupled Multi-
physics model for the MSFR. The models are implemented in COMSOL Multiphysics and
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TUDelft. The models adopted six and nine energy groups structures for the neutron diffu-
sion equation. Aufiero et. al. [5] used the OpenFoam [6] to develop a three-dimensional
(3D), full core, transient model for the MSFR. The model adopted a one-speed neutron
diffusion model to reduce the computational cost. Moltres [7], an application for modeling
MSRs based on the MOOSE framework [8], used the multigroup diffusion equation in 3D or
axisymmetric 2D coupled with the heat equation and the one-dimensional (1D) DNPs drift
model. Yang et al. [9] developed a framework for coupling a 3D neutron transport code
PROTEUS-NODAL [10] and a modern system-level thermal-hydraulics code SAM [11] to
simulate steady-state and transients of MSRs.

All these efforts used either a 3D or an axisymmetric 2D geometry representation
of the reactor core, which more-or-less results in high computational cost. The use of
such multi-dimensional models is not efficient for long-term transient analysis, neither
for the sensitivity analysis or optimization studies. On the other hand, using lower order
representation of the geometry, such as a 1D representation, can significantly reduce the
computational time and is more suitable for optimization problems and long transients. On
the other hand, using such gross 1D models can doubtlessly introduce large errors in the
simulation results. However, these errors can be greatly reduced by carefully generating
the homogenized material properties, such cross sections. One of the most commonly
used methods for generating homogenized cross sections for deterministic diffusion or
transport models is based on the Monte Carlo method [12], which includes a detailed
simulation of the reactor configuration using a continues energy spectrum to provide a
stochastic estimation of the reaction rates. This procedure is followed by collapsing this
continues energy spectrum and heterogeneous medium representation into a homogeneous,
few-group structure that is suitable for deterministic diffusion codes. The condensation of
the cross sections can be generated using infinite spectrum or leakage-corrected spectrum.
Serpent [13] has the capability to generate both infinite and leakage-corrected cross sections
using the homogenous B1 method. However, the B1 method has shortcomings and should
be used with caution [14].

In this work, we develop a consistent 1D, multigroup diffusion model for the MSR
neutronics analysis, with the primary objective of reducing the computational cost in
long transients, sensitivity and uncertainty, and optimization studies of the MSR. Here,
the term ‘consistent’ renders our purpose of producing highly agreeable results with
the 2D or 3D neutronics models. The consistent diffusion model is achieved with the
following measures. The leakage corrected models, counting for both radial and axial
leakages, are derived rigorously and integrated into the 1D model. The leakage-corrected
parameters are generated using the infinite-spectrum cross sections. Consistent neutronics
parameters, including diffusion coefficients and multigroup cross sections, are generated
using Monte Carlo 3D models. The procedures of these parameter generation are detailed
in the methodology sections.

Another important aim of this work is to develop an accurate and computationally
efficient 1D MSR model that can serve for an ongoing US DOE NEUP project—the de-
velopment of a reactor physics transient benchmark for MSR [15]. This project is being
developed based on the legacy data of the Molten Salt Reactor Experiment (MSRE) [16].
The application requires multiple runs for the transient tests conducted during the oper-
ation of the MSRE for the purpose of sensitivity analysis. Thus, a 2D or 3D model is not
feasible. This paper is organized as follows: the derivation of the 1D consistent model is
largely provided in Section 2, the implementation of this model including group parameter
generations is discussed in Section 3, and the application of the model for the steady-state
and dynamics MSRE analysis are provided in Sections 4 and 5, respectively, and some
concluding remarks on the current model are provided at the end of the paper.
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2. Consistent 1D Multigroup Diffusion Model

The time-dependent three-dimensional multigroup diffusion equation may be
given by

1
vg

∂ϕg

∂t
= ∇·Dg∇ϕg − Σr,gϕg + Qg, (1)

where vg is the neutron speed, Dg is the diffusion coefficient, Σr,g is the removal cross
section, and Qg is the neutron source for the gth group, which accounts for the fission
source and scattering sources form other groups.

For convenience, we expand Equation (1) in cylindrical coordinates as follows

1
vg

∂ϕg

∂t
=

[
1
r

∂

∂r

(
rDg

∂ϕg

∂r

)
+

1
r

∂

∂θ

(
Dg

∂ϕg

∂θ

)]
+

∂

∂z

(
Dg

∂ϕg

∂z

)
− Σr,gϕg + Qg, (2)

where the two expanded terms on the right-hand side of the equation represent the planar
radial and axial diffusion terms of the diffusion model, respectively.

A one-dimensional model along the axial direction can thus be obtained by integrating
Equation (2) over the planner area of the core. By integrating Equation (2) over the planner
area A and averaging the resulting quantities over the area, the left-hand side of the
equation can be expressed as

1
A

∫
A

1
vg

∂ϕg(r, θ, z, t)
∂t

dA =
1
vg

∂φg(z, t)
∂t

, (3)

where φg(z, t) is the planner averaged flux

φg(z, t) =
1
A

∫
A

ϕg(r, θ, z, t)dA, (4)

and vg is the flux weighted neutron speed

1
vg

=

∫
A

ϕg
vg

dA∫
A

ϕgdA
. (5)

A similar procedure can be performed to define the removal cross sections and other
cross sections used to calculate Qg (e.g., Σ f ,g, Σs,g′→g). For instance, the area averaged
removal cross section is defined as:

Σr,g =

∫
A

Σr,gϕgdA∫
A

ϕgdA
. (6)

2.1. Radial Leakage Treatment

The integration form of planner radial diffusion term in Equation (2) can be treated
as follows:∫

A

[
1
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∂
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dr, (7)

where the Green’s theorem is applied to convert the area integral to a line integral over the
perimeter of the planner area, which equals to the net current leaking in the radial direction∮

P

(
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)
rdθ +

(
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)
dr = −

∮
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[
Jr,grdθ + Jθ,gdr

]
≡ AφgΣL,g, (8)
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where the radial leakage cross section can be defined as

ΣL,g =

−
∮
P

[
Jr,grdθ + Jθ,gdr

]
Aφg

=

−
∮
P

[
Jr,grdθ + Jθ,gdr

]
∫
A

ϕgdA
. (9)

In the case of azimuthal symmetry, Jθ,g = 0 and ΣL,g is reduced to

ΣL,g =
−2πrJr,g∫
A

ϕgdA
. (10)

2.2. Axial Leakage Treatment

The axial diffusion term is treated following a similar procedure

∂

∂z

∫
A

Dg
∂ϕg

∂z
dA =

∂

∂z
Dg

∂φg

∂z
, (11)

where Dg is axial diffusion coefficient, defined as

Dg =

∫
A

DgϕgdA∫
A

ϕgdA
. (12)

Because the 1D model does not extend to the whole axial domain, appropriate bound-
ary conditions at both ends are needed to account for the axial leakages from two ends of
the simulated domain. The response matrix is used to relate incoming current Jin,g and the
outgoing current Jout,g and the boundary surface. For a general G-group energy structure,
the relation between partial currents takes the form:


Jout,1
Jout,2

...
Jout,G

 =


α11 α21 · · · αG1

α12
. . . · · ·

...
...

...
. . .

...
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...
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. (13)

To implement the albedo boundary condition for the axial directions in the diffusion
model, Equation (13) is re-written in terms of the total current and the scaler flux using the
definition of the partial currents
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1
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Substituting Equations (14) and (15) into Equation (13) gives
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Equation (16) can be rearranged and written in matrix notations as follows

D
d
dz

Φ = −1
2
(A + I)−1(A − I)Φ, (17)

where I, A are the identity and response matrices, respectively, and D, Φ are given by

D =


D1 0 · · · 0

0 D2
...

...
. . . 0

0 · · · 0 DG

, Φ =


φ1
φ2
...

φG

. (18)

In this work, the albedo coefficients are calculated by tallying the partial currents at the
lower and top heads of the reactor vessel, and assuming that all the off-diagonal elements
of the response matrix are zero.

2.3. Multigroup Diffusion Equation

With all the factors considered above, the consistent 1D form of Equation (2) can then
be written as

1
vg

∂φg

∂t
=

∂

∂z
Dg

∂φg

∂z
−

⌢
Σr,g φg + Qg, (19)

where
⌢
Σr,g is the sum of the group removal and radial leakage cross sections

Σ̂r,g = Σr,g + ΣL,g. (20)

Note that in the course of the derivation, the group constants were assumed to be a
function of the axial position (z). In the case of generating homogenized cross sections for
3D regions, all cross sections should be averaged over the axial dimension too. In this case,
the leakage cross section becomes:

ΣL,g =

−
s

S
Jg·d

→
S

t

V
ϕgdV

, (21)

where S is the radial surface area of the homogenized region, and V is the volume.

3. Consistent Neutronics Parameters for MSRE

In this section, the numerical implementation of the planar averaged, 1D diffusion
model is discussed. The homogenized cross sections and parameters used to calculate the
leakage cross sections and the albedo coefficients were generated using the Monte-Carlo
transport code Serpent [13]. We followed the MSRE static model provided in Ref. [17],
and divided the reactor vessel into eight homogenized regions in the axial direction. The
boundaries of each homogeneous region (see Figure 1) were chosen based on the changes
in material and/or configuration between the different regions. The homogenized regions,
as labelled in Figure 1, include:

(1) The curved lower head;
(2) The straight section of lower head;
(3) The main reactor section;
(4) The below flow distributor ring;
(5) The flow distributor ring;
(6) The above flow distributor ring;
(7) The straight section of upper head;
(8) The curved upper head.
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Figure 1. Side view of MSRE with homogenized regions labelled for the 1D diffusion model.

For clarification, the molten salt fuel flowing effect is ignored in the homogeneous
parameter generation procedure because the static Serpent model is used as the base
reference model at this step. Following the simplification, the viability of the consistent
1D model is firstly verified by the 3D Serpent model steady-state calculation results in
Section 4, and then extended for the dynamics analysis in Section 5 with the DNP drift
effect taken into account.

The standard homogenous cross sections were generated in Serpent using the infinite
spectrum approach, in which the homogenization is carried out on an infinite lattice of
identical cells (i.e., no net current on the cell boundaries) [12]. This approach was chosen
because the leakage effect was accounted for in the leakage cross section and the albedo
BCs. Four different energy group structures were tested in this work. The first group
structure is the standard two-group (2G) structure with a cutoff at 0.625 eV. The second
group structure is the eight-group (8G) structure adopted in Ref. [18]. The third structure
is the 16-group (16G) structure adopted in Ref. [19]. The fourth energy structure is the
standard CASMO23 group (23G) structure [20]. The energy boundaries of the 8G structure
are given in Table 1. For illustration, the energy boundaries of the different structures tested
in this work are summarized and compared in Figure 2, in which the different colors stand
for the group boundary points of different energy group.
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Table 1. G case [18].

Group Upper Energy Boundary (MeV)

1 1.9640 × 101

2 4.9787 × 10−1

3 5.0045 × 10−3

4 6.7904 × 10−5

5 6.1601 × 10−6

6 1.4750 × 10−6

7 5.0000 × 10−7

8 5.8000 × 10−8
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Figure 2. Group boundaries for the different group structures that are used to generate the condensed
cross sections in this work.

For the sake of space, only the 2G parameters were presented in this paper. The
condensed data for other energy groups were stored and used for the diffusion model in
the same manner. The infinite 2G cross sections are summarized in Table 2.

Table 2. The region-wise homogenized 2G cross sections generated from Serpent using the infinite
spectrum approach.

Regions D1 D2 Σr,1 Σr,2 Σs,1→2 Σs,2→1 νΣ f ,1 νΣ f ,2

1 8.73 × 10−1 7.57 × 10−1 5.69 × 10−3 4.35 × 10−2 9.97 × 10−4 6.27 × 10−3 1.95 × 10−3 3.21 × 10−2

2 1.02 × 100 9.27 × 10−1 5.17 × 10−3 2.98 × 10−2 1.55 × 10−3 3.40 × 10−3 2.12 × 10−3 3.62 × 10−2

3 1.00 × 100 8.18 × 10−1 4.88 × 10−3 9.05 × 10−3 3.71 × 10−3 2.45 × 10−3 7.21 × 10−4 1.07 × 10−2

4 9.95 × 10−1 8.16 × 10−1 4.98 × 10−3 9.21 × 10−3 3.72 × 10−3 2.47 × 10−3 7.24 × 10−4 1.08 × 10−2

5 9.85 × 10−1 8.16 × 10−1 5.03 × 10−3 9.29 × 10−3 3.71 × 10−3 2.57 × 10−3 7.37 × 10−4 1.07 × 10−2

6 9.95 × 10−1 8.34 × 10−1 4.47 × 10−3 1.14 × 10−2 2.90 × 10−3 2.97 × 10−3 9.55 × 10−4 1.33 × 10−2

7 1.15 × 100 1.06 × 100 4.34 × 10−3 2.72 × 10−2 1.29 × 10−3 3.45 × 10−3 2.28 × 10−3 3.96 × 10−2

8 1.01 × 100 9.42 × 10−1 4.75 × 10−3 3.32 × 10−2 1.00 × 10−3 5.24 × 10−3 2.18 × 10−3 3.60 × 10−2



J. Nucl. Eng. 2023, 4 661

The values of the albedo coefficients used at the boundaries are listed in Table 3. These
values were obtained by tallying the partial currents at the curved surface of the lower and
upper heads of the reactor vessel. The values of αgg were then calculated from Jin,g/Jout,g.

Table 3. The 2G diagonal albedo coefficients generated using Serpent for the lower and upper
boundaries of the reactor vessel.

Boundary α11 α22

Lower 4.05 × 10−1 1.42 × 100

Upper 3.59 × 10−1 1.18 × 100

The homogenized radial leakage cross sections are defined by Equation (21) where
the numerator is the net current leaking form the outer surface of the region, and the
denominator is the integral flux in the homogenized region. The leakage cross sections
for the curved sections of both the lower and upper heads (Region 1 and 8) are set to zero,
because the leakage from these regions is considered in the albedo BC. The 2G leakage
cross sections for the other six homogenized regions are given in Table 4.

Table 4. The region-wise, 2G radial leakage cross section calculations.

Regions Integral Flux Net Current ΣL,g

2
G1 4.32 × 100 −1.83 × 10−3 4.25 × 10−4

G2 5.51 × 10−1 2.00 × 10−4 −3.62 × 10−4

3
G1 1.52 × 102 −1.16 × 10−1 7.61 × 10−4

G2 5.96 × 101 −8.84 × 10−3 1.48 × 10−4

4
G1 4.90 × 100 −2.92 × 10−3 5.95 × 10−4

G2 1.92 × 100 −5.72 × 10−5 2.98 × 10−5

5
G1 2.06 × 101 −8.86 × 10−3 4.30 × 10−4

G2 7.60 × 100 −3.26 × 10−4 4.28 × 10−5

6
G1 7.05 × 100 −4.43 × 10−3 6.28 × 10−4

G2 1.70 × 100 1.74 × 10−5 −1.02 × 10−5

7
G1 5.87 × 100 −3.39 × 10−3 5.77 × 10−4

G2 5.81 × 10−1 1.39 × 10−4 −2.39 × 10−4

4. Steady-State Calculations

To assess the accuracy of the 1D model, both the spatial flux and the ke f f value obtained
from the 1D model were produced and compared against the Serpent results. COMSOL
Multiphysics [21], a commercial finite element method (FEM) platform, is used to facilitate
the computation of the developed 1D diffusion model. The equations are implemented in
the COMSOL mathematics module using its coefficient form of partial differential equation
(PDE). The built-in ARPACK [21] eigenvalue solver is used to solve the model by searching
for the nearest eigenvalue to unity. For comparison, the 3D flux solution from Serpent was
integrated over the planar area to provide a reference solution for the 1D diffusion model.
The spatial solution was obtained at a regular mesh of 30 points in the axial domain.

4.1. Two-Group Case

The detailed two-group-wise balance equations used in the 1D model are in the form:{
−∇·D1∇φ1 + Σ̂r,1 φ1 = 1

ke f f

(
νΣ f ,1 φ1 + νΣ f ,2 φ2

)
+ Σs,2→1 φ2

−∇·D2∇φ2 + Σ̂r,2 φ2 = Σs,1→2 φ1
. (22)
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The reference flux solution from Serpent, along with the solution of the 1D leakage
corrected diffusion model, is shown in Figure 3. Note that for the Serpent solution, the
error bars are included in the figure, but they are nearly invisible because their values are
smaller than cap size of the nominal values. As shown in the figure, a high agreement of
the group-wise flux is achieved from the 1D diffusion model. The mean relative square
error in the calculated flux compared to the reference solution is 0.84%.
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4.2. Eight-Group Case

The generic steady-state multigroup diffusion equation used in the 8G Case is given
in the form:

−∇·Dg∇φg + Σ̂r,g φg =
χg

ke f f
∑
g

νΣ f ,g φg + ∑
g′ ̸=g

Σs,g′→g φg′ , g = 1, · · · , 8. (23)

The reference flux solution compared with the 1D diffusion solution is shown in
Figure 4. Again, a high agreement of the group-wise flux is observed through all groups,
with a mean relative square error of 0.3%

A comparison between the values of the ke f f for all cases with different energy struc-
tures is summarized in Table 5. Note that cases with more energy group structures, namely
the 16G Case [19] and 23G Case (the CASMO23 group structure [20]) for the 1D diffusion
model, are also considered in the calculations, and the keff results of these cases are included
in Table 5. Though the procedure to generate homogeneous cross sections and boundary
parameters take more time in Serpent, similar data generation and analysis methods are
adopted for cases with more groups.
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Table 5. The ke f f calculated from the 1D diffusion model for all energy group cases compared to the
reference value obtained from continuous energy Serpent calculations.

Model Serpent 2G Case 8G Case 16G Case 23G Case

ke f f
1.02133 ±

0.00010 1.01938 1.02228 1.02530 1.02314

∆ρ [pcm] - −195 +95 +397 +181

The 1D flux distribution agrees very well with the integral 3D reference flux obtained
from Serpent. The larger discrepancies can be seen in the higher energy groups. It is also
noted that increasing the resolution of the group structure does not necessarily reduce the
error in the keff, 2G performed better than the 16G. This indicates that error cancelation may
have occurred for the 2G structure. It is also worth noting that the magnitude in the error in
the keff obtained using the 1D, leakage corrected model is comparable to the errors resulted
using 3D higher spatial resolution codes [19,23].

5. Dynamics Analysis

As an application for the 1D leakage corrected model, the 2G group structure is used
to simulate the flowing fuel in the MSRE. The MSRE is a 10 MW thermal reactor that was
fueled and cooled by a FLiBe salt mixture and moderated by graphite. The MSRE consisted
of two salt circulation loops, where the primary salt (i.e., fuel salt) ejects the heat to the
secondary salt through the heat exchanger. The secondary salt, which is also a similar FLiBe
salt, ultimately ejects the heat to the air through a radiator. The salt volume in the primary
loop is 73 ft3 (1.95 m3), and the salt volume in the core is 0.67 m3. With designed primary
flow rate of 1200 gpm (0.076 m3/s), the salt residence time in the core is about nine seconds,
and the total circulation time of the primary loop is about 26 s. A detailed description of
the MSRE dynamics model can be found in Ref. [15]. The system is described by the 2G
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diffusion model coupled the mass balance equations for six DNP families. The forward
system is given as

− d
dx

[
D1

dφ1
dx

]
+

⌢
Σr,1 φ1 = 1−β

ke f f

[
νΣ f ,1 φ1 + νΣ f ,2 φ2

]
+ Σs2→1 φ2 +

6
∑

k=1

λk
Q

.
mk

− d
dx

[
D2

dφ2
dx

]
+

⌢
Σr,2 φ2 = Σs1→2 φ1

u
Q

d
.

mk
dx = βk

ke f f

[
νΣ f ,1 φ1 + νΣ f ,2 φ2

]
− λk

Q
.

mk, k = 1, . . . , 6

, (24)

where
.

mk is the mass flow rate of the DNP of the family k, Q is the volumetric flow rate,
which is set be 1200 gpm (or 0.076 m3/s) for the normal operation condition for MSRE, and
u is the velocity field. The corresponding adjoint system to Equation (24) is given as

− d
dx

[
D1

dφ∗
1

dx

]
+

⌢
Σr,1 φ∗

1 =
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ke f f
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∑
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.
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2
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2
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∑
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1 .

− u
Q

d
.

m∗
k

dx = λk φ∗
1 −

λk
Q

.
m∗

k , k = 1, · · · , 6

(25)

The DNP data was generated using Serpent and is given in Table 6. The piecewise
velocity field provided in Ref. [24] was used as an input for the model.

Table 6. The six-families DNP yield fractions and decay constants generated using Serpent for the
static MSRE configuration.

Family 1 2 3 4 5 6

β/10−5 20.7 106.9 104.1 296.2 86.2 30.8

λ [s−1] 0.012 0.031 0.109 0.317 1.350 8.640

The results for both the forward and adjoint systems are shown in Figure 5.
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COMSOL models are created for Equations (24) and (25) separately, using the coef-
ficient PDE form. The two eigenvalue systems are solved using the ARPACK solver. A
comparison between the value of the ke f f for the stationary and flowing cases is summa-
rized in Table 7. The results for the forward and adjoint flux show that there is no significant
change from the stationary fuel configuration. On the other hand, the DNP distribution at
steady state flowing condition shows significant distortion from the static distribution. The
long-lived DNP families exhibited more distortion compared to the short-lived families.
This result is expected, as the short-lived families decay before they can drift away from
their generation position. As a result of this, the short-lived DNP families decay at higher
importance regions compared to the long-lived families. This effect can be shown in the
adjoint DNP concentration distribution.

Table 7. A comparison of ke f f for the stationary and flowing MSRE models obtained from the solution
of the 1D 2G diffusion model.

Stationary Flowing

ke f f 1.01938 1.01714

∆ρ [pcm] - −223

The total reactivity loss due to fuel circulation is estimated from the eigenvalue of the
flowing-fuel configuration for both the forward and the adjoint problems was found to
be −223 pcm (per cent mille), the experimental value for reactivity loss is 212 pcm [25].
The estimated reactivity loss using PROTEUS-NODAL is −222.9 pcm [23]. These results
indicate the consistent 1D leakage corrected diffusion model is sufficient for reproducing
the axial flux distribution and the k-eigenvalue of the MSRE configuration with sufficient
accuracy. All the studied cases are solved on a single CPU core within one second. This
is very efficient compared to the 3D and axisymmetric 2D models. For instance, Lindsay
et al. [7] reported a run time of 5 min on a single core for the axisymmetric 2D MSRE model
using a coarse axial mesh, while the 3D case required a supercomputer.

6. Conclusions

In this work, a consistent 1D leakage corrected multigroup neutron diffusion model
was established for the MSR neutronics analysis. The consistent model includes an artificial
leakage cross section to account for the neutron leakage in the radial direction, which
cannot be directly realized in a 1D representation. The procedure of generating the leakage
cross section using Serpent code is elaborated. The leakage cross section is estimated by
tallying the integral net current at the geometry radial boundary surface. The ratio of the
net current to the integral flux within the cell surrounded by the radial surface is the leakage
cross section. The remaining cross sections are generated using the infinite spectrum. The
axial flux is accounted for using the albedo boundary condition.

The consistent 1D model was verified against the reference solution obtained from 3D
Serpent calculations. Four different few-group energy structures were considered in the
verification procedure. The ke f f value obtained from the diffusion model is compared to
the reference value and shown with good agreement. The error in the estimated ke f f did
not decrease monotonically with increasing the energy resolution, which suggests that error
cancelation mechanisms may occur for the lower resolution groups. Generally, the error
in the predicted ke f f value is comparable to values found in literature for higher spatial
resolution models.

As an application for the developed model, the MSRE dynamic configuration was
simulated by means of the eigenvalue analysis to estimate the reactivity loss due to fuel
circulation. Both the forward and adjoint models of the problem are considered and solved
for producing effective kinetics parameters. The estimated reactivity loss due to fuel
circulation at the MSRE designated flow rate is 223 pcm, which is in a good agreement
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with the experimental values. It also verified the effect of the fuel circulation on the DNP
distribution and their relative importance.

The MSRE analyses performed in this work shows that the consistent 1D leakage cor-
rected diffusion model is sufficient to reproduce the axial flux distribution and k-eigenvalue
of the MSRE, and offer the advantage of being very computationally efficient. This work is
the first step in developing a fully neutronics and thermal-hydraulics-coupled model for
MSR analysis, which is part of the NEUP project that aims to develop a transient reactor
physics benchmark for MSR based on the experimental data of the MSRE. In the future, the
consistent 1D MSR diffusion model is to be used to carry out a series of sensitivity analysis
to resolve the uncertainties in the MSR design and operational parameters. The developed
MSRE benchmark will serve in the development of computational tools for the MSRs.
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